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A significant problem for current quantum computers is noise. While there are many distinct
noise channels, the depolarizing noise model often appropriately describes average noise for large
circuits involving many qubits and gates. We present a method to mitigate the depolarizing noise
by first estimating its rate with a noise-estimation circuit and then correcting the output of the
target circuit using the estimated rate. The method is experimentally validated on a simulation
of the Heisenberg model. We find that our approach in combination with readout-error correction,
randomized compiling, and zero-noise extrapolation produces close to exact results even for circuits
containing hundreds of CNOT gates. We also show analytically that zero-noise extrapolation is
improved when it is applied to the output of our method.

Noisy intermediate-scale quantum (NISQ) comput-
ers [1] are current and near-term quantum computers that
are not fault-tolerant. The presence of noise and errors
limits their utility. Even quantum algorithms designed for
NISQ devices, for example the variational quantum eigen-
solver [2], are hampered by imperfections of real devices.
Error rates are still too large to solve relevant scientific
problems on existing quantum computers. Consequently,
there has been a lot of effort to reduce noise and mitigate
errors present on these devices.

An important class of errors are readout errors. They
manifest themselves as readouts of incorrect qubit values
during a measurement, e.g., reading one while the qubit
is in the zero state and vice versa. Readout errors can
be successfully mitigated with readout-error correction.
Several method with various degree of sophistication have
been developed [3-8].

Another large source of errors are gate errors. They can
be classified into coherent and incoherent errors. Coher-
ent errors preserve state purity. They are typically small
miscalibrations in control parameters. Coherent errors
usually produce similar errors in consecutive executions
of a quantum circuit and lead to a systematic bias in the
output. Incoherent errors can be understood as either
coherent errors with randomly varying control parame-
ters or as processes that entangle the system with its
environment. Incoherent errors are easier to handle than
coherent errors, because they can often be modeled as
depolarizing noise. A method for converting coherent er-
rors into incoherent errors is randomized compiling [9-11].
Its benefits for NISQ computers have been demonstrated
experimentally [12-14].

Another practical technique of error mitigation is zero-
noise extrapolation [15-25]. A circuit is executed multiple
times with various degrees of noise and the measured out-
put is extrapolated to the zero-noise limit. Recently, a
method to mitigate the depolarizing noise using random-
ized measurements has been demonstrated [26]. Other
mitigation methods have been developed as well [27-40].

In this letter, we introduce a new mitigation method.

From a given quantum circuit, which we call a target
circuit, we construct a circuit with a similar structure
that we call an estimation circuit. We execute the esti-
mation circuit to measure the depolarizing noise rate and
then use the measured rate to correct the output of the
target circuit. We experimentally demonstrate that the
combination of readout-error correction, randomized com-
piling, mitigation with estimation circuits, and zero-noise
extrapolation produces results that are very close to the
exact results.

We first describe the method, introduce a simple class
of estimation circuits, and present our full mitigation
protocol. We then show improvements obtained for our
test case, which is a simulation of the Heisenberg model.
Finally, we develop a theoretical argument showing that
zero-noise extrapolation performed after mitigation with
estimation circuits increases the extrapolation accuracy.

Methods.—A simple model of incoherent noise is the
depolarizing noise model given by [41]

o) = (L~ p)p+pgr. (1)
where € denotes the noise channel, p is the density matrix,
p is the probabilistic error rate that depends on the device
and also on the circuit, and n is the number of qubits.
Notice that if p is initially a pure state, one can reconstruct
the initial state from the noisy density matrix. For p > 0,
the initial pure state is the state with the largest weight
in €(p). Alternatively, if one knows p, the initial density
matrix p can be reconstructed simply by calculating the
inverse e~ 1(p).

Observables are given by Hermitean operators acting
on the system Hilbert space. They can be decomposed
into sums of strings of identity and Pauli matrices,

0=> ¢ f[ o™, (2)
i j=1

where ¢; are real coefficients and o*7 € {I,0,,0,,0,} are
identity or Pauli matrices acting on qubit j. The trace



of S = H?Zl o7 is either tr(S) = 2" if S is a product of
identity matrices or tr(S) = 0 otherwise. The expectation
value of an observable O for a state represented by a
density matrix p is (O) = tr(pO). The expectation value
of O for a noisy density matrix (1) is therefore given by

(0) = trle(p)O] = (1= p)(O) + 5= tx(0),  (3)

where we denote the noisy expectation value by an overline.

Notice that (S) = 1 for strings S consisting of identity
matrices only and (S) = (1 — p)(S) otherwise.

We can therefore decompose any observable O as O =
cl + O, where ¢ is a constant, I is the identity operator,
and tr(O’) = 0. Its expectation value is (O) = ¢+ (O’). If
we assume that the system decoherence is well described
by the depolarizing noise model and if we know p, we can
correct a noisy expectation value by calculating

0) —cp

0 =5=

; (4)

where (O) is the corrected expectation value. We assume
¢ = 0 without loss of generality in the following, because
c is just a constant shift of the expectation value known
in advance.

To correct the expectation value of any observable
under the depolarizing noise model, we have to estimate
the value of p. We do it by executing a circuit that is
similar to our target circuit but has a known output. We
assume that the target circuit consists of single-qubit
and CNOT gates only and that CNOT gates are the
leading source of gate errors. Our approach to construct
an estimation circuit is to remove all single-qubit gates
from the target circuit and to keep only the CNOT gates
in it. Since the initial state on a quantum computer is
the zero state, ideal CNOT gates do not transform the
initial state at all. The final state is again a zero state on
an ideal quantum computer. We can therefore estimate
1 — p by measuring the probability of obtaining the zero
state with the estimation circuit. The main assumption
is the estimation and the target circuit are affected by a
similar p because they have similar structures.

It is not always necessary to remove all single-qubit
gates. The estimation circuit can be any circuit that has
a known output sensitive to noise and that has a similar
structure as the target circuit. It may be beneficial to
preserve some single-qubit gates to keep it similar to the
target circuit or add extra gates to reduce systematic
errors. We therefore add a layer of random rotations as
the first circuit layer and its inverse as the last circuit
layer to increase the robustness of the estimation.

An alternative recent approach uses near-Clifford cir-
cuits, which one can simulate classically, to perform the
mitigation [42]. The main difficulty of this approach is
that the output of random near-Clifford circuits is similar
to an output obtained with a completely mixed density

FIG. 1. Randomized compiling. Each CNOT gate is dressed
with the P, Q, R, and S gates.

TABLE I. Gate choices in randomized compiling. Each P,
@, R, and S assignment produces a dressed gate equal to
a CNOT gate. An assignment is chosen independently and
randomly for each C NOT gate in the circuit.

PQRS PQRS P QRS PQRS
I 111 Y 1Y X X I XX z 1 Z I
I X 1T X Y XY I X X X I zZ X Z X
1Y ZY Y'Y X Z XYY Z ZY 1Y
1 Z Z Z Y Z XY X ZYY zZ 7Z 1 Z

matrix. One therefore has to select a particular subset of
circuits that produce biased outputs. The authors used
machine learning to find appropriate near-Clifford circuits
with this property. Our method does not require any such
selection. We simply remove single-qubit gates to obtain
a biased circuit that can be simulated trivially.

We implemented our method in combination with
readout-error correction, randomized compiling, and zero-
noise extrapolation. Readout-error correction is per-
formed using the unfolding method [8, 43].

Coherent errors are dominant gate errors. They are not
covered well by the depolarizing noise model. Randomized
compiling [9] can convert coherent errors into incoherent
errors. In particular, we consider single-qubit gates being
the easy gates and CNOT gates being the hard gates.
We perform randomized compiling by inserting a layer of
randomizing single-qubit gates before and after each layer
of CNOT gates as shown in Fig. 1. The randomizing
gates are the identity and the Pauli gates. Each CNOT
gate is preceded and succeeded by a pair of gates so
that the overall action of the four single-qubit gates and
a CNOT gate is exactly equal to a CNOT gate. All
possible gate choices are listed in Table I. The layer of
single-qubit gates after a layer of CNOT gates can be
composed with a layer of single-qubit gates before the
next layer of CNOT gates. The circuit structure therefore
consists of layers of CNOT gates interspersed with layers
of single qubit gates. We use randomized compiling for
both the estimation and the target circuit.

In the original formulation of zero-noise extrapola-
tion [16, 19], the authors varied gate duration assuming
that slower gates have larger errors. They ran experi-
ments for several duration values and extrapolated the
measured results to the zero duration. A pulse-level con-
trol is required to implement this method. The technique
has been extended to systems with gate-level control [17].
The main assumption is that C NOT gates are the domi-



nant source of errors. The authors replaced each CNOT
gate with a sequence of three or five CNOT gates, which
are equivalent to a single CNOT gate, executed their
circuits, and extrapolated to the zero-gate limit. This
idea has been further extended to replace only a subset of
CNOT gates with sequences of CNOT gates [21]. Both
methods assume a certain dependence of errors on the
number of CNOT gates. In this work, we execute three
versions of each circuit, where each CNOT gate is re-
placed by one, three, or five consecutive CNOT gates,
and perform quadratic extrapolation to the limit corre-
sponding to zero CNOT gates.

Ezperiment—Our test case is time evolution of the
Heisenberg model. We consider a quench of a one-
dimensional XX chain of noninteracting spin-1/2 par-
ticles [44]. Its Hamiltonian is given by

n—1
H=-J Z (Jiai""l + Jiai""l) , (5)
j=1

where J > 0 is a coupling constant, and o7, and o, are
Pauli matrices acting on qubit j. The system is ini-
tially prepared in a domain-wall configuration |ig) =
|...111000...) with qubits in the first and second half
of the chain in the one and zero state, respectively. We
consider i = 1 for simplicity in the following.

The propagator exp(—iHt) is approximated by its
second-order Trotter—Suzuki decomposition [45, 46] to
enable its implementation on a quantum computer. The
approximated propagator for one time step is given by

eszét ~ esztSt/2esz6t€72F5t/2’ (6)

where F' and G contain terms in H that act only on even
and odd bonds, respectively, and 4t is a time step. Since
all terms in both F' and G commute with each other, we
can decompose the exponentials in Eq. (6) into products
of two-qubit exponentials of the form expl[iJ (ool ™t +
o)olt)ét/d], where d € {1,2}. Each such exponential
can be implemented by a circuit consisting of two CNOT
gates and a number of single-qubit gates. One time step
is therefore implemented by three layers of two-qubit
circuits acting on even, odd, and even bonds. Each two-
qubit circuit is subsequently decomposed into two CNOT
and multiple single-qubit gates. We measure the time
evolution of the local magnetization of the last spin in
the chain, M, (t) = (¥ (t)|o?|(t)).

We implemented this model on the IBM Q Paris device
using six qubits Q23, Q24, Q25, Q22, Q19, and Q20 with
8192 shots for each circuit. The circuit is shown in Fig. 2.
It contains 14 CNOT gates per time step. The longest
circuit for 15 time steps contains 210 CNOT gates.

We created the estimation circuit from the target circuit
by removing all its single-qubit gates. A layer of random
single-qubit gates and a layer of their inverses were added
as the first and the last circuit layer, respectively. These

gates have no effect in a noiseless calculation and help
to reduce systematic errors in real gate implementations.
Versions with one, three, and five CNOT gates per each
CNOT gate were created. We then constructed and exe-
cuted 448 randomized instances of each circuit. Readout
errors were corrected using the unfolding technique as the
first step in data processing. All expectation values were
averaged over the randomized instances.

We estimated 1 — p by measuring the (o) expectation
value with estimation circuits. Ideally, (0%) = 1, so

the depolarizing noise rate is given by 1 —p = (09).
The mitigation was performed using Eq. (4) with ¢ = 0.
We then applied zero-noise extrapolation. Data points
obtained with circuits with » =1, 3, and 5 CNOT gates
were extrapolated to r = 0 using a quadratic fit. The final
results are shown in Fig. 3. The maximal error obtained
with the target and with the mitigated circuit is 0.39 and

0.11, respectively, in both cases at t = 2.4.

So far, we have considered only a global depolarizing
noise channel that affects all qubits in a circuit. The
improvement obtained using zero-noise extrapolation on
top of the mitigation with estimation circuits can be better
understood by considering a local depolarizing model. A
local depolarizing noise channel affects only qubits a given
quantum gate is applied to. Since error rates of single-
qubit gates are typically significantly lower than noise
rates of entangling gates, it suffices to consider a noise
channel that affects only CNOT gates. The first-order
approximation of the noisy expectation value obtained
with the target circuit in this model is given by [21, 47]

Nc )
Oc(r) =1 =2)™Ne Y [(1—e)" = 1] (O)
i:O(O | (7)
- t/1
~ (O) [1 +re <<Ot>0 — Nc)] ,

where 7 is the noise factor, € is the depolarizing noise rate
of a single CNOT gate, N¢ is the number of CNOT gates,
and (O,); are sums of expectation values of all circuits
where i CNOT gates have been replaced by noise channels
that output maximally-mixed states on respective pairs of
qubits. Here, » = 1, 3, and 5 for circuits with one, three,
and five CNOT gates in place of each individual CNOT
gate. The form of Eq. (7) follows from Eq. (1) where
the global depolarizing noise with rate p is replaced by a
local depolarizing noise with rate €. A local noise channel
associated with a CNOT gate affects only the Hilbert
subspace corresponding to the gate qubits. Maximally-
mixed term /2" in Eq. (1) is therefore replaced by a term
that is maximally-mixed only in this subspace. Eq. (7)
is then obtained by considering noise channels for all
CNOT gates and collecting individual terms into (Oy),.
A detailed discussion can be found in Ref. [21].

The expectation value for the mitigated circuit is given
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FIG. 2.

Quantum circuit for the simulation of the XX chain. a) Preparation of the initial domain-wall state and basis

transformation to a convenient basis. The dotted gates were replaced by random rotations in the estimation circuit. b) One
step of the time evolution. Multiple steps are obtained by repeating this subcircuit. The dotted gates were removed in the
estimation circuit. c) Basis transformation and measurement of the last qubit. The dotted gates were replaced by the inverses
of the random rotations from the initialization step in the estimation circuit.
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FIG. 3. Comparison of the original and mitigated results

for the time evolution of the local magnetization in the XX
chain. The original results were obtained using the original
circuits without any mitigation. There are 14 CNOT gates per
time step and the longest original circuit contains 210 CNOT
gates. Target results use readout-error correction, randomized
compiling, and zero-noise extrapolation. Mitigated results use
readout-error correction, randomized compiling, mitigation
with estimation circuits, and zero-noise extrapolation. Data for
extrapolation were obtained with circuits where each CNOT
gate was replaced by one, three, or five CNOT gates. Each
circuit was executed with 448 random instances. Error bars
represent the standard error of processed data. Exact solution
takes the Trotter—Suzuki decomposition into account.

by

(Oc)
(Oc(r))
(8)
N . (O)1 (Oe)t
~o v (G5 - o))
where (Oy,) and (O.) denote the expectation values mea-

sured with the mitigated and the estimation circuit, re-
spectively. Notice that (Og)g = (O) and (Og)p = (Oq).

(Om(r)) = (Ox(r))

The N¢ term in Eq. (7) is replaced by (Oe)1/(Oe)o in
Eq. (8). The error in the mitigated expectation value
is small when (Oy)1/(Ot) is close to (O¢)1/(Oc)o. The
more the target and the estimation circuits are similar,
the smaller the difference between these two terms is.
Even though (O.)1/(O.)¢ depends on a given estimation
circuit in a nontrivial way, in most cases [(Os)1/(Ot)o —
(Oc)1/(O¢)0| is smaller than [(Oy)1/(O¢)o— N¢|, since the
target and the estimation circuit have similar structures.
The same argument can be made for higher-order terms,
so expressions that depend on Né in target expectation
values are replaced by (O.);/{Oe)o in mitigated expecta-
tion values. Mitigated expectation values are therefore
a better input to zero-noise extrapolation than target
expectation values. We constructed estimation circuits by
removing all single-qubit gates. One can eventually con-
struct better estimation circuits by removing a subset of
single-qubit gates to create near-Clifford circuits that can
still be efficiently simulated on classical computers [42].

Conclusion.—We presented a method to mitigate errors
and noise on quantum computers that are characterized
by the depolarizing noise model. The method prescribes a
construction of an estimation circuit to estimate the noise
rate that is then used to correct the output of a given
circuit. A crucial part of this approach is the randomized
compiling that ensures that gate errors can be modeled
as incoherent depolarizing noise. We demonstrated that
the method works well, especially in combination with
readout-error correction and zero-noise extrapolation, on
a set of test circuits containing hundreds of CNOT gates.
The method is scalable to any number of qubits and gates
given that enough randomized samples are collected to
achieve low uncertainty [47].
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