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Crystallography typically studies collections of point particles whose forces are the gradient of an
interaction potential. Lifting this assumption generically gives rise in the continuum limit to a form
of elasticity with additional moduli known as odd elasticity. We show that such odd elastic moduli
modify the strain induced by topological defects and their interactions, even reversing the stability of
otherwise bound dislocation pairs. Beyond continuum theory, isolated dislocations can self propel via
microscopic work cycles active at their cores that compete with conventional Peach-Koehler forces
caused, for example, by an ambient torque density. We perform molecular dynamics simulations
isolating active plastic processes and discuss their experimental relevance to solids composed of
spinning particles, vortex-like objects, and robotic metamaterials.

Topological defects are local singularities in an or-
der parameter that have global consequences at large
scales [1–9]. In active systems, topological defects ex-
hibit distinctive properties such as self-propulsion or non-
reciprocal interactions [10–31]. In the study of crystalline
defects, it is often assumed that a potential energy gov-
erns the interactions between the constituent particles.
This assumption, however, need not hold in driven and
active solids. For example, Fig. 1a shows a nonconser-
vative interaction force—one in which the work done be-
tween any two configurations depends on the path taken.
Such microscopic forces generically give rise in the con-
tinuum limit to odd elasticity: additional moduli that
break the major symmetry of the elastic modulus tensor
[32, 33]. Experimental signatures of odd elasticity have
been reported in solids made of spinning embryos [34] and
colloids [30] with hydrodynamic interactions, and robotic
metamaterials [35, 36]. Likewise, gyroscopic matter [37–
46] and vortex-like objects [47–55], e.g. skyrmions [56–
61], can exhibit a special case of odd elastic dynamics
(see S.I.).

Crystallography without potentials— A typical starting
place in crystallography is a collection of point particles
at positions x = (x1,x2, . . . ,xN ) interacting via forces
that are the gradient of a potential:

Fα(x) = −∂V (x)

∂xα
(1)

However, in general, Eq. (1) need not be be valid. Exper-
imentally relevant [29–31, 34, 62–67] counterexamples in-
clude pairwise forces of the form Fα(x) =

∑
β 6=αF(xα −

xβ) where F(r) depends only on particle separation:

F(r) = F ‖(r) r̂− F⊥(r) φ̂ (2)

Here, r is the relative coordinate between two interact-
ing particles, φ̂ = −ε · r̂, and ε is the antisymmetric
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FIG. 1. Odd elasticity modifies dislocation interactions
and their stability. a. A particle at point x1 exerts a force
F on a particle at point x2. This force is nonconservative, so
nonzero work is done along the closed cycle C. b. A disloca-
tion is defined by a Burgers vector b that represents the offset
from what would otherwise be a closed loop γ. c-d. An or-
ange dislocation is held stationary while a second anti-aligned
dislocation is free to move along its glide plane subject to the
Peach-Koehler force (red arrows). When |A/B| < 1, the free
dislocation has two stable points located along rays forming
an angle π/4 with the glide plane. The effective potential Veff

as a function of the horizontal (rx) and vertical (ry) distance
between the dislocations. e-f. When A/B > 1, the rightmost
stable equilibrium moves outward beyond π/4. g-h. When
A/B = ∞, only one stable equilibrium position exists and
the shaded region is an unstable basin.
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tensor. We will henceforth focus on first order dynam-
ics ẋα = Fα, which arise in overdamped media, as well
as in vortex [47–55] and gyroscopic [37–46] crystals in
which the forces Fα = ε · ∂V∂xα are transverse to potential
gradients, see S.I.§S1A. Subject to first order dynamics,
the quantity P ≡ ẋα · Fα(x) is greater than zero for
trajectories satisfying the equations of motion [68]. Of
particular interest here are interparticle forces such that
Wγ =

∮
γ
P dt 6= 0 for closed contours γ (see Fig. 1a).

Notice that ∇ × F = 0 is equivalent to requiring that
Wγ = 0 for all contractible loops γ. In Newtonian
mechanics, Wγ has the interpretation of energy, and
∇× F 6= 0 is equivalent to violating Maxwell-Betti reci-
procity (MBR) [69], which means that the linear response
matrix between force and displacement is no longer sym-
metric, see S.I.§S1A.

Continuum theory— In the continuum, we describe the
state of the solid via a continuous displacement field u(r)
and we assume that the coarse-grained forces may be ex-
pressed as fj = ∂iσij , where σij is the Cauchy stress ten-
sor (see Ref. [28] for a treatment of dislocations that lifts
this assumption). We expand the Cauchy stress tensor
σij in terms of the displacement gradient umn to obtain
σij = σ0

ij + Cijmnumn. Here, Cijmn denotes the elastic

modulus tensor and σ0
ij is the stress prior to deforma-

tion. In 2D isotropic crystals, the linearized stress-strain
relationship is summarized by the pictorial equation [32]:

(3)

See S.I.§S1C for tensor notation. In Eq. (3), p0 and
τ0 are mechanically interpreted in terms of the pressure
and torque density associated with σ0

ij . The matrix in
Eq. (3) corresponds to Cijmn and has three diagonal com-
ponents, the bulk B, shear µ, and rotational Γ moduli,
and three off-diagonal moduli Λ, A, and Ko. The an-
tisymmetric contributions to the matrix in Eq. (3) are
what we refer to as odd elastic moduli [32]. The counter-
part of P = ẋα ·Fα in the continuum is P =

∫
Sij u̇ijd

2r,
where Sij is the first Piola-Kirchoff tensor [70–74]. Writ-

ing Sij = S0
ij + C̃ijmnumn, we have

C̃mnij = Cijmn + σ0
ijδmn − σ0

mjδin (4)

In the continuum, the Maxwell-Betti reciprocity theo-
rem states the internal forces must be non-conservative
if C̃ijmn 6= C̃mnij [69]. Odd elasticity (Cijkl 6= Cklij)

coincides with broken MBR (C̃ijkl 6= C̃klij) when no am-
bient stress is present (σ0

ij = 0). In terms of the moduli

in Eq. (3) the condition for MBR, C̃ijmn = C̃mnij , reads:

2Ko = Λ−A = 2τ0 (5)

Notice from Eq. (5) that odd elasticity can arise even
when MBR holds (i.e. the microscopic forces are conser-
vative) provided that τ0 is nonvanishing. For instance,

FIG. 2. Dislocations self propel via active work cycles
at their cores. a. Three transverse interactions F⊥LJ (pur-
ple), F⊥Lub (teal), and F⊥δ (orange), with the neighbor shells
highlighted by grey lines. Inset: A hexagonal lattice with
first and second neighbor shells highlighted. b. Particles are
arranged in a free floating circular cluster with a single dis-
location located at the center, and the dislocation position is
tracked as function of time. Simulation are performed with
clusters of radius R = 50 (dashed) and R = 100 (solid). See
Supplemental Movie S1. c. Bonds crossing the glide plane of
a dislocation are highlighted. Hue indicates the bond’s posi-
tion in real space (blue: left, red: right). Opacity indicates
the length of the bond (nearest neighbors darkest). d. The
highlighted bonds are plotted with their bases aligned. As the
dislocation moves one unit cell to the right, the tops of the
bonds traces out a contour C (black dashed). The gray arrows
depict the interaction force field. See Supplemental Movie S2.
e. The interaction F⊥δ is varied by changing the location δ of
its peak (pink: smaller δ, green: larger δ). For each value of
δ, the dislocation’s position is tracked as a function of time.
f. The magnitude of the Peach-Koehler force fPK and the
active core force fcore as a function of the peak position δ.
The vertical lines represent the values of δ used in the simula-
tion. The direction change of the dislocation motion coincides
with the crossover between fcore and fPK.

the transverse microscopic force F⊥(r) ∝ 1
r is curl-free,

i.e. conservative, and nonetheless gives rise to A and Ko

(S.I.§S1E). In this case A and Ko can be detected from
static stress-strain measurements, but the work they gen-
erate during strain cycles must be cancelled by τ0. The
distinction between Cijkl and C̃ijkl vanishes when no am-
bient stress σ0

ij is present. See §S1E for how crystals with
purely transverse interactions, such as lattices of vortex-
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like objects [47–61] or gyroscopes [37–46], can be math-
ematically cast as a special case of odd elasticity with
B = µ = 0.

Microscopics—To relate the moduli to the microscopic
transverse forces, we linearize Eq. (2) about the lattice
spacing a: F⊥(r) = F⊥0 − ka(r − a). The resulting odd
elastic moduli for an hexagonal lattice read

A ≈
√

3

2

(
ka +

F⊥0
a

)
Ko ≈

√
3

4

(
ka − 3F⊥0

a

)
(6)

along with an ambient torque density τ0 =
√

3F⊥0 /a, see
S.I.§S1D and Refs. [28, 32]. Additionally, the modulus A
arises whenever the full torque density τ = εijσij/2 cou-

ples to local dilation ∂iui = −δρ/ρ0, namely A = dτ
dρρ0.

The forces in Eq. (2) depend only on r, and therefore
cannot contribute to Γ and Λ which couple to solid body
rotations. However, Γ and Λ can arise in response to
external fields or interactions with a substrate [8], see
S.I.§S1E for examples. We henceforth set Λ = Γ = 0, see
S.I.§S2C for a general treatment [75].

Continuum solutions— Topological defects are singu-
larities where ui(r) becomes multi-valued, e.g. the dislo-
cation in Fig. 1b is defined by the Burgers vector bi

bj =

∮
γ

∂iujdri (7)

where γ is a counterclockwise contour around the dis-
location. We solve ∂iσij(r) = 0 together with Eq. (7)
to obtain static solutions of the dislocation displacement
field (S.I.§S2C):

udisl =
1

2π

{
φb +

1− ν
2

log(r) ε · b− 1 + ν

2
(r̂ · b) φ̂

− νo
[
log(r)b + (φ̂ · b) φ̂

]}
(8)

where r and φ are polar coordinates about the defect.
The elastic properties enter only through (i) a modi-
fied Poisson’s ratio, ν, (S.I.§S2C) and (ii) a purely non-
reciprocal odd ratio [32]

νo =
BKo −Aµ

µ(B + µ) +Ko(A+Ko)
(9)

The effect of νo in Eq. (8) is to globally rotate the local
shear axis by an angle δα

δα = −1

2
arctan

(
2νo

1 + ν

)
(10)

See Fig. S5-6 for an illustration and numerical validation.
S.I.§S2B provides similar results for point defects and
isolated disclinations, which have recently been observed
in experiments [34] of spinning embryos interacting via
transverse forces, cf. Eq. (2).

Dislocation interactions— The modified stress field al-
ters dislocation interactions. Consider first the work

done in quasistatically moving a test dislocation by

δXi through a pre-existing stress field σ
(pre)
ij obeying

∂iσ
(pre)
ij = 0. Regardless of the material’s constitu-

tive properties, the work done by σ
(pre)
ij is given by the

Peach-Koehler (PK) formula δW = fPK
m δXm, where

fPK
m = εmiσ

(pre)
ij bj (S.I.§S3A). The continuum interaction

between two dislocations is the PK force experienced by
the test dislocation as a result of the stress field generated
by the other. In Fig. 1c-h, we examine the interaction
between two antiparallel dislocations in the presence of
odd elastic moduli. The modulus A provides a nontrivial
modification:

fPK(rx) =
(1− ν)b1b2

πr4
(r2x − r2y)(Brx +Ary) (11)

where fPK is the PK force projected onto the glide plane
of the dislocation. When A = 0, the dislocations obey
the classic result: their separation vector forms an an-
gle π/4 with respect to their glide planes [2, 76]. When
0 < A/B < 1, the mechanically stable positions remain
the same while their basins of attraction change. When
A/B > 1, the right equilibrium point moves out beyond
the π/4 angle. When A/B → ∞, the rightmost basin
becomes unstable. When the Burgers vectors are not
parallel, the dislocation interactions are non-reciprocal
in the sense of being non-mutual: their forces are not
equal and opposite (S.I.§S3B).

Dislocation motion from PK forces— While the con-
tinuum theory provides insights at long lengths scales,
whether and in what directions dislocations actually
move depends on microscopic details. To illustrate this,
we perform overdamped molecular dynamics simulations
of particles interacting with a radial force F ‖(r) given
by a Lennard-Jones (LJ) force and three different re-
alizations of the transverse force F⊥(r) in Eq. (2), see
Fig. 2a-b and Movie S1.

Consider first a transverse interaction F⊥LJ(r), which

like F ‖, is an LJ force: a dislocation introduced to the
center remains stationary as in a passive crystal. The
reason is that the total force on any particle is simply a
rotation of the force due to F ‖. Hence the static configu-
ration guaranteed by energy minimization for F ‖ remains
static when F⊥LJ is introduced. Next we introduce F⊥Lub,
which is a monotonically decreasing function of a single
sign shown in Fig. 2a, generically representative of hydro-
dynamic, lubrication and frictional forces between self-
spinning particles [29, 34, 62, 66, 67]. For F⊥Lub, the dis-
location travels at a near constant speed to the left. Since
F⊥Lub is nonzero at the first neighbor shell, it produces an

ambient torque density τ0. Upon setting σ
(pre)
ij = τ0εij ,

the direction of dislocation motion follows the standard
PK force expression fPK

i = εijσ
(pre)
jk bk = −τ0bi, in agree-

ment with the experiments and analysis of spinning-
colloids crystals in Refs. [28, 30].

Dislocation self-propulsion from microscopic work cy-
cles at their cores— We now show that not all mecha-
nisms of dislocation propulsion can be captured by con-
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FIG. 3. Active plasticity in odd elastic media. a-c. The compression of a solid beam with a standard LJ interactions
of strength ε‖. d-f. The same numerical experiment with the addition of transverse lubrication forces of magnitude ε⊥. See
Supplemental Movies S3-4. (a., d.) show the per-particle stress, resolved on the [11] and [1̄1] glide planes and summed,
immediately prior to the first dislocation nucleation. (b., e.) After significant plastic deformation, we color particles by the
cumulative number of neighbor changes in their first coordination shell (Nswap). (c., f.) Nswap averaged in the vicinity of the
lower-left- and lower-right-hand corners as a function of strain. The strain is ∆h/h where h is the height of the beam. g.
The critical strain at first nucleation for the bottom left-hand (green) and right-hand (pink) corners. h. A disk of particles
interacting via radial and transverse LJ forces is subject to compression (negative dilation). At higher compression, a torque
density is induced throughout the cluster which drives dislocation motion via the PK force. See the S.I.§S5 for additional
simulation details.

tinuum considerations. The continuum PK force is de-
rived from a coarsegrained approximation to the work
done during dislocation motion. However, when a poten-
tial is not well defined, contributions to δW from short
lengthscales need not average out during dislocation mo-
tion. In some cases, they can even overcome continuum
predictions. To illustrate this, we use as a probe the
force F⊥δ (r) narrowly peaked at a tunable interparticle
distance r = δ and with same sign as F⊥Lub. However,
when the peak δ lies half way between the first and sec-
ond neighbor shells, the dislocation now travels to the
right, the opposite direction of F⊥Lub (see Fig. 2ab). Since
the force F⊥δ is negligible at the first and second neighbor
shells, the odd moduli A and Ko as well as the ambient
torque density τ0 are vanishingly small. This suggests
that the underlying mechanism of dislocation motility
evades the standard continuum explanation in term of
PK forces provided in the previous paragraph.

As we now show, this dislocation motility is a form
of self-propulsion associated with microscopic work cy-
cles acting at dislocation cores. We first highlight all the
bonds that straddle the glide plane (Fig. 2c) and align
their bases so that they are viewed in the space of their
relative coordinates (rx, ry) (Fig. 2d). Crucially, as the
dislocation moves by a single unit cell, each highlighted
bond assumes the position of its neighbor to the right.
Next, we concatenate all the individual bond trajecto-
ries into a single contour C (dashed line) that begins at
rx = −∞ and ends at rx = ∞. The total work done
when each of the bonds moves a short distance is then
equivalent to that of a single bond traveling the entire

contour, c.f. Fig. 1a. Notice that if the force falls off
faster than 1/r, then the contour may be closed in the
upper half plane. Similar to the single-bond cycle shown
in Fig. 1a, the corresponding work Wglide reads

Wglide ≈
∮
C
F · dr =

∫
A
∇× F d2r (12)

where A is the upper half plane enclosed by C (S.I.§S4
and Movie S2).

Since Wglide is associated with motion through one lat-
tice spacing, the corresponding force on the dislocation
reads f core = 1

aWglide and it is directed along the glide
plane. In principle, the detailed shape of C depends on
protocol and dynamics. However, a useful first approxi-

mation is to take C to be the line at ry =
√
3
2 a, giving:

f core =
1

a
Wglide ≈

1

a

∫ ∞
−∞

F⊥x drx

∣∣∣∣
ry=

√
3

2 a

(13)

In Fig. 2e we perform simulations with F⊥δ but we vary
the parameter δ, which sets the location of the central
peak. At small δ, there is significant overlap between F⊥δ
and the first neighbor shell, giving rise to a large ambient
torque density τ0 ≈

√
3F⊥(a)/a and corresponding PK

force fPK. Fig. 2f shows the relative magnitudes of f core

and fPK as a function of δ. The crossover in dominant
force coincides with the sign reversal in dislocation speed
corroborating our theoretical derivation of f core. While
the sign-reversal is a dramatic effect that occurs under
specific conditions, f core is generically present for all non-
conservative microscopic interaction forces. Solids whose
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microscopic interactions violate Newton’s third law can
also display spontaneous dislocation motion [28].

Active plasticity— Finally, we examine the effects of
odd elasticity on plastic deformation. In Fig. 3a, we
perform a simple uniaxial compression of a solid inter-
acting via a transverse lubrication force (see also Sup-
plemental Movies S3-4). Before the first dislocation
nucleates, odd elasticity biases the stress distribution
(Fig. 3a,d). At the end of the compression, the per-
manently deformed shape of the beam breaks all mir-
ror symmetries (Fig. 3b,e). The change in final shape
arises because the biased stress distribution favors dis-
location nucleation from the upper-right- and lower-left-
hand corners (Fig. 3c,f). Empirically, we find that intro-
ducing transverse forces generally lowers the plastic yield
strain at which the first dislocation nucleates (Fig. 3g).
In Fig. 3h, we consider a single dislocation in the center
of a disk. In a passive medium, a uniform compression
induces an isotropic stress −B(δρ/ρ)δij with an associ-
ated fPK

i = −B(δρ/ρ)εijbj in the climb direction. This
typically results in no motion or defect splitting. The
odd elastic solid in Fig. 3h features a F⊥LJ which induces
no dislocation motion in the absence of external stresses
(recall Fig. 2b). However, due to the odd modulus A, an
area change gives rise to a torque density τ = A(δρ/ρ),
which in turn promotes motion along the glide plane via
fPK
i = −τbi.
To summarize, we studied how defect strains, interac-

tions and motility are modified in systems for which the
interactions are more general than standard pairwise, po-
tential forces.
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