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We present a framework for understanding the cascade transitions and the Landau level degenera-
cies of twisted bilayer graphene. The Coulomb interaction projected onto narrow bands causes the
charged excitations at an integer filling to disperse, forming new bands. If the excitation moves the
filling away from the charge neutrality point, then it has a band minimum at the moire Brillouin zone
center with a small mass that compares well with the experiment; if towards the charge neutrality
point, then it has a much larger mass and a higher degeneracy. At a non-zero density away from
an integer filling the excitations interact. The system on the small mass side has a large bandwidth
and forms a Fermi liquid. On the large mass side the bandwidth is narrow, the compressibility is
negative and the Fermi liquid is likely unstable. This explains the observed sawtooth features in
compressibility, the Landau fans pointing away from charge neutrality and their degeneracies. The
framework sets the stage for superconductivity at lower temperatures.

The discovery of the correlated insulating phases and
superconductivity in the magic-angle twisted bilayer
graphene has generated a flurry of research activity [1–
76]. This remarkable system exhibits correlated insulat-
ing phases at integer fillings of narrow bands [2–6, 8], a
hallmark of strong coupling physics. Away from (certain)
integer fillings, the same system becomes superconduct-
ing below a sufficiently low temperature, descending from
a normal state exhibiting Fermi liquid-like quantum os-
cillations, both hallmarks of charge itineracy.

Recent observations of the cascade transitions in the
compressibility and scanning tunneling microscopy stud-
ies at temperatures above the full onset of insulation or
superconductivity [14, 15, 19] have further sharpened this
dichotomy. On the one hand, clear features associated
with an integer filling of the moire unit cell were observed
as expected in strong coupling [7, 9]. On the other hand,
the electron system appears highly compressible when
integer filling is approached from the charge neutrality
point (CNP) side – even with negative compressibility –
and much less compressible when approached from the
remote bands side, producing sawtooth features in the
inverse compressibility vs filling, ν, plots [15, 19–21, 23].
This led the authors of Ref. [15] to propose a simple
“Dirac revival” picture based on the strictly interme-
diate coupling of a simplified model in which the non-
interacting Bistritzer-MacDonald (BM) [1] bands are se-
quentially filled. In this picture, starting from the CNP
the BM bands are filled equally until a critical ν after
which one of the flavors is nearly fully populated, while
the densities of the remaining flavors are reset to some-
what below the CNP. The key source of itineracy for such
a proposal is the dispersion of the BM bands. Unfortu-
nately, the BM bands also feature two Dirac nodes per
spin and valley, doubling the Landau level degeneracy
away from each integer ν to 8, 6, 4, 2 sequence, and mak-

ing this proposal inconsistent with the observed 4, 3, 2, 1
sequence.

Here we show that the non-trivial narrow band topol-
ogy/geometry [29, 33, 36, 37, 39], neglected in the simpli-
fied model of Ref. [15], combined with Coulomb interac-
tion can drive the itineracy of the single particle charge
excitations near the integer ν even in strong coupling,
i.e. when the BM kinetic energy is neglected. In addi-
tion to insulating phases belonging to spin-valley U(4) or
U(4)×U(4) manifold [42, 55, 63], the interplay of band
topology/geometry and strong Coulomb interactions was
shown to make the strong coupling nematic phases, which
are semi-metallic, energetically competitive [46, 58]. The
nematic phase was recently shown to be further stabi-
lized by strain [75]. Absence of gaps is therefore not at
variance with the strong coupling picture.

Interestingly, in all of these phases, whether insulating
or semi-metallic, the band minimum of the single par-
ticle charge excitations appears at Γ, the center of the
moire Brillouin zone (mBZ), naturally producing the ex-
perimentally observed sequence of weak magnetic field
Landau level degeneracies. Here we provide an explana-
tion of this observation and find that the strong coupling
band degeneracies are a consequence of a novel action of
the combination of the unitary particle-hole [37] and the
C2T symmetries. We find that the band dispersion of a
single particle or a single hole added to the strong cou-
pling phases at a non-zero integer ν is highly asymmetric
(see Fig. 1). If the excitation moves ν closer to (away
from) the CNP it is heavy with a narrow bandwidth (light
with a large bandwidth). The light mass excitations have
a minimum at Γ and a smaller degeneracy than the heavy
ones, whose minima are away from a high symmetry k-
point. At a finite density away from an integer ν, the
single particle excitations repel each other [64]. By esti-
mating the ratio of the residual interaction to the kinetic
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FIG. 1. Quasiparticle bands at different fillings ν for the trial state |ΨGS〉 at w0/w1 = 0.7 when the C2T symmetry is allowed
to be broken (top two panels) and when C2T is enforced (bottom two panels). The hexagonal insets show occupied k points.

energy obtained by filling the new (non-rigid) bands, the
system on the small mass side is a Fermi liquid. The mass
compares favorably with experiments[79]. On the heavy
mass side, we found several nearly degenerate states that
are related by many particle-hole excitations, suggesting
that there, the residual interactions lead to additional
instabilities of a heavy Fermi liquid. This explains the

observed Landau fans pointing away from the CNP and
their degeneracies. The chemical potential µ is similar to
experiments, including negative compressibilities and the
overall magnitude of its difference between fully occupied
and empty eight narrow bands, regardless of whether the
strong coupling states at odd integer ν are gapped or
gapless (see Fig. 2).

Our starting Hamiltonian includes only the momen-
tum conserving Coulomb interactions (renormalized by
the remote bands) projected onto the BM narrow bands

H =
1

2A

∑
q 6=0

V (q)δρqδρ−q. (1)

Here A is the area of the system, V (q) = (εq/(2πe2) +
Π(q))−1 [53], for the encapsulating hexagonal boron-
nitrite ε = 4.4, and the static polarization function Π(q)
originates from the remote bands [77–79]. δρq = ρq − ρ̄q
is the difference between the projected density opera-
tor and the background charge density, and q is not re-
stricted to the first mBZ (unlike the sum over k below).

Specifically,

ρq =
∑

τ=K,K′

s=↑↓

∑
k∈mBZ
n,n′=±

Λτnn′(k,k + q)d†τ,n,s,kdτ,n′,s,k+q (2)

ρ̄q = 2
∑

G,n=±

δq,G
∑

k∈mBZ

ΛK
nn(k,k + G) , (3)

where ρq is expressed in the Chern basis Φτ,±,k(r) that
carries the indices of the valley τ = K or K ′, the
Chern n = ±, the spin s =↑↓, and the k, for cre-
ation and annihilation operators d† and d. The Chern
states are the sublattice polarized states of the BM
model for narrow bands [55, 58] at the magic angle i.e.
w1/(vF kθ) = 0.586 and w0/w1 = 0.7, where w0 and
w1 are the two interlayer couplings [28, 29, 41], vF is
the Fermi velocity for the monolayer graphene, kθ =
8π/(3Lm) sin(θ/2) and Lm is the moire lattice constant.
Spinless time reversal symmetry relates the valleys K
and K ′ [27–29]. The form factor matrix Λτmn(k,k+q) =
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FIG. 2. Chemical potential µ as the filling ν varies between
−4 and 4 when C2T symmetry is allowed to be broken (top
panel) and when C2T is enforced (bottom panel).

∫
uc

dr e−iq·rΦ∗τ,m,k(r)Φτ,n,k+q(r) contains the informa-
tion about the non-trivial topology/geometry of the nar-
row bands and plays an important role in the physics we
describe; it has been neglected in Ref. [15].

Previous analytical and numerical works showed that
over a large range of parameters the ground states |ΨGS〉
of H in (1) are Slater determinants [42, 55, 58, 63, 65]. At
even integer ν they consist of all states that satisfy [55,
59, 63]

δρq|ΨGS〉 =
ν

4

∑
G

δq,Gρ̄G|ΨGS〉 , (4)

with the eigenenergy Eν = 1
2A

∑
G6=0 V (G)

∣∣ν
4 ρ̄G

∣∣2. The
exact excited states can also be obtained [59, 64]. Indeed,
acting with H on the state X̂|ΨGS〉, where X̂ is some
combination of d†s and ds, and using (4)

(H − Eν)X̂|ΨGS〉 =
1

2A

∑
q

V (q)
(

[δρ−q, [δρq, X̂]]+

[δρq, X̂]δρ−q + [δρ−q, X̂]δρq

)
|ΨGS〉 . (5)

The last two terms can be further simplified by apply-
ing (4). Because each commutator has the same num-
ber of d†s and ds as the ones in X̂, we can match the
coefficients. This was used to find the charge neutral
collective modes[59, 64] and to show that the spectrum
of charge-2 elementary excitations for a purely repulsive

V (q) does not have a bound state [64]. For X̂+ = d†τ,n,s,k
and X̂− = dτ,n,s,k, Eqn.(5) reduces to solving for eigen-
values of the 2×2 matrix

Eτn′n,±(k) =
1

2A

(∑
q

V (q)
∑
m

Λτmn(k − q,k)Λτn′m(k,k − q)

±ν
2

∑
G

V (G)ρ̄GΛτn′n(k + G,k)

)
, (6)

that leads to 2 different bands for both electron and hole
excitations for each spin s. To illustrate the main effect,
consider first the chiral limit [41, 80, 81], w0/w1 = 0
when the Chern states are perfectly sublattice polarized.
Therefore, Λτmn(k,k + q) is diagonal in m,n and Slater
determinant states obtained by filling Chern bands sat-
isfy (4) also at odd filling; they have been shown to be
the ground states in exact diagonalization (ED) studies
in Ref. [65]. The spectrum of the single particle exci-
tations can then be solved using (6) at any integer fill-
ing. The eigenstates of Eτn′n,+(k) are exactly degenerate
over the whole mBZ, as are the eigenstates of Eτn′n,−(k).
This is due to the combination of the 2-fold rotation
about the axis normal to the plane, spinless time reversal
and the chiral particle-hole symmetries [41, 55, 60, 62],
K′ = C2T C. Because K′ preserves k and K′2 = −1,
Eτn′n,±(k) must be proportional to δmn for each k.

For w0/w1 6= 0 the particle and hole dispersions are the
same at the CNP. The two bands are now degenerate only
at high symmetry points Γ, M , Km and K ′m (see Fig. 1).
The degeneracies at Γ and M are protected by C2T times
particle-hole symmetry P discussed in Refs. [37, 59, 79].
Combined with C3 symmetry, the winding numbers at Γ
and M can be shown to be 3 and −1 respectively. The
degeneracy at Km (and K ′m) is protected by C3 with
the winding number of 1 (see [79]).

Although such degeneracy is also seen at ν = ±2,±4,
excitation spectra are markedly different. The bands
away from CNP have the minimum at Γ and wide band-
width. However, the bands towards CNP are narrower
with minima away from high symmetry k points. To un-
derstand this, we return to the chiral limit (w0/w1 = 0)
with two gate screened Coulomb interaction (with the
distance to the metallic gate ξ = 5Lm) and analyze
the first (exchange) and the second (direct) terms in
(6). Both terms can be well approximated by a near-
est neighbor (NN) tight-binding model on a triangular
lattice [79, 82, 83] with NN hopping amplitudes tE =

−0.0530 e2

εLm
and tD = −0.0523 e2

εLm
, and with onsite

terms εE = 1.714 e2

εLm
and εD = 0.333 e2

εLm
for exchange

and direct terms respectively [79, 82]. This, as well as our
k ·p analysis around the Km point based on Ref. [61, 79],
show that the minimum of the dispersion is at Γ when
the two terms add. When they subtract, the bandwidth
is reduced. The magnitudes of the NN hoppings tE and
tD are such that at ν = ±1 the cancellation is nearly
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complete, leading to the narrow band of heavy holes at
ν = 1 and heavy particles at ν = −1. For |ν| ≥ 2, the
dispersions towards CNP reverse compared to ν = 0, also
with heavy excitations. Because for excitations at ν 6= 0
that are moving the filling away from the CNP the direct
and the exchange terms add (in absolute value), the re-
sulting bands are more dispersive with a minimum at Γ.
These are the light fermions. As seen in Fig.1, the effect
persists away from the chiral limit w0/w1 6= 0.

At a finite density away from an integer ν the exci-
tations mutually interact[59, 64] as seen from (5). Nev-
ertheless, the steep dispersion of a single electron (hole)
added to the exact eigenstates at the positive (negative)
integer ν and at CNP suggests that at a finite density
close to the integer ν – and in the direction away from
CNP – the kinetic energy of such excitations is suffi-
cient to stabilize a Fermi liquid. This is broadly con-
sistent with the ED results of Ref. [84], where emer-
gent Fermi liquids were also found in different, albeit
related, models of moire heterostructures. We there-
fore approximate the ground state by the trial state
|ΨGS〉 =

∏
s,k P̂s,k|ΨCNP 〉 where |ΨCNP 〉 is a ground

state at CNP which, without loss of generality, is taken
to be completely K ′ valley polarized with all four K
bands empty. At each s, k there are two bands at K
whose occupation is determined by νs,k; when empty

(νs,k = 0) P̂s,k = 1 and when doubly occupied (νs,k = 2)

P̂s,k = d†K,+,s,kd
†
K,−,s,k. When singly occupied (νs,k =

1), we have P̂s,k = us,kd
†
K,+,s,k + vs,kd

†
K,−,s,k with vari-

ational parameters satisfying |us,k|2 + |vs,k|2 = 1. The
integer parameters νs,k are also determined variation-
ally and satisfy the constraint

∑
s,k νs,k = νNuc, where

Nuc is the total number of moire unit cells. Minimizing
E = 〈ΨGS |H|ΨGS〉 subject to the mentioned constraints
yields the self-consistent eigen-equations for us,k and vs,k

Heff (s,k)

(
us,k
vs,k

)
= Eα(s,k)

(
us,k
vs,k

)
. (7)

Heff is detailed in SM [79]. Eα(s,k) specifies the band
structure shown in Fig. 1. Fig. 2 shows the ν dependence
of chemical potential µ, calculated from the constraint∑
α,s,k Θ(µ−Eα(s,k)) = νNuc. The following discussion

focuses on ν ≥ 0, the states with ν < 0 can be obtained
using the many-body particle-hole symmetry [62].

At ν = 2, our variational method results in |Ψν=2
GS 〉 =∏

n=±,k d
†
K,n,s,k|ΨCNP 〉 where the spin s =↑ or ↓. Al-

though this exact (gapped) eigen-state breaks the time
reversal symmetry (spinfull and spinless), it does not
break C2T . Thus it carries zero Chern number. It was
also numerically shown to be the ground state [65]. Its
single particle excitation spectrum produced by (7) is
the same as the ones obtained in (6). At odd integer ν
with w0/w1 = 0.7 this method results in the quantum
anomalous Hall (QAH) state with spontaneously broken
C2T symmetry if no additional constraints are applied

as shown in the upper two panels of Fig. 1. This result is
consistent with the exact solution obtained in the chiral
limit (w0/w1 = 0), the recent DMRG calculation [58, 70]
and the ED [65] for a range of w0/w1 6= 0. For compar-
ison, applying the C2T symmetric constraint to the odd
ν trial state |ΨGS〉 leads to a semi-metallic nematic state
as shown in the lower two panels of Fig. 1. Both the
C2T broken Chern insulators and C2T symmetric gap-
less states are nearly degenerate, as also demonstrated
by DMRG and ED calculations [58, 65, 70].

At non-integer fillings |ΨGS〉 leads to gapless compress-
ible phases. The details of the band evolution with ν
are shown in Fig. 1. At ν just above the positive inte-
gers the gapless excitation spectrum is strongly disper-
sive, with the bandwidth set by e2/(εLm). As discussed
below, we expect such low compressibility phases to be
stable when the residual interaction that scatters among
different trial states is included, resulting in Fermi liq-
uids at these fillings. Furthermore, the cyclotron mass
is roughly proportional to the difference between ν and
the integer [79]. The ultimate instability of the Fermi
liquids upon approaching a positive integer ν from be-
low stems from the mentioned residual interactions and
the fact that the band structure is not rigid, with the
partially filled band(s) flattening as ν approaches an in-
teger (see Fig. 1). Even within this simple variational
method, which does not account for the residual inter-
actions, there are several Stoner-like phase transitions as
the integer ν is approached from below. Such sponta-
neous breaking of C2T , particle-hole, or C3 symmetries,
furthers the instabilities of the Fermi liquid. We found
the transition occurring between ν = 0 and ν = 1 to
be first order, becoming a second order between higher
integers fillings.

As illustrated in Fig. 2, at each non-negative integer ν,
the chemical potential µ increases as ν moves away from
the CNP. Before ν gets to the next integer, µ reaches
its local maximum at a fractional filling and then de-
creases, resulting in the negative compressibilty dµ

dν . The
net increase of µ is ∼ 40meV which compares well with
∼ 50meV found in experiments [10, 14, 15, 19, 23].

Because the dominant residual interaction is repul-
sive [59, 64], we estimate its importance over dispersion
in two different ways. First, we consider rs, defined

as the ratio of U(r̄) =
∫

d2q
(2π)2V (q)eiq·r̄, i.e. the resid-

ual Coulomb potential energy of two excitations sepa-
rated by r̄ = 1/

√
δn, and the average kinetic energy EK ;

here δn is the density deviation from the closest inte-
ger filling. For an electron excitation of a partially filled

band we define EeK =
∫
filled

d2k
(2π)2 (E(k)− Emin) where

Emin is the band minimum, while for hole excitations,

EhK =
∫
unfilled

d2k
(2π)2 (Emax − E(k)) where Emax is the

band maximum. Then, EK is set to be the smaller of
EeK and EhK . As ν approaches an integer, δn → 0 and

rs = U(r̄)/EK diverges because U(r̄) ∼ O(
√
δn) and
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EK ∼ O(δn). For m < ν . m + 0.017 where m is a
non-negative integer, we find rs ≥ 35, i.e. rs is above the
critical value for the Wigner crystallization [85, 86]. If we
include additional screening due to the nearby metallic
gates, U(r) is modified from 1/r at long distances and de-
cays faster when r is larger than the distance to gates lg.
Therefore U(r̄)� EK at small δn, eliminating a possible
Wigner crystal if δn < l−2

g . For a typical gate distance
lg ∼ 40nm, the screened Coulomb interaction eliminates
the Wigner crystal if m < ν . m + 0.09. Therefore, no
Wigner crystal should exist close to an integer filling on
the side away from the CNP.

Second, we calculate the ratio between U(r̄) and W ,
the bandwidth of the excitations. If m < ν . m + 0.3,
then U(r̄)/W . 0.3, suggesting that the system is in the
weak coupling regime. Together with the above analysis
of rs, we conclude that the system is in the Fermi liquid
phase if the filling is in this interval. Moreover, as illus-
trated in Fig. 1, in this filling interval the 4−m partially
occupied bands are filled equally near Γ, resulting in the
experimentally observed Landau fan degeneracy of 4−m
when pointing away from the CNP [2–4, 8].

On the other hand, for m+ 0.4 . ν < m+ 1, the vari-
ational calculation resulted in the band reconstruction
and several nearly degenerate states. These states are
related by many particle-hole excitations, implying that
the obtained states are likely unstable upon including the
residual interactions between the quasi-particles. These
bands are narrow at every integer filling for excitations
towards the CNP, naturally explaining the absence of the
Landau fans towards the CNP [2–4, 8].

The framework presented here provides a strong cou-
pling description of the itinerant carriers, whose residual
interactions and dispersion both depend on the Coulomb
interaction. The description of the charge itineracy pre-
sented here is in quantitative agreement with experi-
ments, and builds a framework within which supercon-
ductivity, emerging at lower temperatures at some fill-
ings, should be understood.
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