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We argue that a superconducting state with a Fermi-surface of Bogoliubov quasiparticles, a Bogoli-
ubov Fermi-surface (BG-FS), can be identified by the dependence of physical quantities on disorder.
In particular, we show that a linear dependence of the residual density of states at weak disorder
distinguishes a BG-FS state from other nodal superconducting states. We further demonstrate the
stability of supercurrent against impurities and a characteristic Drude-like behavior of the optical
conductivity. Our results can be directly applied to electron irradiation experiments on candidate
materials of BG-FSs, including Sr2RuO4, FeSe1−xSx, and UBe13.

Introduction : Elucidating the role of disorder on in-
teracting quantum many body systems has been a cen-
tral issue in strongly correlated physics, as manifested in
the recent advances in quantum scrambling physics [1–6].
One important class of interacting systems is strong spin-
orbit coupled systems with angular momentum j = 3/2
[7–11]. A quadratic band touching at the Gamma point
in the Brillouin zone naturally hosts a large density of
states (DOS), and interaction/disorder effects are sig-
nificantly enhanced [12–17]. Not only interesting nor-
mal states but also novel superconducting states are pre-
dicted, [18–32]. In addition to the traditional gap struc-
tures with a full gap, a point-nodal gap, and a line-nodal
gap, a Fermi-surface of Bogoliubov (BG) quasiparticles
in a superconducting state, a so-called Bogoliubov Fermi-
surface (BG-FS) [19, 33–36] has been demonstrated. It
has been shown that a BG-FS is topologically protected
by a Z2 invariant in centrosymmetric systems with bro-
ken time-reversal symmetry[37]. Recently, the role of in-
teractions on such BG-FS has been considered, where it
has been shown that such BG-FS states can undergo an
instability to a non-centrosymmetric state. [38–40]. It
is confirmed that a BG-FS may still survive even with
an inversion instability [38, 41]. There have been sev-
eral candidate materials, including heavy-fermion sys-
tems (URu2Si2, UBe13), strontium-based compounds
(Sr2RuO4, SrPtAs), and doped iron-based superconduc-
tors (FeSe1−xSx), but the existence of a BG-FS has not
been demonstrated yet [34, 35, 42–52].

In the previous literature, several ideas to detect a BG-
FS have been suggested, focusing on the presence of a fi-
nite non-zero DOS at zero energy in the clean limit. This
can be detected through the temperature dependence of
single-particle observables such as specific heat or pene-
tration depth. However, the properties associated with a
non-zero DOS cannot confirm the existence of a BG-FS
because line-nodal systems with even infinitesimally low
disorder may induce a non-zero DOS [53, 54]. Thus, it is
highly desired to account for disorder effects on BG-FSs.

In this work, we investigate the role of disorder on a
BG-FS and demonstrate that a unique signature allows
a BG-FS to be identified from other nodal superconduct-

ing states. In particular, we show that a linear behavior
of the residual DOS upon changing disorder and a finite
superfluid density are necessary and sufficient conditions
of the existence of a BG-FS. These can be measured by
experiments, for example, via electron irradiation exper-
iments. We calculate the optical conductivity [55, 56]
which is a powerful tool to learn the nature of the su-
perconducting pairing gap even in the presence of disor-
der. Our work reconciles the role of disorder on various
superconducting states with different dimensionality of
zero-energy excitations and provides a new perspective
on realizing exotic superconductivity.

Model : We consider a model Hamiltonian of a BG-FS.
The total Bogoliubov-de Gennes (BdG) Hamiltonian is
given by

H0(~k) =

(
HN (~k) ∆(~k)

∆†(~k) −HT
N (−~k)

)
(1)

where ΨT
~k
≡ (ψT~k , ψ

†
−~k

) is a eight-component Nambu

spinor, and ψT~k = (c~k, 32
, c~k, 12

, c~k,− 1
2
, c~k,− 3

2
) is a four-

component j = 3/2 spinor. For clarity, we choose a
standard Hamiltonian introduced in the previous liter-
ature [19]. The kinetic part is described by the so-called,
Luttinger Hamiltonian,

HN (~k) = gijk
ikj − µ, (2)

with

gij =
~2

2m

[
c̃0δij +

3∑
a=1

c̃1Λaijγa +

5∑
a=4

c̃2Λaijγa

]
. (3)

The 3 × 3 Gell-Mann matrices (Λa) and 4 × 4 Gamma
matrices (γa) whose explicit forms are introduced in the
Supplemental Material (SM). Three dimensionless pa-
rameters (c̃0, c̃1, c̃2) are used with the chemical potential
(µ) and the effective mass (m). For pairing, a chiral time-
reversal symmetry breaking (TRSB) pairing is chosen,

∆(~k) = ∆0

[
Γ1 + iΓ2

]
, (4)

where the overall pairing amplitude, ∆0, is fixed as a
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real number and the pairing matrices, Γa = γaUT , are
introduced with a 4×4 antisymmetric matrix UT = γ3γ1.
For numerical evaluation, we set c̃0 = 0, c̃1 = c̃2 = m =
µ = 1, where SO(3) symmetry is realized in the normal
Fermi-surface. Hereafter, our discussion is based on the
above microscopic Hamiltonian unless otherwise stated.

The contours of zero-energy states form a toroid and
spheroids in momentum space. For ∆0 6= 0, the DOS
of clean BG-FSs, D(E), follows the scaling relation,
D(0) ∝ |∆0| and D(E) − D(0) ∝ E2 in the low energy
limit. Details on the zero-energy manifold and DOS are
explained in SM.

Disorder and Residual density of states : We consider
non-magnetic impurities at randomly distributed posi-
tions, ~ra. Assuming SO(3) rotational symmetry, the
momentum-dependent disorder potential is

Hdis =

Nimp∑
a=1

∫
~k,~k′

ei(
~k′−~k)·~ra

(
ψ†~k
Vdis(k̂, k̂

′)ψ~k′

)
, (5)

with

Vdis(k̂, k̂
′) =

∞∑
l=0

Vl Pl(k̂ · k̂′),

where Nimp is the number of identical impurities, Vl is
an impurity scattering amplitude. Hereafter, the short-

hand notation,
∫
~k
≡
∫

d3k
(2π)3 = 1

V
∑
~k, is used with a

volume of a three-dimensional system, V. The Legen-
dre polynomials (Pl) capture the angular dependence
on the Fermi-surface with an angular momentum quan-
tum number (l). After performing the disorder-average,
translation invariance is restored and the Green’s func-
tion of the disordered BG-FS is modified as, G−1

dis (~k, iω) =

G−1
0 (~k, iω)−Σdis(~k, iω), where G−1

0 (~k, iω) = iω−H0(~k) is

the original Green’s function and Σdis(~k, iω) is the disor-
dered self-energy. In the following, we consider the case
with l = 0 as a proof of concept and consider a dilute
limit of disorder, the so-called Born limit.

Employing the first order Born approximation, the
scalar channel contribution to the self-energy is

Σdis(iω) =
r0

8

∫
~k

Tr
(
G0(~k, iω)

)
, (6)

with two parameters, r0 ≡ nimpV
2
0 , nimp ≡ Nimp/V.

Note that all channels other than the scalar channel may
be neglected and absorbed into the changes of micro-
scopic parameters. The imaginary part of the self-energy
gives the scattering rate, Γdis(E + iη) = −ImΣdis(E +
iη) = r0

8 πD(E), via analytic continuation with an in-
finitesimal convergence parameter, η > 0. It is evident
that there is a non-zero scattering rate, Γ ≡ Γdis(iη) > 0,
at zero frequency, as a consequence of the non-zero
DOS of a BG-FS. The scattering rate needs not be
solved self-consistently in contrast to superconductors
with line nodal gaps where self-consistent calculations

FIG. 1. Schematic DOS plot at zero energy (Ddis(0))
with various nodal superconductors as a function of impurity
strength, r0 = nimpV

2
0 . The insets show zero-energy excita-

tions in the momentum space of four different states, BG-FS
(A), line-nodal (B), point-nodal (C) and fully gapped (D) su-
perconductors. The linear dependence of DOS on r0 is a dis-
tinctive property of a BG-FS. Here, r∗ is a resonant impurity
strength for a line-nodal superconductor [53] and (rc,1, rc,2)
are critical values of r0 for point-nodal and fully gapped su-
perconductors, respectively (See SM). The functional forms
of δDdis(0; r0) = Ddis(0; r0)−D(0) are tabulated in Table I.

are essential. The disorder averaged spectral function,
Adis(~k,E) = [Gdis(~k,E + iη) − Gdis(~k,E − iη)]/2i, gives
the DOS with disorder scattering potentials,

Ddis(E; Γ) = − 1

π

∫
~k

Tr
(
Adis(~k,E)

)
, (7)

as a function of a scattering rate (Γ). The residual DOS
is then defined as a difference between the DOS of dirty
and clean systems, δDdis(Γ) = Ddis(0; Γ)−D(0).

In Fig. 1, we contrast the residual DOS of a BG-FS
with that of superconductors with different nodal struc-
tures. The r0 dependence of the residual DOS is qual-
itatively different for the different nodal states. A few
remarks are as follows. First, the residual DOS for a
BG-FS shows a linear dependence on r0. To see this, we
introduce a UV energy cut-off (ΛUV ), for example, the
band width, the DOS for a BG-FS is then approximated
as

δDdis(Γ) =

∫ ΛUV

0

dED(E)
[ Γ/π

E2 + Γ2
− δ(E)

]
= a0Γ,(8)

at lowest order in Γ/ΛUV � 1. For our choice of pa-
rameters, we find a linear increase in the residual DOS
(a0 > 0) on Γ. Using Γ = r0

8 πD(0), this implies that the
DOS linearly increases upon increasing r0. We can gen-
eralize the above discussion to a momentum-dependent
disorder potential (l > 0) by including the angle depen-

dent scattering rate, Γ(~k), and see similar results (See
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States δDdis(r0) Ds DD
(A) ∝ r0 # #

(B) ∝ exp[− r
∗

r0
]/r0 # ×

(C) ∝
[

1
rc,1
− 1

r0

]
θ(r0 − rc,1) # ×

(D) ∝
√

1
rc,2
− 1

r0
θ(r − rc,2) # ×

(E) ∝ r0 × #

TABLE I. Disorder dependence of physical quantities for dif-
ferent nodal superconducting states: (A) BG-FS, (B) line-
nodal, (C) point-nodal, and (D) fully gapped superconduc-
tors. (E) is for normal metals. The functional form, δDdis(r0),
superfluid density, Ds, and the Drude-weight, DD, in the clean
limit are illustrated.

SM). We remark that the sign of coefficient, al, is not
universal but depends on the specific forms of band dis-
persion and disorder potential. Second, Eq.(8) may be
generalized to systems with different nodal gap structures
by considering a generic clean DOS, D(E) ∝ En, this al-
lows us to understand the significant differences in Fig.
1. To be specific, for line-nodes, an infinitesimal impurity
scattering may induce a zero-energy DOS which follows
a non-linear behavior, while it does not affect the DOS
unless r0 > rc for point-nodes or full-gaps. The formu-
lae of DOS as a function of r0 are tabulated in Table I
and their detailed derivations are explained in SM. Thus,
we argue that the linear dependence of the residual DOS
on impurity scattering is a unique property of BG-FSs.
Third, the linear dependence of the residual DOS is ob-
servable in experiments, for example, in the tunneling
conductance between a normal conductor and a BG-FS.
Standard calculations show that the linear dependence
effects are intact even at non-zero temperature, provided
that temperature is sufficiently small compared to other
energy scales, such as the disorder scattering rate or the
Fermi-energy of Bogoliubov quasi-particles (See SM).

Optical conductivity : Let us consider disorder effects
on the optical conductivity of a BG-FS. We focus on two
aspects of the optical conductivity: the stability of the
supercurrent and the existence of a Drude-like frequency
dependence. We employ the standard linear response
theory, and the real part of the optical conductivity in
the spatially homogeneous limit is,

Reσij(ω) = − ImQij(ω + iη)

ω
+

ReQij(0)

π
δ(ω), (9)

where Qij is the London response kernel. The con-
ductivity of superconductors is decomposed into two
parts. The former is called the regular part, σijreg(ω) =

−ImQij(ω + iη)/ω, and the latter is called the singular

(a) (b)
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FIG. 2. (a) The r0 dependence of the superfluid weight,
Dzz

s (r0). The clean limit of supercurrent is interpolated as

a positive value, Dzz
s,0 = 0.163e2

√
mµ3/~3. (b) The fre-

quency and r0 dependence of regular part of conductivity,
σzz
reg(ω; r0). The different values of r0/∆0 = {0.1, 0.2, 0.5, 1, 2}

are used and denoted with different colors. Inset shows
σzz
0 (r0) = Dzz

D /r0 in the small r0 limit with a Drude-weight,

Dzz
D = 0.168e2

√
mµ3/~3.

part from the supercurrent, characterized by the super-
fluid weight, Dijs = ReQij(0)/π.

The current operator is decomposed as the paramag-
netic (p) and diamagnetic (d) parts. In the Nambu basis
(Ψ~k), the zero-momentum current operator reads

J i =

∫
~k

Ψ†~k
J i(~k)Ψ~k, J i = J ip + J id , (10)

with

J ip(~k) = −2

(
gij 0
0 gTij

)
kj = −∂iH0(~k)τz, (11)

and

J id(~k) = −2

(
gij 0
0 −gTij

)
Aj = −∂i∂jH0(~k)Aj , (12)

where the Hartree unit (e = ~ = 1) is used. The Pauli-
matrix (τz) acts on the particle-hole space and ∂i ≡ ∂ki
is the derivative with respect to the momentum ki. The
explicit forms of the paramagnetic and diamagnetic con-
tributions to the London response kernel are

Qijp (iωn) = T
∑
ikn

∫
~k

Tr
(
Gdis(~k, ikn)J ipGdis(~k, ikn + iωn)J jp

)
,

and

Qijd (iωn = 0) = T
∑
ikn

∫
~k

Tr
(
Gdis(~k, ikn) ∂i∂jH0

)
,

respectively. Note that only the zero-frequency compo-
nent (iωn = 0) contributes to the diamagnetic kernel [57].
In what follows, we focus on the (i, j) = (z, z) component
of the conductivity under isotropic disorder (l = 0) at
zero temperature (T = 0).
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We first consider the singular part of the optical con-
ductivity associated with the supercurrent. The su-
perfluid weight is obtained by the relation, Dzzs (r0) =
Re
[
Qzzp (0) +Qzzd (0)

]
/π, whose explicit form is

Dzzs (r0) = − 1

2π

∫
~k

∫ ∞
−∞

dω

2π
Tr
([
Gdis(~k, iω)J zp (~k), τz

]2)
.

The commutator in the integrand indicates that
Dzzs (r0) = 0 if a U(1) symmetric system is considered.
In Fig. 2 (a), we illustrate Dzzs (r0).

Our calculations indicate that the supercurrent still
survives under weak disorder in a BG-FS. We note that
in contrast to the previous results without disorder, our
calculations converge even at T = 0 due to the scattering
rate of the Green’s function. In the clean limit (r0 → 0),

the superfluid density (Dzzs,0 = 0.163e2
√
mµ3/~3) inter-

polates to a non-zero positive value, which shows the
stability of the supercurrent under disorder and tem-
perature. These results indicate that the supercurrent
survives even with the instability associated with the in-
version symmetry breaking in a centrosymmetric BG-FS.
The superfluid density is naturally suppressed by increas-
ing r0, similar to superconducting states with different
nodal structures [58, 59]. We stress that the presence of
a Fermi-surface of Bogoliubov quasiparticles cannot de-
stroy the supercurrent in contrast to the Landau damping
of bosonic excitations in metals.

Next, we calculate the regular part of the optical con-
ductivity of a BG-FS. After analytic continuation, we
find

σzzreg(ω; r0) =
1

ω

∫
~k

∫ 0

−ω

dν

π
Tr
(
Adis(~k, ν)J zp Adis(~k, ν + ω)J zp

)
,

for ω > 0 and T = 0. Here, Adis(~k,E) is the disor-
der averaged spectral function of a BG-FS. In Fig.2 (b),
σzzreg(ω; r0) is plotted as a function of a frequency, ω, and
the parameter, r0. A Drude-like behavior near zero fre-
quency with a Lorentzian distribution is obtained, similar
to that found in metals. In the zero-frequency limit, the
DC conductivity, σzz0 (r0) ≡ limω→0 σ

zz
reg(ω; r0), becomes

σzz0 (r0) =
1

π

∫
~k

Tr
(
Adis(~k, 0)J zp Adis(~k, 0)J zp

)
, (13)

at zero temperature. Note that a non-zero DC-limit
conductivity also appears in line-node superconductors,
for example, d-wave superconductors [53, 56, 59, 60],
but it is not Drude-like in contrast to a BG-FS where
σ0(r0) ∝ 1/r0 is manifested (See Inset of Fig.2 (b)). In
the clean limit, the DC conductivity of a BG-FS diverges
and yields a Drude-weight, DzzD 6= 0,

lim
r0→0

σzzreg(ω; r0)

π
= DzzD δ(ω) + · · · , (14)

where a non-singular term is omitted in · · · . We find

DzzD = 0.168e2
√
mµ3/~3 for our choice of parameters. In

the SM, the DC conductivity of superconducting states
with various nodes and their Γ dependencies are shown.
Therefore, The Drude-like behavior is a distinctive fea-
ture of a BG-FS.
Discussion and conclusion : Our studies indicate that

a BG-FS may be uniquely characterized by the depen-
dence on disorder. Thus, we propose electron irradiation
experiments can be a powerful tool to identify a BG-FS
by observing the linear disorder dependence of the resid-
ual DOS and superfluid density, as summarized in Table
I.

Our results are directly applicable to experiments. We
believe that the candidate materials of BG-FSs such as
FeSe1−xSx for x > 0.17 [61] and Th-doped UBe13 [45]
are promising since a likely intrinsic residual density of
states has already been reported to be observed. We
stress that other experiments such as heat capacity and
magneto-optical Kerr effect can be also used to observe
the disorder dependence since the residual DOS appears
in these observables.

Note that, for simplicity, our calculations mainly fo-
cus on the cases with a SO(3) symmetric normal band
structure and non-magnetic impurity scattering at zero
temperature. It is straightforward to generalize our cal-
culations to include anisotropic and magnetic impurity
scattering and we show in the SM that our main re-
sults are not modified. In particular, the robustness of a
BG-FS against disorder is considered, and we prove that
the Anderson theorem is violated for a BG-FS in accor-
dance with common wisdom. Considering both arbitrary
pairings and generic disorder potentials, we quantify the
fragility of a superconducting state and generalize the
concept of superconducting fitness function and the pre-
vious literature [62–66]. See SM for more information.

The following questions regarding a BG-FS remain
to be answered in future research. The strong disorder
effects on a BG-FS needs to be understood. It would be
interesting to clarify whether the conventional approach
with the non-linear sigma model in symmetry class D
applies [67, 68]. The verification of the f-sum rule on the
linear conductivity of a BG-FS and the generalization to
the nonlinear conductivities is also an open question [69].
We believe that our work may raise many interesting
future studies and open up new directions to search for
exotic superconductivity.
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