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A primary motivation for studying topological matter regards the protection of topological
order from its environment. In this work, we study a topological emitter array coupled to an
electromagnetic environment. The photon-emitter coupling produces nonlocal interactions between
emitters. Using periodic boundary conditions for all ranges of environment-induced interactions,
the chiral symmetry inherent to the emitter array is preserved. This chiral symmetry protects the
Hamiltonian, and induces parity in the Lindblad operator. A topological phase transition occurs
at a critical photon-emitter coupling related to the energy spectrum width of the emitter array.
Interestingly, the critical point nontrivially changes the dissipation rates of edge states, yielding a
dissipative topological phase transition. In the protected topological phase, edge states suffer from
environment-induced dissipation for weak photon-emitter coupling. However, strong coupling leads
to robust dissipationless edge states with a window at the emitter spacing. Our work shows the
potential to manipulate topological quantum matter with electromagnetic environments.

Introduction.—Vacuum electromagnetic environments
can nontrivially change order parameters of matter,
producing phase transitions [1, 2]. With the advances
in cavity quantum electrodynamics (QED) [3–6], vacuum
electromagnetic fields are used to manipulate matter [7–
10] with strong light-matter interaction. For example,
in cavity-interfaced superconductors, a strong coupling
with electromagnetic fields changes the superconducting
transition temperature [9]. Recently, the vacuum
electromagnetic control of matter is receiving growing at-
tention [11–13]. Due to symmetry-protected properties,
topological matter is also being studied in the coupling
with electromagnetic fields for potential applications [14–
16]. The bandgap of a kagome metasurface of dipole
emitters embedded in a cavity can be tuned by
electromagnetic fields [17]. Varying the cavity width
can change long-range interactions between emitters and
induce topological phase transitions [16].

A prerequisite to make topological protection reliable
is to understand dissipative properties of topological
systems [18–33]. Energy bands play a pivotal role
for topological matter, e.g., in studying topological
phases [34–37] and topological criticalities [38–40]. The
large gap between energy bands protects topological
properties from local disorder [41–49] and thermal
noises [50–55]. However, a recent study [56] of time-
reversal symmetry protected topological systems with
large bandgap shows the fragility of topological phases
in electromagnetic environments. Via perturbation
theory, they find that quantum coherence between
edge states in one-dimensional (1D) topological systems
is spoiled when system-environment coupling is weak
compared to the bandgap. This finding shows the

challenge of protecting topological quantum matter in
electromagnetic environments.

In this work, we study the coupling between a topolog-
ical emitter array and its electromagnetic environment in
the nonperturbative regime, i.e., edge states are coupled
to bulk states via the environment. We find that for
emitter spacings d = λ0/4 and d = 3λ0/4, environment-
induced interactions have chiral symmetry and produce
distinct topological phases. For d = λ0/4, environment
modifies the topological phase with dissipative edge
states. However, the edge states for d = 3λ0/4 are
protected from dissipation in a parameter space specified
by the Lindblad operator. In the thermodynamic
limit, a dissipative topological phase transition (DTPT),
characterized by a nontrivial change of dissipation of the
edge states, occurs at d = 3λ0/4 when the single-emitter
decay rate induced by the system-environment coupling
equals the energy spectrum width of the topological
emitter array. These results could be useful for improving
topological protection in open quantum systems which
have nonlocal dissipations [56].

1D topological emitter array in vacuum electromag-
netic fields.—We consider a topological array of dipole
emitters coupled to its surrounding electromagnetic
environment, as in Fig. 1(a). The single-excitation
energy spectrum of the topological emitter array with
bandgap and spectrum width is shown in Fig. 1(b).
Electromagnetic modes in the environment are described
by HE =

∫
d3r

∫∞
0
dω ~ω â†(r,ω)â(r, ω), where

â†(r,ω) and â(r, ω) are the creation and annihilation
operators of photons. The emitter-environment coupling
is Hint = −

∑
i

∫∞
0
dω(d̂i · E(ri, ω) + H.c.), where

d̂i = diσ
−
i + d∗i σ

+
i is the dipole moment operator
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FIG. 1. (a) Schematic of a dipole emitter array coupled
to an electromagnetic environment. Emitters have nearest-
neighboring interactions Ji, homogeneous spacing d, and
decay rate γ0 to the environment. (b) Single-excitation
spectrum of the topological system with spectrum width
∆ω and bandgap δω. (c) Phase diagram of the system for
emitter spacing d = 3λ0/4. There are topological phases
TP-I (having edge states), TP-II (having no edge state) and
non-topological phase (NTP). The red circle at (γ0 = 0,
J1/J2 = 1) represents the original phase transition in the
SSH model. The horizontal red-dashed line denotes the SSH-
type phase transition in the dissipative regime. The vertical
green line represents the environment-induced topological
phase transition where the decay rate γ0 is equal to the
spectrum width ∆ω of the topological system. In particular,
the green-solid line indicates the dissipative topological phase
transition. (d) Photon-mediated interactions Hph for d =
λ0/4 (g0 = γ0/2) and d = 3λ0/4 (g0 = −γ0/2).

of the ith emitter. The electric field operator is
E(r, ω) = iη

∫
d3r′

√
εI(r′, ω)G0(r, r′, ω)â(r′, ω), where

η =
√
~ω2/

√
πε0c

2; εI(r′, ω) is the imaginary part of the
complex permittivity; the Green’s tensor G0(r, r′, ω0)
describes the electromagnetic interaction from r to
r′. The dynamics of the topological emitter array is
described by the master equation [57, 58]

ρ̇(t) = − i
~

[H0 +Htopo +Hph, ρ(t)] +D[ρ], (1)

where the free energy is H0 =
∑

i ~ω0σ
+
i σ
−
i (ω0 is

the transition frequency of emitters) and the topological
emitter array is described by Htopo =

∑
i ~Ji(σ

+
i σ
−
i+1 +

σ+
i+1σ

−
i ) with tunable dimerized interactions Ji = J0[1 +

(−1)i cosϕ] [59]. The emitter-environment coupling
can be strong compared with the bandgap, but much
smaller than the energy of emitters, to satisfy the
Born-Markov approximation in Eq. (1). The virtual-
photon exchange between emitters and environment
yields Hph =

∑N
i,j=1 ~gij(σ

−
i σ

+
j + σ−j σ

+
i ), where gij

[Eq. (3)] characterize the strengths of the nonlocal
dipole-dipole interactions. In addition to the coherent
part Hph, the virtual-photon exchange yields correlated
dissipations γij [Eq. (4)], which are included in the

Lindblad operator,

D[ρ] =

N∑
i,j=1

γij

(
σ−i ρσ

+
j −

1

2
σ+
i σ
−
j ρ−

1

2
ρσ+

i σ
−
j

)
. (2)

By applying the Kramers-Kronig relation to the
Green’s tensor and integrating in the frequency domain,
the photon-mediated interactions and dissipations be-
come [60–69]

gij =
ω2

0

~ε0c2
Re{d∗i ·G0(ri, rj , ω0) · dj}, (3)

γij =
2ω2

0

~ε0c2
Im{d∗i ·G0(ri, rj , ω0) · dj}. (4)

For the 1D electromagnetic environment, concrete forms
of the nonlocal interactions and correlated dissipations
are [63, 64, 70–74] gij = γ0 sin(2πdij/λ0)/2 and γij =
γ0 cos(2πdij/λ0), respectively. Here, the emitter decay
rate is γ0 = g2/c where g is the photon-emitter coupling
and c is the group velocity of photons; dij is the distance
between ith and jth emitters; λ0 is the wavelength of a
photon with frequency ω0. We find that the spectrum
width ∆ω sets a critical point for a dissipation-induced
topological phase transition, represented by the green-
solid vertical line in Fig. 1(c).

Environment-protected chiral symmetry.—As a simple
illustration, in Fig. 1(d) the environment induces nearest-
neighboring (NN) and long-range interactions in an
array with N = 6 emitters. We consider the cases
when the spacings d = λ0/4 and d = 3λ0/4; and
the parameter g0 is γ0/2 and −γ0/2, respectively.
The long-range interaction between the first and the
last emitters provides periodic boundary conditions
for the NN interaction. Conversely, the long-range
interaction between the ith and (i+5)th emitters exhibits
translational invariance due to the NN interaction.
Therefore, the effective strengths for the NN interaction
and the long-range interaction between the ith and
(i + 5)th emitters, are g0/2. Moreover, the effective
interaction gij between the ith and (i + 3)th emitters
(red-dashed curves) is −g0/2. With this protocol, the
translational symmetry is preserved for all ranges of
interactions induced by the environment at d = λ0/4
and d = 3λ0/4. However, for other values of the spacing
d, the translational symmetry in Hph is broken.

By assuming periodic boundary conditions on Htopo,
the coherent interaction H = Htopo + Hph in quasi-
momentum space is H/~ =

∑
k Ψ+

kH(k)Ψk, where Ψ+
k =

(σ+
A,k, σ

+
B,k). Here, A and B denote odd- and even-

site emitters, respectively. The 1D symmetry-protected
topological system is described by the Su-Schrieffer-
Heeger (SSH) model [75]. In the sublattice space,
we obtain an effective spin-1/2 Hamiltonian H(k) =
hx(k)τx + hy(k)τy with chiral symmetry τzH(k)τz =



3

2

1.5-1 0.5

1

-1

-1 00

2

-2

0 π

(a) (b)

-4

4

π0 kk

-2

(d)(c)

FIG. 2. (a) Energy bands of the topological emitter array
for J1 6= J2 (solid) and J1 = J2 (dashed). (b) Environment-
induced gap closing at emitter spacing d = 3λ0/4 and decay
rate γ0 = ∆ω. Topologies from the hybridization between
Htopo and Hph in auxiliary space (hx(k), hy(k)) for (c) d =
λ0/4, and (d) d = 3λ0/4. (c) The winding number is zero
at J0 = 0 (blue-solid), and becomes one for J0 > 0 (green-
dashed). (d) The winding number is zero for 0 ≤ J0 ≤ γ0/4
(the blue-solid topology denotes J0 = γ0/4), and becomes one
for J0 > γ0/4 (green-dashed). We consider ϕ = 0.1π,N = 6.

−H(k) [76]. Here, τx, τy, τz are Pauli matrices, and

hx(k) = J1 + J2 cos(k) +
g0

2

[
1 + cos

(
Nk

2

)]
, (5)

hy(k) = J2 sin(k) +
g0

2
F(k), (6)

with g0 = γ0/2 (−γ0/2) for d = λ0/4 (3λ0/4), F(k) =∑N/2
j=1 2(−1)j−1 sin(jk) − sin(Nk/2), and energy bands

ε±(k) = ±
√
h2
x(k) + h2

y(k). Without the environment,

the energy bands are shown in Fig. 2(a). The bandgap
and spectrum width are

δω = 2|J1 − J2|, ∆ω = 2(J1 + J2), (7)

respectively. The dimerized interactions J1,2 = J0(1 ∓
cosϕ) yield the bandgap δω = 4J0 cosϕ and spectrum
width ∆ω = 4J0. The SSH-type topological phase
transition takes place at k = ±π [76] with linear low-
energy dispersion. In the electromagnetic environment
with emitter spacing d = 3λ0/4, the condition

γ0 = ∆ω, (8)

yields a gap closing at k = 0 with parabolic dispersion,
as shown in Fig. 2(b). The parabolic dispersion [38, 39]
makes this topological criticality to be different from
the one in the SSH model. In the auxiliary space
(hx(k), hy(k)), the winding number can be defined as
W = (1/2π)

∫
B.Z.

dθk, with θk = arctan[−hx(k)/hy(k)].
For d = λ0/4, shown in Fig. 2(c), the system is in a
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FIG. 3. Energy spectra for (a) d = λ0/4, and (b) d = 3λ0/4,
respectively. Probability distribution |ψ0|2 of the zero-energy
state for (c) d = λ0/4 and (d) d = 3λ0/4. In (c,d), red stars,
blue triangles, orange squares, and black circles correspond to
J0/γ0 = 0, 0.25, 1, 5, and J0/γ0 = 0, 0.2, 0.25, 1, respectively.
The inset of (d) shows the IPR of the zero-energy state at
different values of ϕ for d = 3λ0/4. In (a)-(d) we consider
ϕ = 0.1π, N = 21.

non-topological phase with W = 0 at J0 = 0. However,
as J0 is increased, the winding number W = 1; i.e.,
the topological phase is protected when d = λ0/4. For
d = 3λ0/4, in Fig. 2(d), the system has zero winding
number for small J0/γ0. However, at a critical point
γc0 = ∆ω, a topological phase transition takes place. For
γ0 < γc0, the system becomes topological with winding
number W = 1. Namely, the topological phase is
preserved when the spectrum width ∆ω is larger than the
environment-induced decay γ0 of the emitters, as shown
in Fig. 1(c).

Edge state vs dissipative topological phase transition.—
Figures 3(a,b) show the energy spectra of H versus J0/γ0

for (a) d = λ0/4 and (b) d = 3λ0/4 in a system with
an odd number of emitters N = 21, where a single
edge state appears. In agreement with the topologies in
quasi-momentum space for these two emitter spacings,
a bandgap [3(a)] and a band touching [3(b)] are found.
In Fig. 3(b), a non-topological edge state is found for
the topologically trivial phase. Figures 3(c,d) show the
distributions |ψ0|2 of the edge state. At J0 = 0, the
edge state is equally distributed at the two edge emitters
with wave function |ψ0〉 = 1√

2
(σ+

1 + σ+
N )|G〉, where |G〉

is the ground state of the emitter array. In Fig. 3(c),
with d = λ0/4, enlarging J0 monotonically increases the
component of |ψ0|2 at the left boundary. However, before
the critical point, the left-boundary component of the
edge state for d = 3λ0/4 becomes smaller as J0/γ0 is
increased. At the critical point, the gap of the spectrum
closes and the edge state becomes delocalized. By further
increasing J0, the edge state eventually localizes at the
left boundary.
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To characterize the changes of the edge state, we
study the inverse participation ratio (IPR) [77], IPR =∑

i |ψ0i|4/(
∑

i |ψ0i|2)2, where ψ0i is the amplitude of the
edge state at the ith emitter. In the inset of Fig. 3(d),
we show the IPR versus J0/γ0 for d = 3λ0/4. The IPR
of the edge state at J0 = 0 is one half due to its equal
distribution at two boundaries. A minimum is found at
the critical point for different values of ϕ, indicating the
edge-bulk transition.

To study the stability of topological features in real
space, we here rewrite the Lindblad operator in terms of
eigenstates of H,

D[ρ] =
∑
m,n

Γmn[Ψ−mρΨ+
n −

1

2
Ψ+

mΨ−n ρ−
1

2
ρΨ+

mΨ−n ], (9)

with Ψ+
m = |Ψm〉〈G|. Here, |Ψm〉 denotes the

mth eigenmode of H. The decay rates are Γmn =∑
i,j γij〈ei|Ψm〉〈Ψn|ej〉, with |ei〉 = σ+

i |G〉. Specifically,
Γmm denotes the decay rate of the mth eigenstate to
environment; Γmn is the correlated decay from the nth
state to mth state. The dissipation of the edge state is
governed by Γm0. In Fig. 4(a), we show the scaled decay
rate Γ00/γ0 from edge state to environment versus J0/γ0.
For d = λ0/4, Γ00/γ0 increases with J0/γ0, and decreases
after reaching the maximum [58]. However, the edge
state at d = 3λ0/4 has a decay rate that decreases in the
non-topological phase and that stops decaying at J0 =
γ0/4. In finite systems, the weak emitter-environment
coupling, i.e., small γ0/J0, introduces dissipation of the
edge state [58], which is responsible for the enhanced
photon absorption [78]. However, the edge state for
strong coupling is protected against decoherence in the
topological phase.

For added clarity, the correlated decays Γm0 (m 6= 0)
between the edge state and the bulk states are shown
in Fig. 4(b). At J0/γ0 = 0.2 (blue dots) in the non-
topological phase, the edge state not only decays into
the environment (Γ00 6= 0), but also decays into the bulk
states of the emitter array. However, at J0/γ0 = 0.3
(red squares) in the topological phase, the edge state
does not decay to bulk states. At the critical point
J0/γ0 = 0.25, the dissipations to bulk states are greatly
suppressed, except for those of the two bulk states m′ =
±(N − 3)/2. Near the critical point, the correlated
dissipations |Γm′0| ∝ exp(−νm′N), with νm′ > 0 in the
topological phase. The inset shows ln(|Γm′0|/γ0) versus
N . The values of νm′ are 0, 0.005, and 0.0115, for
J0/γ0 = 0.25, 0.251, and 0.252, respectively. Therefore,
in the thermodynamic limit N → +∞, the critical
point indicates a transition between dissipative and
dissipationless edge states, namely, a DTPT, which can
be accessed by observing the population dynamics of
the emitter array [58]. In Fig. 4(c), the local minima
of ln(Γ00/γ0) show the parameter space of edge states
protected by the Lindblad operator [79–82] in a small
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FIG. 4. (a) Dissipation Γ00 from edge state to environment
for d = λ0/4 (blue-dashed) and d = 3λ0/4 (red-solid). (b)
Dissipations Γm0 from edge state to environment (m = 0)
and bulk states (m 6= 0) for d = 3λ0/4 at J0/γ0 =
0.2 (blue dots), 0.25 (green stars) and 0.3 (red squares).
The inset shows ln(|Γm′0|/γ0) versus N for J0/γ0 = 0.25
(green diamonds), 0.251 (purple triangles) and 0.252 (orange
circles). (c) ln(Γ00/γ0) for the emitter array with N =
7. The white-dashed vertical (J0/γ0 = 1/4) and black-
dotted horizontal lines indicate the DTPT and the SSH-type
criticality, respectively. (d) Dissipations from edge states to
environment. The inset shows the corresponding energy levels
of the edge states. We consider N = 21 [one edge state]
in (a),(b), N = 20 [two edge states] in (d); ϕ = 0.3π in
(a),(b),(d).

system. This protection is actually attributed to the
vanishing overlap between edge states and polarized
radiating modes in the Lindblad operator, which exhibits
parity property, i.e., dissipations only occur between odd-
site (even-site) emitters. Larger systems have broader
parameter space for dissipationless edge states [58]. In
particular, the condition that the environment-induced
decay is half of the spectrum width, i.e., J0/γ0 = 1/2,
produces a dissipationless edge state∣∣∣∣ψ0

(
J0

γ0
→ 1

2

)〉
=

1√
N

∑
n∈N

(−1)n
(

tan
ϕ

2

)2n

|ψ〉n,

(10)
for various localization lengths even near the SSH
criticality. Here, |ψ〉n = (σ+

4n+1 + σ+
4n+3)|G〉; namely,

the (4n + 1)th and (4n + 3)th emitters have the same
amplitude.

Dissipationless subspace of topological edge states.—
In arrays with an even number of emitters, two edge
states appear at the boundaries. Figure 4(d) shows
the decay rates and energy splitting (in the inset) of
the edge states. With small γ0 (weak coupling), the
two localized edge states are coupled by environment-
mediated long-range interactions, and the subspace of
edge states suffers from decoherence [56]. Surprisingly,
when the emitter-environment coupling is strong, i.e., γ0
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FIG. 5. (a) Decay rate Γ00 from edge state to environment.

(b) Effective decay rate Γ̃0 of edge state. Here, we consider
N = 11, ϕ = 0.3π, d = 3λ0/4.

is large, the edge states are decoupled from each other.
Therefore, they are both protected from dissipation until
the DTPT at γ0 = ∆ω. Moreover, strong coupling
makes the zero splitting between edge states insensitive
to emitter spacing around d = 3λ0/4 [58].

Dissipationless window.—In Fig. 5(a), we show the
dissipation Γ00 of a single edge state versus d/λ0. Even
though the chiral symmetry is broken for emitter spacings
around 3λ0/4, the edge state can be dissipationless
and is insensitive to emitter spacing. To confirm this
conjecture, we rewrite the whole system as a non-
Hermitian effective Hamiltonian in the diagonalized form
Heff =

∑
j(Ẽj − iΓ̃j)|Ψ̃R

j 〉〈Ψ̃L
j | with the biorthogonal

basis 〈Ψ̃L
j |Ψ̃R

j′〉 = δjj′ . A dissipationless window is
found for d = 3λ0/4 with strong system-environment
coupling, as shown in Fig. 5(b). This window makes the
dissipationless edge state robust to disorder in emitter
positions [58]. The edge state has finite decay rate around
d = λ0/4. For emitter spacings nλ0/2 (n = 0, 1, 2, · · · )
where Hph is zero, the edge state is more dissipative and
shows higher sensitivity to disorder than d = 3λ0/4 [58].

Conclusions.—System-environment interplay is fun-
damental for dissipative topological matter. In this
work, we show that a 1D topological emitter array
globally coupled to an electromagnetic environment
exhibits interesting dissipative properties as the system-
environment coupling varies. The energy spectrum
width of the emitter array sets a critical value for
the system-environment coupling and produces the
dissipative topological phase transition (DTPT). The
environment-modified topological edge states are stable
and robust due to a dissipationless window in the emitter
spacing. Our work paves an avenue for electromagnetic
control of topological matter with vacuum fields.
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