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We introduce and analyze a model that sheds light on the interplay between correlated insulating states, su-
perconductivity, and flavor-symmetry breaking in magic angle twisted bilayer graphene. Using a variational
mean-field theory, we determine the normal-state phase diagram of our model as a function of the band filling.
The model features robust insulators at even integer fillings, occasional weaker insulators at odd integer fillings,
and a pattern of flavor-symmetry breaking at non-integer fillings. Adding a phonon-mediated inter-valley re-
tarded attractive interaction, we obtain strong-coupling superconducting domes, whose structure is in qualitative
agreement with experiments. Our model elucidates how the intricate form of the interactions and the particle-
hole asymmetry of the electronic structure determine the phase diagram. It also explains how subtle differences
between devices may lead to the different behaviors observed experimentally. A similar model can be applied
with minor modifications to other moiré systems, such as twisted trilayer graphene.

Introduction.— When two graphene layers are stacked at a
relative twist angle of ∼ 1.1◦, the lowest-lying electron bands
become exceptionally flat [1]. Recently, this so-called magic
angle twisted bilayer graphene (MATBG) emerged as a highly
tunable platform to study strongly-correlated physics. Cor-
related insulators (CIs), where interactions induce a gap and
suppress transport, were first observed in MATBG at fillings
of ν = ±2 electrons per moiré unit cell relative to the charge
neutrality point (CNP) [2, 3]. Later experiments found a CI
at ν = +3 [4, 5], and in some instances CIs were measured
at nearly all integer fillings [6]. Empirically, insulating be-
havior is more pronounced for electrons (ν > 0). The origin
of these integer-filling CIs has been explored in several recent
works [7–15].

Another remarkable feature of MATBG is the appearance
of superconducting domes near the CIs at ν = ±2 [3–5],
with superconductivity generally being more robust for holes
(ν < 0), and (for both electrons and holes) on the |ν| > 2 side.
Experiments manipulating the electrostatic screening have in-
dicated that Coulomb repulsion is either detrimental to super-
conductivity in MATBG or weakly affects it [4, 5, 16, 17].
This suggests that electron-phonon coupling may play a role
in MATBG [18–22], and plausibly induce superconductivity
at certain fillings. However, the interplay between strong re-
pulsion and its effect on the normal-state, retarded attraction
due to phonons, and the unique multi-band structure have yet
to be fully explored.

In this manuscript, we introduce and investigate a phe-
nomenological model and find that it exhibits the most salient
features of MATBG observed in experiments. The model
comprises four electronic “flavors”, accounting for spin and
valley degeneracies, and interactions with strengths of the
order of their bandwidth. The structure of the interaction
terms and the features of the density of states (DOS) of non-
interacting MATBG determine the phase diagram.

We find electron correlations induce CIs at even-integer
fillings with inter-valley coherent (IVC) order (i.e., sponta-
neously breaking valley Uv (1) symmetry), whereas the odd-
integer CIs, typically having bands with non-zero Chern num-
bers, are more sensitive to details of sub-leading interac-

tion terms. At non-integer fillings, the system is not fully
gapped, yet, the spin-valley flavor symmetry is broken [23–
25]. Retarded inter-valley attractive interactions, due to e.g.,
phonons [19], then enable the formation of superconducting
domes, which are most prominent at fillings which agree re-
markably well with experiments. As depicted in Fig. 1, we re-
cover a superconducting dome flanked by two insulators near
ν = +2,+3, and a more substantial dome on the hole-doped
side of the ν = −2 CI.

At certain fillings, strong-coupling superconductivity may
be established, i.e., Tc becomes an appreciable fraction of the
Fermi temperature TF , leading to significant superconduct-
ing phase fluctuations, whose effect on transport we account
for. This is enabled by the underlying normal state, where
interactions induce spontaneous breaking of flavor-symmetry
breaking and the valley Uv (1) symmetries. Moreover, this
symmetry-broken state has only two active flavors in different
valleys and opposite spins, hence it may sustain large in-plane
magnetic fields.

Model and results.— Our model comprises eight flat bands
with valley (K/K ′), spin, and sublattice (A/B) degrees-of-
freedom, labeled by Pauli matrices τi, si, and σi, respectively.
This basis is motivated by the MATBG sublattice-polarized
basis discussed in Ref. [11]. These bands have a valley-
dependent Chern number, C = τzσz . The model Hamiltonian
is

H =
∑
k

Ψ†kh0 (k) Ψk +Hint, (1)

where Hint describes the interactions, Ψk is an 8-spinor of
fermionic operators cτsσ (k) (annihilating an electron at val-
ley τ , spin s and sub-lattice σ), and

h0 (k) = fx (k)σx + fy (k)σyτz + fp−h (k) . (2)

The functions fx, fy , and fp−h determine the dispersion in the
moiré Brillouin zone (mBZ), which has two Dirac cones with
the same chirality, and reproduces an electronic DOS with the
prominent features of the MATBG flat-bands (see Fig. 1 in-
set). Namely, linearly increasing DOS near the CNP, pro-
nounced DOS peak near half-filling of the conduction/valence
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FIG. 1. Temperature and filling (ν̃, see SM Sec. S.3) phase diagram of the model. We plot the resistivity, inversely proportional to the
compressibility far from the superconducting phase, see SM Sec. S.5. The model features CIs near certain integer fillings and superconductivity,
both in qualitative agreement with experiments. We used the interaction parameters [Eq. (3)] UC = 0.7W , Uδ = 0.15W , g1 = g2 = 0.12W ,
and phonon-mediated attraction strength [Eq. (6)] V ∗ = 0.24W . Inset: DOS of the single-particle Hamiltonian (2). For a detailed schematic
phase diagram, and the effect of weaker Coulomb interactions, see SM.

bands followed by a decline towards the band edge, and appre-
ciable particle-hole asymmetry. The combined bandwidth of
the conduction and valence bands in the mBZ is W . We note
the form of h0 (k) preserves C2 = τxσx and time-reversal
symmetries T = τxK, with K the complex-conjugation oper-
ator [26]. For more about h0 (k), see Supplementary Materi-
als (SM), Sec. S.1 [27].

We write electron-electron interactions as a sum of local
interaction terms,

Hint =
∑

α,k,k′,q

λα
2Ω

(
Ψ†k+q

~OαΨk

)
·
(

Ψ†k′−q
~OαΨk′

)
, (3)

where Ω is the volume, ~Oα are matrices in valley-spin-
sublattice space, and λα are coupling constants. The dom-
inant term is the density-density interaction with ~O1 = 1,
λ1 = UC, and reflects the screened Coulomb repulsion.
We consider a secondary interaction ~O2 = (τzσx, σy) with
λ2 = Uδ , accounting for the form-factors obtained when pro-
jecting the Coulomb repulsion onto the flat-bands away from
the chiral limit [11]. Additional terms are inspired by instan-
taneous interactions due to electron-optical-phonon interac-
tions, ~O3 = (σyτz, σx) with λ3 = g1, and ~O4 = (τxσx, τyσx)
with λ4 = g2. Their structure is dictated by the electron-
phonon coupling to low-momentum phonons ( ~O3) and to
valley-momentum phonons ( ~O4) [18]. The phonon-induced
interactions are attractive, i.e., g1, g2 < 0. The interactions
preserve C2, T , and C3 = e2πi/3σzτz symmetries [28].

We study the model (1)–(3) using a variational Hartree-
Fock approach. We minimize the grand-potential Φ, at a
given temperature T and chemical potential µ, generated by
the variational HamiltonianHMF =

∑
k Ψ†khMF (k) Ψk [27].

We note that in the mean-field approach, due to the local
nature of the interactions, the details of the non-interacting
dispersion do not play a role, only the DOS. We explore
three kinds of spontaneous symmetry breaking in hMF: (i)
Flavor-symmetry breaking, i.e., one or several of the opera-
tors {sz, τz, τzsz} attain a finite expectation value; (ii) intra-
flavor sublattice-symmetry breaking (σz terms), leading to

Chern gaps; (iii) IVC order with a finite expectation value for
τx cos γ + τy sin γ. We restrict our analysis to IVC terms of
the form

∆±ivc

1± szτz
2

τysxσy. (4)

This order-parameter resembles the Kramers-IVC of
Ref. [11], with an effective time-reversal symmetry
T ′ = τysxK. The choice of sxσy in (4) is justified a
posteriori by examination of the mean-field interaction
energy (see SM Sec. S.1 [27]). We find that the g2 interaction
favors orders where the spin is anti-aligned in opposite
valleys, justifying sx in Eq. (4). Moreover, we find Uδ and

g1 favor states where
〈
c†τsσcτ̄ s̄σ̄

〉
= −

〈
c†τsσ̄cτ̄ s̄σ

〉∗
, so IVC

orders ∝ σy gain interaction energy. Lastly, our analysis
suggests sublattice-symmetry breaking is favored by g1, yet
suppressed by Uδ . The interplay between these interactions
is key to understanding why insulators at odd fillings are
experimentally less robust than those at even fillings.

Mean-field phase diagram results are displayed in Fig. 2.
Panels (a)–(b) show the filling νi of each flavor for differ-
ent values of Uδ and g1. Our results feature a sequence of
symmetry-breaking phase transitions. At the CNP, the sys-
tem is in a fully-gapped IVC state. With increased µ, the IVC
gap in one τzsz sector closes, and the two flavors making up
that sector begin to populate [near (µ− µCNP) /W ≈ 0.4
in Fig. 2]. This is followed by flavor-symmetry breaking
within that sector, where one flavor is depleted and the other is
filled. Depending on details, the depleted flavor may develop
a Chern gap, leading to an incompressible region near ν = 1.
Increasing µ further, this flavor is gradually filled. This pro-
cess repeats for the flavors in the other IVC-sector (starting
at ν = 2), following an incompressible regime, where two
flavors are full, and two others are IVC-gapped.

We note that in a region around ν = 1, flavor-polarization
develops in the IVC-sector, yet it remains incompressible.
This is due to spin-polarization in the more populated sector,
promoting opposite polarization in opposing valleys, gaining
interaction energy ∝ |g2|.
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FIG. 2. (a) T = 0 mean-field occupation νi of individual flavors and
total filling ν as a function of chemical potential. Grey rectangles
mark incompressible regions. Interaction parameters used: UC =
0.75W , Uδ = g1 = 0.1W , g2 = 0.08W . (b) Same as (a), with
Uδ = 0.2W and g1 = 0. (c) Compressibility dν/dµ as a function
of ν̃ and α ≡ Uδ−g1

Uδ+g1
, retaining Uδ + g1 = 0.2W , and all other

parameters from (a)–(b). Notice (a) corresponds to α = 0 and (b) to
α = 1.

In Fig. 2(c) we plot the compressibility dν/dµ as a function
of α ≡ Uδ−g1

Uδ+g1
and ν̃. The latter is a proxy for the filling

fraction representing the experimental scenario, where a back-
gate voltage tunes the electron filling, see SM Sec. S.3 [27].
As α increases, (g1 becomes smaller compared toUδ) the odd-
filling gaps close and eventually vanish at α ∼ 0.7, giving
way to finite but low compressibility [24]. This trend agrees
with our analytical examination of the roles of Uδ and g1. The
ν̃ = 0, 2 incompressible IVC states weakly depend on α, and
thus expected to be more robust.

The phase diagram establishes that the appearance of CIs
either at all integer fillings, or only at even ones, depends del-
icately on the details and hierarchy of the effective interaction
terms [29]. We note that the appearance of σy–IVC orders
at even fillings agrees with the predictions of Ref. [11] and
was verified numerically [30]. This is expected as the Uδ term
captures the effect of the density form-factors of the projected
interaction. Our model thus provides a tractable way of going
beyond specific integer fillings and tracking the evolution of
the mean-field ground-state with µ.

Superconductivity.— Our starting point of examining su-
perconductivity in MATBG is the symmetry-breaking cas-
cade obtained above. We explore inter-valley pairing medi-
ated by electron-phonon interactions. The inter-valley pair-
ing is favored both by the acoustic phonons [19] and since
intra-valley Cooper pairs have finite-momentum. Thus, we
focus on valley-degenerate areas in the phase diagram. We
note that scenarios where the superconducting condensation
energy gain is sufficient to depolarize opposite-valley flavors
are not considered.

As discussed, the model favors inter-valley antiferromag-

netism, naturally preferring opposite-spin pairing. Restrict-
ing our discussion to the simplest scenario where the pairing
lacks sublattice-structure (it is sufficient to capture the most
salient experimental features), we study the pairing amplitude
∆τs = ∆τsA = ∆τsB , where

∆τsσ =
1

Ω

∑
k

〈cτ̄ s̄σ (−k) cτsσ (k)〉 . (5)

We note that due to the aforementioned spontaneous spin-
valley locking and flavor-symmetry breaking, the system at-
tains non-zero spin-triplet pairing correlations [31]. This may
lead to phenomenology similar to that of Ising superconduc-
tors, namely a critical in-plane magnetic field that is set by the
normal-state energetics, exceeding the Pauli-Chandrasekhar-
Clogston limit [32–34].

Adopting a Tolmachev-Morel-Anderson renormalization
group (RG) approach [35, 36], we account for the effects
of Coulomb repulsion as well as the phonon-mediated
attraction. Neglecting the attraction for now, we begin with
the action S = SMF + SCooper, where SMF is corresponds
to the solution of the variational procedure, and SCooper =∫
d2x

∑
τsσ c

†
τsσc

†
τ̄ s̄σ

[
UC

2 cτ̄ s̄σcτsσ − (Uδ + |g1|) cτ̄ s̄σ̄cτsσ̄
]

is the interaction in the ∆τs Cooper channel. Following
the standard RG procedure [27, 37], we find the flow of the
coupling constant V as a function of the energy cutoff Λ. The
initial conditions are Λ0 = W , and V0 = UC

2 − (Uδ + |g1|).
Notice the secondary interactions enhance pairing whereas
Coulomb repulsion suppresses it.

We now address the role of the acoustic phonon branch me-
diating the retarded attraction. We observe that due to folding
of the phonon spectrum into the mBZ [38, 39], one should also
consider generated “pseudo-optical” branches. Consequently,
the RG equation for the coupling constant is [27]

d

dΛ
V =

N (Λ)

Λ
V 2 +

V ∗

W
, (6)

where the conventional RG flow yields the first term, with
N (Λ) the electronic DOS. The non-standard second term ap-
pears because as one lowers the cutoff, more phonon modes
become attractive, we denote their total contribution by V ∗,
see SM, Sec. S.4.

Using Eq. (6), in conjunction with the mean-field results,
we find Tc, extracted as the scale at which the coupling con-
stant becomes comparable with the bandwidth, |V (Tc)| =
W , signaling its divergence. Notice because W is the scale
at which retarded phonons begin contributing, at a given V ∗

and V0, Eq. (6) may lead to a critical W , below which su-
perconductivity is lost. This is due to the retardation being
ineffective in changing the sign of V along the shorter RG
flow. Fig. 3 tracks the evolution of superconductivity domes
with increasing phonon-mediated attraction V ∗.

To take into account the effects of superconducting phase
fluctuations on transport, which may be significant as Tc and
TF become comparable, we use the Halperin-Nelson formula
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FIG. 3. Superconducting Tc enhancement with increasing retarded
attraction V ∗ near representative fillings. We used the parameters of
Fig. 1, with V ∗ ∈ [0.12, 0.32]W , in steps of 0.01W. Red: incom-
pressibility regions. Direction of increased V ∗ is indicated, as are the
schematic mean-field states from which superconductivity emerges.

to calculate the resistivity (SM Sec. S.5 [27, 40]). The dif-
ference between the mean-field Tc and the BKT tempera-
ture can be parameterized by TBKT = Tc/ (1 + τc), where
τc ≈ Tc/TF . Experimental estimates [3] of τc ∼ 0.05−0.1 in
MATBG are in qualitative agreement with the values obtained
for Tc and TF with our model, where we find τc in a similar
range on the hole side of Fig. 1, and τc reaching up to ∼ 0.3
on the electron side. Non-zero normal-state ∆±ivc modifies the
dispersion, enabling an appreciable Fermi-level DOS even at
minuscule fillings. It thus contributes to increasing Tc/TF as
compared to what is expected from a Dirac-like dispersion.

Fig. 1 features three superconducting domes on the hole
side. The most prominent one occurs at ν̃ = −2 − ε, bor-
dering the ν̃ = −2 IVC phase. Here, the gap in the IVC-
sector gradually closes with decreasing ν̃, until it vanishes.
The suppression in superconductivity near ν̃ ≈ −3 occurs
due to flavor-polarization, similar to those shown in Fig. 2.
Superconductivity at this filling is the most experimentally
robust, often observed with similar double-hump shape [3].
This shape is due to the two-step process, where first the IVC
gap closes with doping, and then two gapless flavors get pop-
ulated. A similar, but narrower and higher dome emerges at
ν̃ = 2 + ε. This is because the electron side has larger DOS
leading to stronger effective repulsion and wider regions with
flavor-polarization. On the other hand, without polarization
the larger DOS leads to higher Tc.

A secondary superconducting feature observed in some ex-
periments appears near |ν| = 2 − ε, and is also manifest in
our model at ν̃ = −2 + ε. Its existence is due to depolar-
ization of the two non-IVC flavors when ν̃ is decreased (see
SM, Fig. S1), resulting from the drop in DOS near the band
edge. Thus, this feature is sensitive to the flat-band dispersion
details, possibly explaining its haphazard occurrence.

Lastly, we find superconductivity near the CNP, seldom ob-
served in experiments [6]. Essentially, it is a modified copy of
the ν̃ = −2−ε dome, with two flavors facilitating the pairing,
and two forming a gapped-IVC state. It has an electron-side

counterpart, too.
Discussion.— We presented a simple phenomenological

model unifying key features of MATBG, namely interaction-
induced CIs at integer fillings, flavor-symmetry-breaking
phase transitions, and non-standard superconductivity, and
demonstrating their interplay. Though we neglect ingredi-
ents known to be found in MATBG, i.e., long-range Coulomb
interactions, intricate wave-functions, fragile topology, and
filling-dependent band-structure, much of the phenomenology
is remarkably reproduced. Our minimalistic description of the
system’s degrees-of-freedom, and the hierarchy of the interac-
tion energy scales, help to comprehend the experimental phase
diagram and its variations between different devices.

The model incorporates two important effects of the twist-
induced moiré lattice. First, generation of a flat-band disper-
sion, with greatly enhanced DOS [1]. Second, a dramatic
increase of the electron-phonon coupling [19]. The large
DOS enhances the effects of both electron-electron repulsion
and the effective phonon-mediated attraction. Here, we use
a mean-field approach combined with RG method to study
the interplay of the two. Within this paradigm, one expects
that the CIs and superconductivity compete with one another.
This is consistent with experiments where the strength of the
Coulomb interaction is tuned by manipulating the screening
environment [5, 16, 17]. Another side-effect of this interplay
is spontaneous spin-valley locking, e.g., near ν = −2−ε, that
may be weakly sensitive to parallel in-plane magnetic fields,
leading to a superconducting order parameter with apprecia-
ble spin-triplet pairing correlations.

It is worth noting the discrepancies between our simplified
model and experimental observations. In most experiments,
the CNP phase appears semi-metallic (though there are no-
table exceptions). Here, we find the strongest CI at this fill-
ing. Furthermore, we find that a |ν| = 3 insulator is accompa-
nied by an insulator at |ν| = 1, seldom seen in experiments.
One possible cause is a modification of the band-structure it-
self the filling changes. It has been argued [41–44] that the
flat-bands are least flat near charge-neutrality, which may ex-
plain the empirical scarcity of insulators at low fillings. An-
other possibility is that the semi-metal at the CNP is promoted
by strain [45]. These effects are not considered in this work.
Moreover, there is convincing experimental evidence [46, 47]
that flavor-fluctuations near |ν| = 1 are non-negligible, sug-
gesting one should include spin and valley fluctuations to fully
understand this regime.

Disorder was also not explored in this model. As was sug-
gested [48], it may settle the discrepancy regarding the CNP
insulator, as well as the absence of a quantized transverse re-
sponse at odd fillings CIs. Our proposed framework can help
elucidate the roles of both fluctuations (treating our phase di-
agram as a saddle-point around which fluctuations occur) and
disorder (quantifying the competition between phases and ac-
counting for how disorder affects it).

Our model may be used to investigate additional supercon-
ducting channels, e.g., d-wave [18], and explore under what
conditions they become dominant. Furthermore, this scheme,
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with different interactions, single-particle terms, or DOS,
may apply to other moiré platforms displaying correlation-
induced phenomena, e.g., ABC-stacked trilayer graphene on
hexagonal boron-nitride (hBN) [49], twisted double-bilayer
graphene [50, 51], MATBG aligned with hBN [52, 53]
(where we may explain the absence of superconductivity, SM
Sec. S.6), and magic-angle twisted trilayer graphene [54, 55].
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