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We propose moiré bilayer as a platform where exotic quantum phases can be stabilized and
electrically detected. Moiré bilayer consists of two separate moiré superlattice layers coupled through
the inter-layer Coulomb repulsion. In the small distance limit, an SU(4) spin can be formed by
combining layer pseudospin and the real spin. As a concrete example, we study an SU(4) spin model
on triangular lattice in the fundamental representation. By tuning a three-site ring exchange term
K ∼ t3

U2 , we find SU(4) symmetric crystallized phase and an SU(4)1 chiral spin liquid (CSL) at the
balanced filling. We also predict two different exciton supersolid phases with inter-layer coherence
at imbalanced filling under displacement field. Especially, the system can simulate an SU(2) Bose-
Einstein-condensation (BEC) by injecting inter-layer excitons into the magnetically ordered Mott
insulator at the layer polarized limit. Smoking gun evidences of these phases can be obtained by
measuring the pseudo-spin transport in the counter-flow channel.

Introduction It is now well appreciated that spin
plays an important role in strongly correlated systems.
In addition to simple ferromagnetic or anti-ferromagnetic
ordered phases, electronic spins can form non-ordered
phases such as spin liquids[1–6]. Spin liquids have been
found numerically in many spin 1/2 lattice models[7–21],
but there is still no well-established evidence in real ex-
periments. One important reason is the difficulty of prob-
ing neutral spin excitation. A direct probe of spin trans-
port could provide smoking gun evidence of certain spin
liquids, such as spinon Fermi surface state and chiral spin
liquid. Alas, measuring spin transport in traditional solid
state systems is unfeasible. Here, we propose to measure
the transport of a pseudospin formed by the layer de-
gree of freedom in an electronic material based on two
Coulomb coupled moiré superlattices, which we dub as
moiré bilayer.

To build a moiré bilayer, we wish to stack two 2D lat-
tices and forbid their inter-layer tunneling. The total
charge Na of each layer a = 1, 2 is separately conserved
and we can label two quantum numbers as Q = N1 +N2

and Pz = 1
2 (N1 − N2). Pz can be viewed as a pseudo-

spin. Actually, in the limit that the inter-layer distance
d is much smaller than the lattice constant aM , there is
a good SU(2) symmetry in the layer pseudospin space,
similar to the well studied quantum Hall bilayer[22–24].
Superlattices with aM ∼ 10 nm have been recently cre-
ated in several moiré systems based on graphene[25–37]
and transition metal dichalcogenides (TMD)[38–40]. The
moiré systems based on graphene generically exhibit fer-
romagnetic spin coupling due to band topology[29, 31–
37]. To search for spin liquid, we will use moiré super-
lattice based on TMD as a building block, where anti-
ferromagnetic spin coupling was demonstrated[38]. We
propose two different ways to generate double moiré lay-
ers with two triangular moiré superlattices stacked to-

gether, as illustrated in Fig. 1.
At integer total filling νT , the system is in a Mott insu-

lating phase if U/t is large. There is a SU(4) spin formed
by the layer pseudospin ~P and the real spin ~S. Just as
a concrete illustration, we focus on filling νT = 1, 3 and
map out the phase diagram of a SU(4) spin model gen-
erated by t/U expansion up to O( t

3

U2 ). We find large N
mean field calculation is in surprisingly good agreement
with DMRG simulation, suggesting that mean field cal-
culation is justified for N ≥ 4. This paves the way to
applying mean field calculation to models in more com-
plicated lattices, especially in three dimension. One in-
teresting phase we found is an SU(4)1 chiral spin liquid
stabilized by a three-site ring exchange term. Chiral spin
liquids[3, 41] have been found to be the ground state for
various spin 1/2 lattice models[17–21, 42–49] and also
in SU(N) model with N > 2[50–56]. Compared to the
early studies, the CSL in our model has a large spin gap
(at order of J) and is stabilized in a wide range of t/U .
More importantly, in the moiré bilayer setting up, smok-
ing gun evidence of it can be obtained by measuring a
quantized Hall effect of the layer pseudospin in counter-
flow. In moiré bilayer, it is also easy to control the layer
polarization Pz continuously. When varying Pz from 0 to
fully layer polarized, we also find two different supersolid
phases with inter-layer coherence (exciton condensation)
at small Pz and large Pz limit respectively.
Realization of SU(4) Hubbard model We first de-

rive an SU(4) Hubbard model for moiré bilayer based
on WSe2-WS2-WSe2 or twisted AB stacked WSe2 homo-
bilayer, as illustrated in Fig. 1. Both systems will host
two triangular superlattices in the two WSe2 layers. In
the supplementary we derive the lattice Hubbard model
on triangular lattice by explicitly constructing Wannier
orbitals and projecting the Coulomb interaction. One
key ingredient is the suppression of the inter-layer tun-
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neling due to either insulating barrier (WSe2-WS2-WSe2)
or spin conservation (twisted AB stacked WSe2 bilayer).
Our modeling is a straightforward generalization of the
previous study of spin 1/2 Hubbard model in single
moiré layer[57, 58], which is now well-established by
experiments[38, 39]. In the end we have four flavors by
combining layer pseudospin and the real spin (see the
supplementary material[59] for more discussions, which
includes Ref. 60–64). The Low energy model is

H = −t
∑
〈ij〉

(c†i;αcj;α + h.c.) +
U

2
ni(ni − 1) (1)

with α = a, σ. a = t, b is the pseudo-spin index which la-
bels the top and bottom layer. σ =↑, ↓ labels the real
spin (locked to the valley)[65]. c†i;a,σ creates an elec-
tron on moiré site i[66]. There are also small easy-plane
anisotropy terms due to finite layer-separation. We will
ignore them for now.

FIG. 1: Two ways of obtaining double moiré
superlattice: (a) WSe2-WS2-WSe2 sandwich with both
WSe2 layers aligned with WS2. A triangular moiré

superlattice can be generated for each WSe2 due to the
lattice mismatch between WSe2 and WS2[38, 39, 57].

WS2 also acts an insulating barrier to suppress
inter-layer tunneling between the two WSe2 layers. (b)
Twisted AB stacked TMD homo-bilayer. The top figure
is a side view of the AB stacked bilayer WSe2 system.

The blue and yellow atom label W and Se atoms
respectively. One can see that the W and Se atom of

the two layers are aligned vertically. The bottom figure
illustrates the spin of the valence bands for the two

TMD layers at the same valley, which leads to
suppression of inter-layer tunneling for the low energy

moiré band generated at small twist angle.

In this paper we will focus on the large U/t regime at
νT = 1, 3, where there is a SU(4) spin in the fundamental
representation at each site. At filling νT = 3, at the
large U/t limit, the spin physics of the Mott insulator is
captured by the following J −K model:

H = J
∑
<ij>

Pij + 3K cos Φ
∑

<ijk>∈4/5

(Pijk + Pkji)

+ 3K sin Φ
∑

<ijk>∈4/5

(iPijk − iPkji) (2)

where each bond and each triangle should be counted
only once. Φ is the magnetic flux through each triangle.
We will focus primarily on the Φ = 0 case with a time
reversal symmetry. We have J = 2 t

2

U − 12 t3

U2 and K =

2 t3

U2 . For νT = 1, we just need to replace t with −t. In
the above Pij and Pijk are two-site and three-site ring-
exchange terms. For the triangular lattice, we define the
two unit vectors to be a1 = (1, 0) and a2 = (− 1

2 ,
√
3
2 ). In

the DMRG calculation, we use the boundary condition
that S(r + Lya2) = S(r). The Hilbert space at each
site is constructed as a tensor product of two spin 1/2

(layer pseudospin ~P and real spin ~S) and we label the
corresponding Pauli matrix as τµ and σµ respectively. In
this representation the generator of the SU(4) can be
labeled as Sµν = τµ ⊗ σν , µ, ν = 0, x, y, z.

FIG. 2: Phase diagram from (a) DMRG and (b) large-N
mean field calculation (Note we have set J = 1) at

Φ = 0 at balanced filling. CSL denotes the chiral spin
liquid and DC denotes the decoupled chain phase. In

Fig.(a) we show typical patterns of bond order 〈P̃ij〉 for
the three phases. They are obtained for

K = 0, K = 0.114, andK = 0.27 from finite DMRG
calculation at Ly = 6. In DMRG calculation we find a
stripe phase at K = 0, but we believe it is unstable to

plaquette order in the large Ly limit (see the
supplementary[59]). The phase boundaries in DMRG
are based on Ly = 8 and are already in fairly good

agreement with the large-N result.

Phase diagram at balanced filling: We obtain a
phase diagram at Φ = 0 by tuning K/J as shown in
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Fig. 2 by both DMRG simulation and large N mean field
calculation[59]. We find three phases: a crystal with 2×1
or 2 × 2 unit cell (spin crystal)[54], a chiral spin liquid
(CSL) and a phase with decoupled 1D chain (DC). The
CSL is in the range K/J ∈ [0.055, 0.165], or equivalently
t/U ∈ [0.041, 0.082] or U/t ∈ [12.2, 24.4]. At the upper
critical value, higher order spin ring exchange terms may
be needed[67], which we leave to future work. A remark-
able observation is that the phase diagram obtained in
DMRG is in good agreement with that of a simple large
N mean field calculation. Note that our result at the
Heisenberg limit K = 0 does not agree with a previous
DMRG study[68] and we do not find signature of res-
onating plaquette order[69]. For DMRG simulations, we
keep the bond dimension to be between 4000 − 10000
with a truncation error at the order of 10−4 for Ly = 6
and 8 and smaller for Ly = 4, providing accurate results
through finite bond dimension analysis (see Fig. 4 in the
supplementary[59] for more details).

Let us also provide some intuition why the CSL and
the DC phase are stabilized by K > 0. The three-site
ring exchange term can be written as: P̃ijk + h.c. =

−8[~Si · (~Sj × ~Sk)][~Pi · (~Pj × ~Pk)] + 2
∑
ĩj̃k̃(~Sĩ · ~Sk̃)(~Pj̃ · ~Pk̃).

When K > 0, the first term favors onset of chirality or-
der 〈~Si · (~Sj × ~Sk)〉 = 〈~Pi · (~Pj × ~Pk)〉 6= 0, leading to the
CSL phase. The second term penalizes coexistence of two
dimerized bonds for each triangle, favoring the decoupled
chain phase. In contrast, the K < 0 side suppresses chi-
rality orders and favors plaquette order.
The SU(4)1 Chiral Spin Liquid: Next we move

to a detailed study of the CSL. First, at Φ = 0, we
find long range correlation of chirality order, as shown
in Fig. 3(a), suggesting spontaneous breaking of the time
reversal symmetry. In Fig. 3(b) we show the chirality
order parameter with K/J for Ly = 4, 6, 8. We can see
that the phase boundaries from Ly = 6 and Ly = 8 are
close. In the supplementary we show that the CSL phase
has a spin gap ∆S ∼ J and a correlation length ξS < 1,
therefore Ly = 6, 8 are much larger than the correlation
length and may already be in the 2D limit. The SU(4)1
CSL has a chiral edge described by the SU(4)1 chiral
CFT. It consists of three chiral boson and its entangle-
ment spectrum should show a degeneracy of 1, 3, 9, 22, ...
for a given spin sector[51]. Precisely such a sequence is
confirmed by our DMRG calculation in Fig. 3(c).

The CSL has a spin Hall conductivity σxy which can be
measured in DMRG via flux insertion[44, 70]. For each
quantum number Q̃1 = 1

4 (Sz0 +S0z+Szz), Q̃2 = 1
4 (Sz0−

S0z−Szz), Q̃3 = 1
4 (−Sz0+S0z−Szz), we define a twisted

boundary condition S(r + Lya2) = U†I (ϕ)S(r)UI(ϕ),
where UI(ϕ) = eiQ̃Iϕ and S(r) is an arbitrary spin op-
erator at site r. Note that UI(ϕ = 2π) = e−i

2π
4 I is a

Z4 flux insertion. In Fig. 3(d) we show the spin pump-
ing generated by U1(ϕ), which implies spin Hall conduc-
tivity σ̃i1xy = ( 3

4 ,−
1
4 ,−

1
4 ) for i = 1, 2, 3. The pumping

of U2(ϕ) and U3(ϕ) give consistent results and we get

σ̃xy = 1
4

+3 −1 −1
−1 +3 −1
−1 −1 +3

 which is nothing but the inverse

of the K matrix[59]: K =

2 1 1
1 2 1
1 1 2

[71].

FIG. 3: (a) Correlation function of the chirality order at
K = 0.114 (we have set J = 1 here) using a real code
(with real wavefunction) to enforce the time reversal

symmetry. Note that the ground state is forced to be a
superposition of one chiral state and its time reversal
partner. C(r) = 〈χ(r)χ(0)〉, where χ = i(Pijk − h.c.) is
the chirality order parameter. (b) The chirality order
〈χ(r)〉 obtained from finite DMRG with complex code,
where the ground state is in just one chiral state. The
chirality order χijk = 〈i(Pijk − h.c.) is defined for each
triangle. (c) Entanglement spectrum from finite DMRG
at K = 0.114 and Φ = π

16 for Ly = 6. Weak explicit
time reversal breaking was included to enhance clarity.
There is a chiral edge mode with degeneracy 1, 3, 9, 22.
(d) Change in 〈S0z〉 on the left side of the cylinder,

pumped by the flux insertion generated by
U1(ϕ) = eiQ̃1ϕ. Pumping of Sz0 and Szz are exactly the

same and thus not shown. In the basis
Q̃1 = 1

4 (Sz0 + S0z + Szz), Q̃2 =
1
4 (Sz0 − S0z − Szz), Q̃3 = 1

4 (−Sz0 + S0z − Szz), the
pumped charges are δQ̃1 = 3

4 , δQ̃2 = δQ̃3 = − 1
4 .

We also studied the effect of SU(4) breaking anisotropy
term HS = δJ

∑
〈ij〉(Pi;xPj;x + Pi;yPj;y)(4~Si · ~Sj +

Si;0Sj;0) + 2(δJ + δV )
∑
〈ij〉 Pi;zPj;z caused by the fi-

nite inter-layer distance. We find that the CSL phase
is stable when δJ/J < 0.5, δV/J < 0.5 in DMRG
calculation[59], which is satisfied when the inter-layer dis-
tance d < 1 nm[59].
Supersolids at imbalanced filling In the moiré bi-
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layer setting up, we can also consider imbalanced filling
with the density of the two layers to be nt = 1

2 + 1
2δ and

nb = 1
2 −

1
2δ. We study the effect of non-zero δ by fixing

Pz = 1
2δ in the DMRG calculation (see Figure 4.) Here

we note two supersolid phases found at K = 0:

FIG. 4: Spin and exciton structure factor from Infinite
DMRG at imbalanced filling. qx, qy is in unit of 2π

a ,
where a is the lattice constant. We parameterize the
momentum as q = q1b1 + q2b2, where b1 and b2 are
reciprocal vectors. The solid hexagon is the Brillouin

zone and the dashed lines are the well defined
momentum cut along q2 = 1

Ly
n with n an integer. (a)

Exciton order correlation function P †(q)P−(−q) has a
peak at M point with momentum 1

2b1 at small δ. There
is also feature along q2 = ± 1

2 cut without dispersion
along b1. This is consistent with a decoupled stripe

phase at the δ = 0 limit. At δ close to 1: (b) the exciton
order parameter is peaked at K,K’ point. (c) The spin
~St at the top layer is ordered at momentum K,K ′,
consistent with a 120◦ order. (d) The spin ~Sb at the

bottom layer is ferro-magnetically ordered.

• Supersolid on top of stripe phase. When δ
is small, DMRG shows a stripe phase with bond
pattern similar to the K = 0 point at δ = 0 in
Fig. 2(a). On top of the stripe phase, we find exci-
ton condensation at momentumM , as indicated by
correlation function of exciton order P † = Px+ iPy
shown in Fig. 4(a). The real spin in this phase is
not ordered. The exciton condensate has a spatial
structure due to its non-zero momentum M and
hence can be called a supersolid phase, see Fig.
4(a).

• Spinful BEC at the layer polarized limit.
When δ = 1 − 2x with small x, we can start
from the 120◦ Neel order in the top layer at the

nt = 1, nb = 0 limit and then inject inter-layer ex-
citons with density x. The inter-layer exciton car-
ries a SU(2) spin index from the bottom layer[72].
Finally the system simulates a gas of spinful bosons
on triangular lattice at total density x. The ground
state is known to be a spin polarized Bose-Einstein-
condensation (BEC) of the excitons. The real spin
in this phase is in the 120◦ ordered and ferro-
magnetic ordered phase respectively for the two
layers, as confirmed by DMRG results shown in
Fig. 4(b)(c)(d). Two recent experiments studied
the transferring of inter-layer excitons starting from
a layer polarized Mott insulator[73, 74]. The low
energy physics of the exciton and spin in these
systems should be very similar to the model we
study here[75]. Therefore our prediction of a spin
1/2 BEC could be directly relevant to these exper-
iments.

FIG. 5: Counterflow measurement of the transport of
the electric dipole moment carried by the inter-layer

exciton. t, b labels the top and bottom layer
respectively. ~Ed = ~Et − ~Eb is the dipole electric field
and ~Jd = 1

2 ( ~Jt − ~Jb) is the dipole current. Under ~Ed,
the dipole moment feels a force ~Fd = Pz ~Ed. In the
SU(4)1 CSL, there is a dipole quantum Hall effect:
σdxy =

Jxd
Eyd

= ± e
2

h . For the supersolid phase with
inter-layer coherence, the counter-flow behavior is the

same as a superfluid phase.

Experimental detection Here we point out that
it is possible to obtain smoking gun evidences for the
CSL phase and the supersolid phase in moiré bilayer in
counter-flow transport, as shown in Fig. 5. The counter-
flow measures the current of the layer pseudo-spin Pz,
which carries an electric dipole moment. A dipole quan-
tum Hall effect with σdxy = ± e

2

h (see Fig. 5) is a direct
evidence of the chiral spin liquid. For supersolid phase
with inter-layer coherence, we expect a typical superfluid
behavior with zero counter-flow resistivity. Counterflow
has already been implemented in quantum Hall bilayer
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to probe different physics[22, 24, 76], thus the measure-
ment is likely feasible also in moiré bilayer following our
proposal, offering a new application of the counter-flow
to probe spin physics of a Mott insulator.
Summary In conclusion, we proposed moiré bilayer as

a new Hubbard model simulator, where the layer degree
of freedom can simulate a pseudo-spin. This enables elec-
tric measurement of the pseudo-spin transport. We focus
on filling νT = 1, 3 in the strong Mott limit, and find pla-
quette order, chiral spin liquid and supersolid phase. In
the counter-flow transport, they will behave as trivial in-
sulator, quantum Hall insulator and superfluid. The high
controllability of the moiré systems potentially allows for
the phase diagram obtained here to be explored by tun-
ing the filling imbalance δ and U/t. We believe moiré
bilayer is promising to shed light on strongly correlated
problems with spin playing an essential role. The ability
of measuring spin and charge transport separately also
makes it possible to test spin-charge separation in po-
tential exotic metallic state upon slighlighly doping the
Mott inuslator.
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