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Flatbands appear in many condensed matter systems, including the two dimensional electron gas
in a high magnetic field, correlated materials and moiré heterostructures. They are characterized by
intrinsic geometric properties such as the Berry curvature and Fubini-Study metric. The influence of
the band geometry on electron-electron interaction is difficult to understand analytically because the
geometry is in general nonuniform in momentum space. In this work, we study topological flatband
of Chern number C = 1 with a momentum-dependent but positive definite Berry curvature that
fluctuates in sync with Fubini-Study metric. We derive an exact correspondence between such ideal
flatbands and Landau levels and show that the band geometry fluctuation gives rise to a new type of
interaction in the corresponding Landau levels that depends on the center-of-mass of two particles.
We characterize such interactions by generalizing the usual Haldane pseudopotentials. This mapping
gives exact zero-energy ground states for short-ranged repulsive generalized pseudopotentials in
flatbands, in analogy to fractional quantum Hall systems. Driving the center-of-mass interactions
beyond the repulsive regime leads to a dramatic reconstruction of the ground states towards gapless
phases. The generalized pseudopotential could be a useful basis for future numerical studies.

The one-electron states in periodic solids are charac-
terized both by their dispersion (variation of energy with
crystal momentum) and by their band geometry, defined
by the variation of the electronic wavefunction with crys-
tal momentum. In a single-band system, the band geom-
etry is defined by the quantum geometric tensor:

Qabk = 〈Da
kuk|Db

kuk〉 = gabk +
i

2
εabΩk, (1)

where uk(r) = 〈r|uk〉 is the periodic part of the Bloch
wavefunction ψk(r), Da

k is the covariant derivative op-
erator that adiabatically transports the wavefunction
along the spatial direction a = x, y, and εab is the anti-
symmetric tensor. Here the Berry curvature Ωk, and
the Fubini-Study metric (FSM) gabk , are respectively the
imaginary and real part of the quantum geometric tensor
[1].

The interplay of band geometry and dispersion has
been elucidated on the single-particle level [2–4], where
it leads to many interesting phenomena including the
anomalous Hall effect [5, 6]. Recent experimental and
theoretical interest on moiré materials has centered on
the “flatband” situation [7–12], where the electron dis-
persion is small relative to interaction scales and the
physics is controlled by electron-electron interactions. A
growing body of evidence indicates that in flatband sit-
uations the band geometry plays a crucial role in de-
termining the electron-electron interaction physics. For
example, in the canonical lowest Landau level (LLL)
problem of electrons with a continuous two dimensional
translation invariance in a uniform perpendicular mag-
netic field, both gabk and Ωk are k−independent. This
k−independence enables detailed analytical understand-

ing of the physics even in the presence of strong electron-
electron interactions [13]. However, generically in peri-
odic lattice systems the band geometry is highly nonuni-
form in momentum space, and while the interplay be-
tween band geometry and interactions has been numeri-
cally studied [14, 15] analytical understanding has been
limited [16–26].

In this paper we take a step towards understanding the
relation between band geometry and interaction physics.
Our work is inspired by the chiral model of twisted bi-
layer graphene (cTBG) which at certain “magic” twist
angles realizes exactly dispersionless bands [27]. The chi-
ral model is understood as a kind of fixed point Hamilto-
nian [28] capturing the interacting physics of twisted bi-
layer graphene [29–31] and has the special property [17–
19, 32] that while the band geometry is nonuniform, the
FSM is related to the Berry curvature in the following
way:

gabk =
1

2
ωabΩk, (2)

where ωab is a constant determinant one positive sym-
metric matrix.

Following Ref. (19), we define ideal flatbands as dis-
persionless Bloch bands with (i) a positive definite Berry
curvature that (ii) fluctuates in sync with the FSM as in
Eq. (2). We show that the ideal flatband assumptions (i)
and (ii) fix the forms of single-particle wavefunctions in a
topological flatband with Chern number C = 1 (as occurs
in cTBG), establishing an exact correspondence between
an ideal flatband and the LLL. Using this correspondence
we show that the electron-electron interaction in an ideal
flatband with spatially fluctuating band geometry can
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be exactly mapped to a center-of-mass (COM) depen-
dent interaction in the LLL, which can be systematically
characterized by the generalized COM pseudopotentials
derived here. We show that the resulting interacting
Hamiltonian possesses exact zero modes, corresponding
to the previously discussed generalization of the Laughlin
fractional quantum Hall states [32]; however, depending
on the values of the COM interaction parameters, charge
density wave states of lower energy may exist. In the
last section of the supplementary material (SM), we de-
rive further implications for superconductivity and the
composite Fermi liquid phase in TBG flatbands.

Wavefunctions of C = 1 ideal flatbands.— Locally,
such a flatband mimics a LL in k−space: the quantum
geometric tensor at every k point has a constant null
vector Qabk ωb = 0, which also determines ωab = ωaωb∗ +
ωa∗ωb in Eq. (2). This uniform null vector defines the
k−space complex structure [33, 34] and gives the Bloch
wavefunction a universal form [19]:

ψk(r) ∼ ũk(r) exp(ik · r), (3)

where the bolded k gives the momentum vector and un-
bolded k ≡ ωaka is a complex number. The cell-periodic
function ũk is holomorphic in k up to a normalization
factor.

We define the k−space boundary condition for the pe-
riodic part of the Bloch wavefunction:

ũk+b(r) = eiφk,be−ib·rũk(r). (4)

The complex phase φk,b must be holomorphic in k be-
cause both ũk+b and ũk are. A non-zero Chern number
requires that ũk, as a function of k, must have discon-
tinuities in the Brillouin zone (BZ). Such discontinuities
show up at the BZ boundary as non-zero φk,b, in the bulk
as wavefunction singularities, or both [35]. For a C = 1
ideal flatband, it is necessary to have non-zero φk,b: in
contrast, Ref. (19) assumed φk,b = 0 so discussions were
limited to wavefunctions of C ≥ 2.

The boundary condition φk,b plays a crucial role in de-
termining the wavefunction of the ideal band. Following
Cauchy’s argument principle, the BZ boundary integral
1

2πi

∮
dk ∂k ln ũk(r) is an integer. We show in the SM

that this integer is equal to the Chern number and can
be written as [36]:

C = − 1

2π
(φk0+b1,b2 − φk0,b2 + φk0,b1 − φk0+b2,b1) , (5)

where, as illustrated in Fig. 1 (a), b1,2 are primitive recip-
rocal lattice vectors and k0 is the BZ origin. Insensitivity
of the Chern number to the choice of k0, combined with
Eq. (5), forces φk,b to be a linear function of k. Since
ũk is holomorphic in k, it is uniquely determined by the
boundary condition φk,b, giving the bulk wavefunction:

ψk(r) = NkB(r)Φk(r), (6)

(a) (b)

FIG. 1. (a) Geometry of the Brillouin zone: k0 is the origin,
b1,2 are primitive reciprocal lattice vectors, and the dashed
circle sketches the orientation of the Brillouin zone boundary
integral used in Eq. (5). (b) Plot of reciprocal space of cTBG
at the first magic angle with reciprocal lattice vectors used in
the main text indicated, and the values of the Fourier modes
wb Eq. (9) indicated by the size of solid dots. We find the
first two modes w0 = 1, w±b1,2,3 = 0.243 dominate. The wb

determine the single-particle band geometry through Eq. (7)
and Eq. (8), and the interaction model Eq. (10).

where Nk, B(r) and Φk are the normalization factor,
a k−independent quasi-periodic function and the LLL
wavefunction, respectively. Expressed in the symmetric
gauge, Φk(r) = σ(z+ ik) exp (ik∗z) exp

(
− 1

2 |z|
2 − 1

2 |k|
2
)

where σ(z) is the modified Weierstrass sigma function
[37–40] and z ≡ ωar

a [41]. Generalizing to negative def-
inite Berry curvature is straightforward. We leave more
detailed discussions of the ideal flatband conditions, holo-
morphic wavefunction Eq. (3) and the uniqueness of our
C = 1 model wavefunction Eq. (6) to SM [36].

Band geometry of ideal flatbands.— We now explicitly
compute the band geometry of an ideal flatband using
the model wavefunction Eq. (6). Exploiting the magnetic
translation algebra of the LLL states, we find [36]:

Ωk = 2
√

det gk = −1 + ∆k logNk, (7)

where ∆k is the Laplace operator. Eq. (7) shows that the
logarithm of the normalization factor Nk is the k−space
Kähler potential [42], which controls the fluctuation of
band geometry and can be explicitly calculated [36]:

N−2k =
∑
b

ηbwb exp (ik × b) exp

(
−1

4
|b|2
)
, (8)

where ηb=+1 if b/2 is a reciprocal lattice vector and −1
otherwise, and wb are the Fourier components of |B(r)|2:

|B(r)|2 =
∑
b

wb exp(ib · r), (9)

where b = m1b1 +m2b2, m1,2 ∈ Z is a reciprocal lattice
vector. The band geometry is uniform if wb 6=0 = 0.

Effective fractional quantum Hall model.—A conse-
quence of the exact wavefunction in Eq. (6) is that the in-
teracting physics in a C = 1 ideal flatband is described by
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a FQH-type model with a new Umklapp interaction that
breaks continuous translation symmetry. We demon-
strate that this Umklapp interaction captures precisely
the fluctuating band geometry of an ideal flatband.

We consider a generic translation invariant two-
particle interaction v(r1 − r2). According to Eq. (6),
projecting this interaction into an ideal flatband yields
an effective FQH model with the interaction

ṽ(r1, r2) = |B(r1)B(r2)|2 · v(r1 − r2), (10)

≈
∑
q

w̃0+
∑

bi;j=1,2

(w̃ie
ibi·rj + h.c.)

vqeiq(r1−r2),(11)

projected to the LLL, where the normalization factors
have been dropped due to their weak k−dependence ac-
cording to Eq. (8). The factor |B(r)|2 reduces the contin-
uous translation symmetry of v(r1 − r2) to the discrete
lattice translation symmetry of ṽ(r1, r2). Such a sym-
metry reduction manifests itself as the inclusion of the
“Umklapp” terms [43] that scatter electrons across the
BZ which distinguish Eq. (10) from the usual FQH mod-
els.

The effective FQH model Eq. (10) can be simplified
by retaining only the leading Umklapp processes that
scatter electrons by the shortest distance in k−space, be-
cause other Umklapp terms are suppressed after the LLL
projection. This leads to Eq. (11) where the Umklapp
interaction parameters w̃0,1 can be easily derived from
the Fourier modes wb [44]. To verify the validity of this
approximation, we consider electrons at 1/3 filling in the
spin-valley polarized topological flatband of cTBG at the
first magic angle. In this case, B(r) is a two-component

layer spinor (iG(r),G(−r))
T

[45]. The leading Umklapp
processes scatter electrons by b1,2,3, shown in Fig. 1 with
the same real amplitude w̃1 due to the C3 and exact intra-
valley inversion symmetries [45]. In Fig. 1 (b), we plot
the wavefunction’s Fourier mode wb of |G(r)|2+ |G(−r)|2
and find w0, wb1

dominate, which determines the param-
eters in Eq. (11) to be (w̃0, w̃1) = (1.35, 0.3) [44]. We
assume electrons interact via a layer-isotropic v1 Hal-
dane pseudopotential v(r1 − r2) = δ′′(r1 − r2) [13]. Re-
markably, the entire low-energy spectrum of the cTBG
model on the torus (blue dots in Fig. 2), including both
the three-fold degenerate ground states at zero energy
and the gapped low-lying magneto-roton mode [46, 47],
is well reproduced by the effective FQH model Eq. (11)
with w̃0 and w̃1 (red crosses in Fig. 2 a). However, if we
assume a uniform band geometry by setting w̃1 = 0, the
obtained spectrum (red crosses in Fig. 2 b) shows signif-
icant deviations from the cTBG spectrum although the
ground states stay at zero energy. This indicates our ef-
fective FQH model with nonzero w̃1 indeed captures the
spatially fluctuating band geometry of cTBG flatband.

Center-of-mass pseudopotentials.—The exact many-
body zero modes observed above are the generalized-
Laughlin states given in Ref. (32), written here as Φ =

0 5 10 15 20 25 30
K1 + N1 × K2
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(b)
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FIG. 2. Exact diagonalization of N = 10 particles in a TBG
lattice of (N1, N2) = (5, 6) unit cells on the torus geometry,
where N1,2 are the number of unit cells along each primitive
lattice direction. Many-body momenta K1 ∈ [0, N1−1], K2 ∈
[0, N2 − 1] are integers labeling each energy level [48, 49].
Blue circles are energies of cTBG with relative interaction v1,
and are the same in both panels. Red crosses are energies of
the FQH model Eq. (11) with (a) (w̃0, w̃1) = (1.35, 0.3) and
(b) (w̃0, w̃1) = (1.35, 0). Normalization factors Eq. (8) are
taken into account in numerical calculations. Including w̃1

in (a) closely reproduces the low-energy details of the cTBG
spectrum. Three exact zero-modes are visible in both cTBG
and the FQH models.

(∏N
i=1 B(ri)

)
Ψ, where Ψ is the usual LLL Laughlin

wavefunction. We now extend Haldane’s pseudopoten-
tials to capture the COM interactions. This allows us to
systematically study how interactions can stabilize FQH
states subject to nonuniform band geometry. We start
by rewriting Eq. (10) as follows:

ṽ(r1, r2) =

∫
dq2

+dq
2
−ṽq+,q−e

i(q+·R++q−·R−), (12)

=
∑
M,m

cM,mP̂
+
M P̂

−
m , (13)

where R+ and R− are the LLL projected COM and rel-
ative coordinates of two particles. A generic two-particle
interaction can be expressed in terms of its COM/relative
translational momentum q+/q− as in Eq. (12). For
simplicity, we assume rotational symmetry, so that we

can define projectors P̂±m ≡ 2
∫

d2q
(2π)2Lm(q2)e−q

2/2eiq·R
±

which project the particle pair into its COM and rel-
ative angular momentum sectors respectively. The in-
teracting Hamiltonian ṽ(r1, r2) can then be written as
Eq. (13), where cM,m =

∫
dq2

+dq
2
−ṽq+,q−LM (q2

+)Lm(q2
−)

is the generalized pseudopotential coefficient and Lm is
the Laguerre polynomial. The cM,m can be extracted
from the energy spectrum of two interacting particles
[50, 51].

The key insight here is that if cM,1 > 0 and cM,m>1 =
0, the generalized Laughlin state Φ has exactly zero en-
ergy, no matter how cM,1 depends on the COM angu-
lar momentum M . We can thus construct a family of
many-body states that are topologically equivalent to
the Laughlin state, where the usual Laughlin state cor-
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responds to the special case where cM,1 is independent
of M . Generalization to periodic lattice systems with-
out rotational invariance is straightforward with gener-
alized Laguerre polynomials [52, 53]. We emphasis that
the statement is unchanged even if rotational invariance
is broken: Eqs. (10) and (11) exhibit three-fold exact
zero-modes at one-third filling for arbitrary orders of
Umklapp scatterings of arbitrary strengths even with the
k−dependent normalization factors, as long as the rela-
tive interaction is the v1 Haldane pseudopotential [36].

Center-of-mass interaction induced transitions.—We
now examine how the ground state and low energy
physics of the effective FQH model in Eq. (11) evolves
with w̃1/w̃0. We note that w̃1/w̃0 is constrained by band
geometry; for example on a rectangular lattice with the
v1 interaction |w̃1/w̃0| ≤ 0.25 [44]. However, sign changes
in Ωk or additional structure in the interaction may widen
the allowed range. In Fig. 3, we plot the ground state
energies in unit of w̃0 on the rectangular lattice as a
function of w̃1/w̃0. We find that the ground state is the
zero-energy generalized Laughlin state for small |w̃1/w̃0|.
However for large enough |w̃1/w̃0|, the ground state en-
ergy becomes negative and the zero-energy generalized
Laughlin state is an excited state. The occurrence of
the negative-energy ground states can also be seen from
the COM pseudopotentials plotted in Fig. 3 (b), where
regions with negative values are shown.

To further understand the negative-energy ground
states of the generalized FQH model, we com-
pute the guiding-center structure factor S(q) ≡
(〈ρ(q)ρ(−q)〉 − 〈ρ(q)〉〈ρ(−q)〉) / (N1N2), at w̃1/w̃0 = 0.3
(before transition) and 0.5 (after transition) for N = 12
electrons in the (N1, N2) = (6, 6) lattice. The S(q) mea-
sures the density-density correlations of guiding centers
and ρ(q) ≡ exp(iq ·R) is the LLL-projected density op-
erator. At w̃1/w̃0 = 0.3, the ground states are in the
many-body momentum K = (0, 0) sector with exact zero
energy. The corresponding structure factor has contin-
uous peaks consistent with the incompressible Laughlin
liquid. At w̃1/w̃0 = 0.5, the ground state is still in the
K = (0, 0) sector, with nearby low-lying states at ±Kq

and ±C4Kq where Kq = (3, 0) and C4 is the rotation by
π/2. Remarkably, S(q) has discretized peaks exactly at
±Kq and ±C4Kq. That the structure factor peak occurs
exactly at momenta corresponding to low-energy exci-
tations strongly suggests a gapless charge density wave
(CDW) at w̃1/w̃0 = 0.5 [54]. The gapless CDW is anal-
ogous to the stripe phase and Wigner crystal reported
in usual FQH systems at low filling factors. However in
contrast to the usual FQH system, here the transition at
a fixed filling factor 1/3 is driven entirely by the band
geometry and the transition occurs as a level crossing in
Laughlin states’ momentum sector K = (0, 0).

Discussion.—We have studied interacting physics in
ideal flatbands with inhomogeneous but constrained
band geometries. Employing the exact correspondence
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FIG. 3. Center-of-mass interaction induced transitions. (a):
Ground-state energies of the model in Eq. (11) as a function of
w̃1/w̃0. Three fold exact zero-modes are present for all values
of w̃1/w̃0 (which remains true if w̃n is included to any order n).
The appearance of negative-energy ground states is possible
due to the negative value of the center-of-mass pseudopoten-
tial plotted in (b). Figures (c,d) and (e,f) are respectively the
spectrum and the ground-state guiding-center structure fac-
tor S(q) for the two marked data points in (a) that represent
typical phases before and after the transition. (c) and (e): at
w̃1/w̃0 = 0.3, the three-fold degenerate zero-energy ground
states, finite gap and continuous peak in S(q) are consistent
with the Laughlin state. (d) and (f): at w̃1/w̃0 = 0.5, the
single negative-energy ground state, small excitation gap and
discretized peaks in S(q) suggest a CDW phase. Plots are
for a rectangular lattice on the torus, with b1 · b2 = 0 and
|b1| = |b2|. The system sizes are N = 8, (N1, N2) = (4, 6) in
(a), and N = 12, (N1, N2) = (6, 6) in (c-f).

to LLLs, we mapped the inhomogeneous band geome-
try in a flatband to a COM interaction in the LLL. Re-
markably, as shown in FIG. 3 (b), the COM interaction
generically has attractive components, driving a phase
transition [55] from the Laughlin state to gapless states.

The attractive interaction induced by band geometry
implies new physics; applying COM pseudopotentials en-
ables systematic studies of various instabilities which will
be immediately useful for a wide range of applications
[29–31, 56–70]. We conclude with two more examples.
Recently, skyrmion pairing has been proposed to ex-
plain the superconductivity in TBG [71], which was sub-
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sequently numerically tested in a simplified LLL based
model with flat band geometries [72]. It is thus impor-
tant to examine how inhomogeneous band geometry in-
fluences superconductivity. In the last section of the SM,
we find the COM interaction induced by band geome-
try in time-reversal invariant TBG flatbands exhibits at-
tractive components, which would favor superconductiv-
ity when its spatial pattern matches the superconducting
order parameter. A thorough understanding requires ex-
tensive numerical studies that we leave for future work.
The COM interaction is not only a novel concept but also
a useful numerical tool, which we demonstrate through
the second example by studying the stability of compos-
ite Fermi liquid (CFL) in the spin-valley polarized cTBG
flatband. By continuously interpolating between the LLL
and cTBG flatbands using the ideal flatband theory, we
find that CFLs remain ground states of cTBG without
signatures of phase transitions. Generalizations to higher
Chern number and Hofstadter-type models are interest-
ing future directions [73–77].

Acknowledgements.— The Flatiron Institute is a di-
vision of the Simons Foundation. J. W. acknowledges
Martin Claassen, Debanjan Chowdhury and Kun Yang
for useful discussions. J. C. acknowledges the support of
the Air Force Office of Scientific Research under Grant
No. FA9550-20-1-0260. A. J. M. is supported in part
by Programmable Quantum Materials, an Energy Fron-
tier Research Center funded by the U.S. Department of
Energy (DOE), Office of Science, Basic Energy Sciences
(BES), under award DE-SC0019443. Z. L. is supported
by the National Key Research and Development Program
of China through Grant No. 2020YFA0309200. B. Y. is
supported by the Singapore National Research Founda-
tion (NRF) under NRF fellowship award NRF-NRFF12-
2020-0005.

∗ jiewang@flatironinstitute.org
† zhaol@zju.edu.cn
‡ yang.bo@ntu.edu.sg

[1] We use the convention that Berry connection and Berry
curvature are Aa

k = −i〈uk|∂a
kuk〉 and Ωk = εab∂

a
kA

b
k re-

spectively, which differs from the usual convention by a
minus sign, but gives us k−space holomorphic wavefunc-
tions with positive Berry curvature. This sign convention
was used, for instance, in Ref. (6).

[2] D. Vanderbilt, Berry Phases in Electronic Structure
Theory: Electric Polarization, Orbital Magnetization
and Topological Insulators (Cambridge University Press,
2018).

[3] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,
1959 (2010).
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Lett. 118, 146403 (2017).
[53] B. Yang, C. H. Lee, C. Zhang, and Z.-X. Hu, Phys. Rev.

B 96, 195140 (2017).
[54] K. Yang, F. D. M. Haldane, and E. H. Rezayi, Phys.

Rev. B 64, 081301 (2001).
[55] P. Wilhelm, T. C. Lang, and A. M. Läuchli, Phys. Rev.
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