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Starting from chiral nuclear interactions, we evaluate the contribution of the leading-order contact transition
operator to the nuclear matrix element (NME) of neutrinoless double-beta decay, assuming a light Majorana
neutrino-exchange mechanism. The corresponding low-energy constant (LEC) is determined by fitting the
transition amplitude of the nn → ppe−e− process to a recently proposed synthetic datum. We examine the
dependence of the amplitude on similarity renormalization group (SRG) scale and chiral expansion order of the
nuclear interaction, finding that both dependences can be compensated to a large extent by readjusting the LEC.
We evaluate the contribution of both the leading-order contact operator and standard long-range operator to the
neutrinoless double-beta decays in the light nuclei He6,8 and the candidate nucleus Ca48 . Our results provide
the first clear demonstration that the contact term enhances the NME in calculations with commonly used chiral
two- plus three-nucleon interactions. In the case of Ca48 , for example, the NME obtained with the EM(1.8/2.0)
interaction is enhanced from 0.61 to 0.87(4), where the uncertainty is propagated from the synthetic datum.

Introduction. The neutrinoless double-β (0νββ) decay is a
hypothetical weak process that converts two neutrons into two
protons, emitting two electrons but no corresponding antineu-
trinos. The observation of neutrino oscillations confirmed that
neutrinos have nonzero masses, which has boosted interest in
experimental searches for 0νββ decay. The observation of this
decay would confirm the existence of a Majorana mass term
for the neutrinos [1], shedding light on the mechanism of neu-
trino mass generation, and providing direct evidence of lepton
number violation beyond the standard model—a key ingre-
dient for generating the matter-antimatter asymmetry in the
universe. Hence, there is a vast interest in this process, with
multiple large-scale experiments either planned or underway.

An important ingredient for selecting suitable candidate nu-
clei for detectors and the interpretation of an observed lifetime
is the nuclear matrix element (NME) M0ν, which encodes the
impact of the structure of parent and daughter nuclei on the
decay. A large variety of calculations of the NME for can-
didate nuclei have been reported in the literature[2–19], but
results differ by up to a factor of 3. This difference amounts
to an order of magnitude uncertainty in the lifetime, which is
inversely proportional to the square of the NME [20].

A more reliable estimate requires a systematic calculation
with quantified uncertainties. Such a calculation can be car-
ried out in an ab initio framework, using chiral effective field
theory (EFT) to derive the nuclear Hamiltonian and 0νββ tran-
sition operator in a consistent and systematically improvable
manner. First milestone calculations have been performed for
candidate nuclei from Ca48 to Se82 [21–23].

Recently, Cirgiliano et al. [24, 25] showed that a chiral EFT
description of 0νββ decay based on the mechanism of light
Majorana neutrino exchange requires a previously unknown
leading-order contact contribution to the decay operator to en-
sure renormalizability. The strength of this contact term has
to be determined by matching to a fundamental theory or ex-
perimental data. In the absence of experimental data, only the
former is currently possible.

Cirigliano et al. [26, 27] proposed a way to estimate the
size of the contact term by computing the nn → ppe−e− tran-
sition amplitude using the generalized forward Compton scat-
tering amplitude. The underlying model assumes light Ma-
jorana neutrino exchange and incorporates input from elastic
intermediate states in analogy to the Cottingham formula [28].
Since the strength of the contact term is scale and scheme de-
pendent, they provide the value of the full transition amplitude
at a given kinematic point. This amplitude is (in principle) ob-
servable, and can be used as a synthetic datum to constrain the
contact term in other schemes.

In this work, we compute the nn → ppe−e− transition am-
plitude using chiral nucleon-nucleon (NN) interactions. We
show that the renormalized transition amplitude is robust with
respect to changes in the nuclear interaction, making it a re-
liable starting point for NME calculations in finite nuclei. In
particular, we investigate the change of the contact contribu-
tion when the NN interaction undergoes a similarity renor-
malization group (SRG) transformation, as well as its depen-
dence on the order of the chiral expansion. Finally, we show
that the leading-order contact transition operator enhances the
NME by 43(7) % in the lightest 0νββ-decay candidate nucleus

Ca48 compared to the recent ab initio calculations based on the
standard long-range transition operator alone [21]. This result
conveys an important positive message for planning and inter-
preting future experiments.

The transition amplitude of nn → ppe−e− process. The
central object of our investigation is the 0νββ transition oper-
ator in the standard light Majorana neutrino-exchange mech-
anism. Since the transition amplitude of the nn → ppe−e−

process is computed in the 1S 0 channel, only the Fermi (F)
and Gamow-Teller (GT) parts of the neutrino potentials con-
tribute while the tensor part vanishes. At leading order, the
neutrino potential is given by [25]

V
1S 0
ν,L =

[
VF(r) + VGT (r)

]
τ(1)+τ(2)+ (1)
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with the radial functions

VF(r) = − g2
V

4πr
, (2)

VGT (r) = − g2
A

4πr

[
3 − e−mπr

(
1 +

mπr
2

)]
τ(1)+τ(2)+ . (3)

Here, r is the distance between the two decaying neutrons, and
τ+ is an isospin-raising operator with nonzero matrix element
〈p|τ+|n〉 = 1. We use the axial coupling constant gA = 1.27
and the average pion mass mπ = 138.039 MeV. According
to Ref. [25], a leading-order contact transition operator must
be introduced to ensure renormalizability. Choosing a separa-
ble non-local regulator, this contact operator has the following
form:

V
1S 0
ν,S = −2gNN

ν VS (r, r′)τ(1)+τ(2)+ (4)

with

VS (r, r′) ≡
(mNg2

A

4 f 2
π

)2
f nexp

Λ
(r) f nexp

Λ
(r′) (5)

and the pion decay constant fπ = 92.2 MeV. In coordinate
space, the regulator reads

f nexp

Λ
(r) =

1
2π2

∫ ∞

0
dq q2 exp

[
−
( q
Λ

)2nexp]
j0(qr). (6)

The momentum cutoff Λ and nexp are parameters whose values
should be chosen to be consistent with chiral nuclear interac-
tions. We choose the prefactor similar to Ref. [25], such that
the LEC gNN

ν multiplying the contact term becomes dimen-
sionless and of natural size.

In accordance with Refs. [26, 27], we define the nuclear
part of the nn→ ppe−e− transition amplitude as

A(p, p′) = 4π 〈1S 0(p′)|V 1S 0
ν,L + V

1S 0
ν,S |1S 0(p)〉 . (7)

The wavefunctions |1S 0(p)〉 and |1S 0(p′)〉 are scattering solu-
tions for neutrons and protons in the 1S 0 channel at incoming
and outgoing momenta p and p′, respectively.

Scattering wavefunctions. We compute scattering wave-
functions using the R-matrix formalism [29] with the channel
radius set to a = 15 fm, well beyond the range of the nuclear
potential. The wavefunctions are normalized such that the
asymptotic form of the radial wavefunction in the 1S 0 channel
is

up(r) = rR(r)→ 1
p sin[pr + δ(p)], (8)

This normalization recovers the free solution R(r) = j0(r),
hence the full plane wave is normalized as φ~p(~r) = exp(i~p ·~r).
For consistency with Refs. [26, 27], we omit the Coulomb
interaction from all two-body calculations.

Using the scattering wavefunctions, we compute the long-
and short-range parts of the amplitude,

AL(p, p′) = 4π
∫ ∞

0
dr up′ (r)[VF(r) + VGT (r)]up(r) (9)

AS (p, p′) = 4π
∫ ∞

0
dr′r′

∫ ∞

0
dr rup′ (r′)VS (r, r′)up(r), (10)

such that

A(p, p′) = AL(p, p′) − 2gNN
ν AS (p, p′). (11)

We obtain the LEC gNN
ν by requiring that the total amplitude

matches the synthetic datum

A(p = 25 MeV/c, p′ = 30 MeV/c) = −0.0195(5) MeV−2

(12)
given by Refs. [26, 27]. We have validated our amplitude cal-
culations and the extraction of the LEC against the results in
Ref. [27] — see the supplemental material [30] for details.

Nucleon-nucleon interactions. In the present study, we
employ three different interactions, all derived from chiral
EFT. First, we investigate the effect of an SRG transforma-
tion on the transition amplitude, employing the N3LO inter-
action by Entem and Machleidt [31], which we denote by
“EM”. Next, we perform an analysis of the convergence be-
havior of the amplitude with respect to the chiral order of the
interaction. For this, we use the family of interactions from
Entem et al. [32], called “EMN” in the following, which pro-
vides interactions from LO to N4LO. Finally, we consider the
∆N2LOGO(394) [33] Hamiltonian, a low-cutoff NN+3N inter-
action that accounts for ∆ isobars and whose parameters are
constrained by A ≤ 4 few-body data and nuclear matter prop-
erties. With these interactions, we make the connection to the
ab initio calculations of the 0νββNME in light nuclei [34] and
the candidate Ca48 [21, 22].

SRG scale dependence. In order to accelerate the con-
vergence of many-body calculations, the nuclear Hamiltonian
is usually preprocessed via similarity renormalization group
transformations that reduce the coupling between low and
high momenta [35]. The continuous unitary SRG transforma-
tion introduces a scale λ that controls the Hamiltonian’s band-
width in momentum space. The transformation preserves the
eigenvalues of H but changes its eigenstates, hence observ-
ables should be transformed consistently.

RG arguments suggest that the evolution of an operator
generates a series of short-range counter terms (see, e.g.,
Refs. [36–38]). Since the 0νββ operator is primarily of
intermediate- to long-range character, we expect it to evolve
only weakly under the SRG, and we attempt to absorb this ef-
fect by readjusting the contact LEC. To this end, we calculate
the long and short-range amplitudes at the kinematic point us-
ing wavefunctions of the Entem and Machleidt interaction at
different SRG scales.1

The results are shown in fig. 1(a). The long-range part of
the amplitude (with or without higher-order corrections, la-
beledAL and ÃL, respectively) shows a very mild dependence
on the SRG scale while the short-range part initially changes
by 18 % before settling into a weak scale dependence as well.

1 As discussed above, we use nexp = 3 when regularizing the contact, con-
sistent with the regulator for the EM interaction.
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FIG. 1. (a) Dependence of the short- and long-range parts of
the amplitude on the SRG scale λ at the kinematic point p =

25 MeV/c, p′ = 30 MeV/c for the EM potential. Shown are
the changes relative to the unevolved potential. Note that the λ-
dependence of AS is partially compensated by the LEC gNN

ν in the
short-range contribution to the amplitude, which depends on gNN

ν AS .
(b) Momentum dependence of the short- and LO long-range parts,
as well as the total amplitude for the EM potential at different SRG
scales λ. Shown are the scaled short-range part −2gNN

ν AS (dotted
lines), the long-range partAL (dashed lines), and the total amplitude
AL−2gNN

ν AS (solid lines). The dotted black lines mark the synthetic
datum. The variation of the total amplitude with respect to λ over the
momentum range shown is less than 0.1 %.

This confirms the intuition that the SRG mainly affects short-
range operators. The total amplitudes adjusted to the syn-
thetic datum change by less than a percent over the range
of flow parameters shown. Overall, the short-range opera-
tor enhances the transition amplitude by approximately 22 %
at the kinematic point. The similar momentum dependence,
shown in fig. 1(b), implies that the short-range amplitude just
acquires a scale-dependent factor Z(λ) during the SRG evolu-
tion,AS (λ) = Z(λ)AS (λ = ∞). This scaling factor can indeed
be compensated by a change in the LEC as suggested above,
resulting in a total amplitude that is virtually independent of
the SRG scale once the LEC has been fixed to the synthetic
datum.

Convergence of the chiral expansion. Next, we consider
the dependence of the 0νββ amplitude on the order of the chi-
ral expansion. To this end we use the EMN family of interac-
tions from LO up to N4LO [32].

Figure 2 shows the total amplitude as a function of in-
coming and outgoing relative momenta. For incoming mo-
menta up to 375 MeV/c, the range up to which the potentials
are fitted, we notice a sizable dependence on the chiral or-
der, which is evident in fig. 2(a). The LO amplitude is more
than 60 % smaller than the N4LO amplitude, but systemati-

TABLE I. Value of the 0νββ contact LECs for the interactions used
in this paper. The contact term is regularized using Λ = 500 MeV/c
and nexp = 3 [Λ = 394 MeV/c and nexp = 4 for ∆N2LOGO(394)].
Amplitudes are shown in units of MeV−2 at the kinematic point
p = 25 MeV/c, p′ = 30 MeV/c. The quantities with a tilde incor-
porate beyond-LO effects in the operator. The quoted uncertainties
∆gNN

ν are propagated from the uncertainty of the synthetic datum and
are identical for gNN

ν and g̃NN
ν . See supplemental material [30] for rec-

ommended values at other SRG scales and chiral orders.

Interaction λ 103ÃL 103AL 103AS g̃NN
ν gNN

ν ∆gNN
ν

EM ∞ −15.847 −15.898 3.0152 0.606 0.597 0.083
2.50 −15.921 −16.024 3.0635 0.584 0.567 0.082
2.24 −15.923 −16.033 3.0451 0.587 0.569 0.082
2.20 −15.923 −16.033 3.0408 0.588 0.570 0.082
2.00 −15.912 −16.025 3.0061 0.597 0.578 0.083
1.88 −15.898 −16.011 2.9733 0.606 0.587 0.084
1.80 −15.885 −15.998 2.9446 0.614 0.595 0.085

EMN N3LO ∞ −15.857 −15.903 2.3816 0.765 0.755 0.105
2.00 −15.934 −16.043 2.9031 0.614 0.595 0.086

∆N2LOGO ∞ −15.846 −15.968 3.1225 0.585 0.566 0.080
(394) 2.00 −15.776 −15.892 2.9610 0.629 0.609 0.084

cally converges to the N4LO result with increasing order. The
variation in the low-momentum region [cf. fig. 2(b)] is smaller
than 1 % and convergence is rapid.

To investigate the effect of beyond-LO terms in the 0νββ
operator, we compute the amplitude Ã(p, p′) and determine
the LEC g̃NN

ν using the neutrino potentials

Ṽ
1S 0
ν,L ≡

[
ṼF(r) + ṼGT (r)

]
τ(1)+τ(2)+, (13)

Ṽ
1S 0
ν,S ≡ −2g̃NN

ν VS (r, r′)τ(1)+τ(2)+ . (14)

The radial functions

Ṽi(r) =
1

2π2

∫ ∞

0
dq q2hi(q) j0(qr), (15)

are Fourier transforms of the neutrino potentials hi(q) in mo-
mentum space [34]

hF(q) = −g2
V (q)
q2 (16)

hGT (q) = −3
g2

A(q)
q2 − q2g2

P(q)

4m2
N

− gA(q)gP(q)
mN

− g2
M(q)

2m2
N

. (17)

The dipole form factors gi(q) can be found in Ref. [34] and
the supplemental material [30].

The phenomenological corrections only modify the neu-
trino potentials at short distances, hence they are virtually in-
distinguishable from the LO ones at distances r > 1.5 fm .
Since we use NN interactions with relatively low cutoffs, the
total amplitudes are fairly insensitive to the short-range modi-
fications. The relative difference between them is below 0.5 %
for momenta within an NN interactions’ range of applicabil-
ity. For the LO NN interaction the difference may reach 3 % at
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FIG. 2. (a-b) Ratio of total amplitudes (relative to the N4LO result)
for different orders of the chiral expansion as a function of incom-
ing and outgoing momentum, respectively. (c-d) Relative difference
between the amplitudes using the LO operator and the operator con-
taining beyond-LO corrections as a function of incoming and outgo-
ing momentum, respectively.

incoming momenta exceeding 300 MeV/c [cf. fig. 2(c)]. The
difference between both amplitudes at low momenta, shown
in fig. 2(d), is negligible. Table I summarizes the long-range
amplitudes and LECsA, gNN

ν and Ã, g̃NN
ν associated with the

LO long-range transition operator and its extension, respec-
tively.

Application to finite nuclei. Previous calculations of the
NME in finite nuclei only considered the transition operator’s
long-range part. With the LEC of the operator’s short-range
part adjusted to the synthetic datum, we can now calculate its
effect and provide a first result that is renormalized to leading
order. Here, we revisit our benchmark calculations for light
nuclei [34], as well as the candidate pair Ca48 and Ti48 [21].
In these studies, we used the so-called EM1.8/2.0 interaction
[39], which consists of the EM interaction SRG-evolved to a
scale λ = 1.8 fm−1 augmented by an unevolved N2LO three-
nucleon interaction. To estimate the dependence of the NME
on SRG scale and chiral order, we additionally consider the
EM interaction with a local-nonlocal 3N force [40], called
“LNL” here, the EMN N3LO with an N2LO 3N interaction
[41] (designated there as N3LO’), and the ∆N2LOGO(394)
NN+3N Hamiltonian. The LECs g̃NN

ν for each NN interac-
tion are taken from table I.

The (dimensionless) NME is defined as

M0ν =
4πR
g2

A

〈 (Z + 2)A |Ṽν,L + Ṽν,S | ZA 〉 , (18)

where | ZA 〉 and | Z + 2A 〉 are the ground-state wave functions
of the initial and final nuclei, respectively, and R ≡ A1/3·1.2 fm

is the empirical nuclear radius. The long-range operator Ṽν,L

for finite nuclei also contains the tensor part — detailed ex-
pressions can be found in Ref. [34] and the supplemental ma-
terial [30].

First, we investigate the NME in the pairs of light nuclei
He6 – Be6 and He8 – Be8 as examples of ∆T = 0 and ∆T = 2

transitions with the importance-truncated no-core shell model
(IT-NCSM) [42]. The results are summarized in fig. 3. We
note that the contact operator increases the NME by a fac-
tor ranging from 11 % to 17 % for the ∆T = 0 transition in
He6 . Transitions with ∆T = 2 have a node in the transition

density that causes a cancellation between short- and long-
distance contributions to the NME. This effect is greater for
the long-range part than for the contact term, leading to small
overall NMEs and larger relative contributions from the con-
tact term: It increases the ∆T = 2 transition in He8 by 92 %
to 172 %. Overall, the NMEs obtained with different Hamil-
tonians and SRG scales barely differ. The EM1.8/2.0 inter-
action systematically produces smaller NMEs than the other
interactions, although it uses the same NN interaction and a
similar SRG scale as LNL. The EMN + N3LO’ Hamiltonian
yields a smaller NME in He6 than LNL, while the He8 NME
is larger. Both differences are due to the long-range part, the
short-range contribution is of similar size compared to the
LNL Hamiltonian. This shows that there is still some uncer-
tainty stemming from the Hamiltonian, in particular the 3N
interaction, which needs to be quantified further.

For the 0νββ-decay candidate nucleus Ca48 , the short-range
operator increases the NME by 43(7) %. With this contri-
bution, the value of M0ν is 0.875(40) for Ca48 from the in-
medium generator coordinate method (IM-GCM) [21] calcu-
lation. Here, we only state the uncertainty due to the LEC g̃NN

ν

of the short-range transition operator.
Conclusions and outlook. In this work, we present a de-

termination of the LEC of a contact term that enters the 0νββ
operator at leading order for a set of chiral interactions which
are used in ab initio calculations of nuclei. We fix the LEC
by reproducing the synthetic datum provided by Cirigliano
et al. [26, 27], which assumes a light Majorana-neutrino ex-
change. We investigate the dependence of the nn → ppe−e−

amplitude on the SRG scale λ and chiral order of the inter-
action. We find that a change in λ can be compensated by
readjusting the LEC, so that only small changes in the total
amplitude remain. At low chiral order, there are significant
differences in the amplitude at momenta near or beyond the in-
teraction’s range of applicability, but beyond N2LO, the total
amplitude converges quickly over the entire momentum range
to which the potential is fitted. This robustness of the ampli-
tude shows that the two-body system is under control and any
changes in the momentum dependence will come from sub-
leading terms in the operator. Moreover, any such changes
will likely be small, because beyond-LO effects in the long-
range part barely affected our results, apart from a modifica-
tion of the LEC.

The contact operator significantly increases the NME of
isospin-changing transitions in finite nuclei. For the light-
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FIG. 3. The NMEs M0ν of isospin-conserving (∆T = 0) transition
He6 → Be6 , and isospin-nonconserving (∆T = 2) transitions He8 →
Be8 and Ca48 → Ti48 , calculated with different chiral nuclear forces

and with both long- and short-range transition operators.

est candidate nucleus Ca48 , the NME we obtained for the
EM1.8/2.0 interaction is enhanced from 0.61 to 0.87(4) [21],
where the uncertainty is propagated from the synthetic datum
and does not account for many-body approximations or the
choice of different chiral potentials. An enhancement is also
found in ab initio calculations for the light nuclei He6,8 , us-
ing three families of chiral interactions with low resolution
scales. This indicates that the contact operator will generally
enhance the NMEs predicted by ab initio many-body calcula-
tions using these interactions, and this effect should be taken
into account in future studies. The robustness of this enhance-
ment under changes of the SRG resolution, EFT orders and
regulators, to the extent tested here through the use of differ-
ent interactions, suggests that it will persist in a fully consis-
tent treatment of the interaction and transition operator. The
extension of the present work to the NMEs of heavier 0νββ-
decay candidate nuclei is highly interesting.

We note that our study relies on the synthetic datum, whose
uncertainty is dominated by neglected inelastic contributions.
Hopefully, this uncertainty will be reduced in a future lat-
tice QCD calculation [43]. Nevertheless, apart from the total
NMEs all the findings presented here are independent of the
actual value of the synthetic datum. The availability of a more
precise datum will merely cause a shift of the total amplitudes,
and we provide separate short- and long-range parts to enable
matching to an updated value.
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