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In the hydrodynamic framework of heavy-ion collisions, elliptic flow, v2, is sensitive to the
quadrupole deformation, β, of the colliding ions. This enables one to test whether the established
knowledge on the low-energy structure of nuclei is consistent with collider data from high-energy
experiments. We derive a formula based on generic scaling laws of hydrodynamics to relate the
difference in v2 measured between collision systems that are close in size to the value of β of the
respective species. We validate our formula in simulations of 238U+238U and 197Au+197Au collisions
at top Relativistic Heavy Ion Collider (RHIC) energy, and subsequently apply it to experimental
data. Using the deformation of 238U from low-energy experiments, we find that RHIC v2 data
implies 0.16 ≲ ∣β∣ ≲ 0.20 for 197Au nuclei, i.e., significantly more deformed than reported in the
literature, posing an interesting issue in nuclear phenomenology.

PACS numbers: 25.75.Gz, 25.75.Ld, 25.75.-1

Introduction. The hydrodynamic modeling of the
quark-gluon plasma (QGP) formed in relativistic heavy-
ion collisions is a precision tool to understand the wealth
of measurements obtained at the BNL Relativistic Heavy
Ion collider (RHIC) and at the CERN Large Hadron
Collider (LHC) [1–7]. The success of this framework is
largely based upon a correct description of the initial con-
dition of the QGP prior to its dynamical expansion [8].
One does in general expect that such initial condition is
impacted by the quadrupole deformation of the colliding
ions [9–12]. This has been demonstrated in particular by
recent flow data in 238U+238U collisions at RHIC [13].
In principle, the uncertainty brought by this observation
to the overall picture should be under control, as the
structure of nuclear ground states is well constrained by
nuclear experiments at low energy, and one may assume
that the structure probed at colliders on ultra-short time
scales of order 10−24s is the same. For an unbiased in-
terpretation of high-energy data, it is crucial to check
whether this is indeed the case, i.e., that the manifesta-
tions of nuclear deformation at high energy are consistent
with the expectations from low-energy physics.

The majority of nuclei are deformed in their ground
state, presenting an intrinsic quadrupole moment in
their mass distribution, ∫ ∣r∣2Y20ρ(r) ≠ 0. Experimen-
tally [14, 15], the deformation of an (even-even) nu-
cleus of mass number A and charge Ze is quantified by
β =

4π
3ZeR2

0

√

B(E2)↑, where R0 = 1.2A1/3, and B(E2)↑

is the measured transition probability of the electric
quadrupole operator from the ground state to the first
2+ state. Nearly spherical nuclei, such as 208Pb, have
β ≈ 0, while well-deformed nuclei, like 238U, have β ≈ 0.3.

In heavy-ion collisions, deformed nuclei are modeled
through 2-parameter Fermi (2pF) mass densities: ρ(r)∝

(1 + exp [∣r∣ −R0(1 + βY20)] /a0)
−1

, with the value of β
taken (up to small corrections [16]) from low-energy ex-

periments. Colliding randomly oriented deformed nuclei
impacts the initial state of the QGP, enhancing in par-
ticular the fluctuations of its ellipticity [12], ε2, deter-
mined by the transverse positions (r, φ) of the partici-
pant nucleons ε2 = ∣∑ r2ei2φ/∑ r2∣ [17]. In hydrodynam-
ics, ε2 ≠ 0 yields an elliptical imbalance in the pressure-
gradient forces [18] that drive the expansion of the QGP.
This pressure imbalance results in a cos(2φ) modula-
tion of the azimuthal distribution of detected hadrons,
dN/dφ ∝ 1 + 2v2 cos(2φ), where v2 is the elliptic flow
coefficient [19]. In hydrodynamic calculations [20], v2
emerges indeed as a response to the initial eccentricity,
v2 = k2ε2, so that β ≠ 0 in the colliding nuclei leads to
enhanced fluctuations of the observed v2.

In this Letter, we address the question of whether the
values of β found in low-energy literature are consistent
with v2 data at high energy. We introduce a simple
method to do so, and argue that, at present, the sought
consistency of nuclear experiments across energy scales
is not achieved.

Relating v2
2 to the quadrupole deformation.

The idea is to compare systems that are close in size.
As we show in the next section, the dependence of the
mean squared (ms) elliptic flow on β is the following:

v2{2}2 ≡ ⟨v22⟩ = a + bβ
2. (1)

where averages are performed over events in a narrow
centrality class, and the physical meaning of the coeffi-
cients a and b will be clarified below. Given two colli-
sion systems X+X and Y+Y, we introduce the following
quantities [the subscript X(Y) indicates a quantity eval-
uated in X+X(Y+Y) collisions]:

rv22 ≡
⟨v22⟩Y
⟨v22⟩X

, rb =
bX
bY
, ra =

aX
aY

, rY =

bY
aY

. (2)
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With these definitions and Eq. (1), we can express the
quadrupole deformation parameter of species Y, β2

Y, as
a linear function of β2

X,

β2
Y = (

rv22ra − 1

rY
) + (rv22rb)β

2
X . (3)

The ratios rb, ra, rY can be reliably predicted in hy-
drodynamics, so that Eq. (3) can be used to verify the
consistency of data from nuclear experiments at different
energy scales. Specifically, in hydrodynamics we expect:

• The coefficient b in Eq. (1) quantifies how efficiently
the fluctuations in the global geometry due to the
deformed, randomly oriented nuclear shapes are
converted into fluctuations of elliptic flow. The con-
tribution of the term bβ2 to the ms v2 in Eq. (1)
is thus of the same nature as the contribution from
the so-called elliptic flow in the reaction plane v2,RP

to the ms v2 in collisions of spherical nuclei. At a
given collision centrality, the relative contribution
of v2,RP to the ms v2 varies very slowly with the
mass number, therefore, if X and Y are large sys-
tems, we expect rb ≃ 1.

• The coefficient a in Eq. (1) corresponds to ms v2 in
the absence of deformation. Therefore, a in central
collisions is the v2 originating solely from fluctua-
tions, e.g., in the positions of the participant nu-
cleons. This quantity scales with the inverse mass
number, 1/A, and an additional factor from vis-
cous damping. Considering βX = βY = 0 and ⟨v22⟩ =

k22 ⟨ε22⟩, if X and Y are close in size the relative dif-
ference in elliptic flow between X+X and Y+Y col-
lisions, ∆ ⟨v22⟩ / ⟨v

2
2⟩ = (⟨v22⟩X − ⟨v22⟩Y) / ⟨v22⟩Y, has

an intuitive decomposition:

∆ ⟨v22⟩

⟨v22⟩
=

∆k22
k22

+

∆ ⟨ε22⟩

⟨ε22⟩
. (4)

The contribution coming from the variation of ε2
is related to the variation in the mass number,
∆ ⟨ε2n⟩ / ⟨ε

2
n⟩ = ∆ 1

A
/
1
A

(up to corrections of few per-
cents [21]), while viscous damping drives the vari-
ation of the response coefficient, ∆k2/k2, which we
estimate as follows. The response, kn, to the nth

harmonic in viscous hydrodynamics is damped with
the respect to the ideal hydrodynamic value, kn,ih.
The damping is linear in the viscosity, and larger
for higher harmonics. In the simplified scenario of
Ref. [22], for instance, one has kn/kn,ih ≈ 1 −Kn2,
where K encodes the viscous correction [23]. This
leads to ∆kn/kn ≈ −∆Kn2kn,ih/kn. For large sys-
tems [24], k3,ih/k3 ≈ k2,ih/k2, so that:

∆k2/k2 = 4/9 ∆k3/k3. (5)

Recent state-of-the-art hydrodynamic simulations
[25] report however a slightly smaller damping, re-
flected by a larger coefficient, 0.57 ∼ 5/9, in the rhs

of Eq. (5). Now, since v3 is not affected by the de-
formation of the colliding ions [see Fig. 1(b)], we
can estimate the variation of the a coefficient in
Eq. (1) (i.e., the variation of v2 in the case β = 0)
from the variation of the mass number and the ex-
perimentally measured variation of ⟨v23⟩:

ra − 1 =
∆a

a
= (1 − x)

∆(1/A)

1/A
+ x

∆ ⟨v23⟩

⟨v23⟩
, x ≈

4

9
. (6)

• The ratio rY is a property of a single collision sys-
tem, and has to be evaluated through an explicit
calculation. Its value is however largely model-
independent, as we explain in the next section.

Wrapping up, Eq. (3) relates the deformation param-
eters of two ions close in size to the ratio of elliptic flow
coefficients. The ratios rb, ra, and rY are properties of
the hydrodynamic description, and can be predicted by
generic scaling laws, as we now demonstrate through nu-
merical calculations.
Numerical validation. To gather the huge statis-

tics of events required to constrain observables in central
collisions, we employ the multi-phase transport model
(AMPT) as a proxy for hydrodynamics. This model
has proven successful in describing collective flow data in
small and large collision systems at RHIC and LHC [26–
29]. AMPT starts with a Glauber Monte Carlo calcu-
lation [30], which determines event-to-event the collision
impact parameter and participant nucleons, Npart. The
system evolution is modeled with strings that first melt
into partons, followed by elastic partonic scatterings,
which engender the hydrodynamic collectivity, followed
by parton coalescence and hadronic rescattering. We use
AMPT v2.26t5 in string-melting mode, and a partonic
cross section of 3.0 mb [27, 28], which gives a reasonable
description of 197Au+197Au v2 data at RHIC. We simu-
late 238U+238U collisions at

√
sNN = 193 GeV with β=0,

0.15, 0.22, ±0.28, 0.34, 0.4, as well as
√
sNN = 200 GeV

197Au+197Au collisions implementing β=0, -0.13. We
emphasize that this is the first such calculation, where
one systematically scans over several β values, ever per-
formed. The 2pF parameters for the colliding ions are
taken from the fits of their nuclear charge densities [31].
We use hadrons with 0.2 < pT < 2 GeV and ∣η∣ < 2, and de-
fine the event centrality from either Npart or the charged
hadron multiplicity, Nch, in the window ∣η∣ < 1.

Figure 1 shows ⟨v22⟩ and ⟨v23⟩ as functions of Npart/2A,

as well as the corresponding ⟨ε22⟩ and ⟨ε23⟩ in the inset

panels. We note a strong dependence of ⟨v22⟩ on the value

of β in central collisions, whereas ⟨v23⟩ is independent
of β. The v2 values are similar between β = 0.28 and
β = −0.28, confirming that v2 is an even function of β 1.

1 Although in extremely central collisions, say 0–0.2%, we found
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FIG. 1. Mean-squared v2, ⟨v22⟩ (left), and v3, ⟨v23⟩ (right),

as a function of Npart/2A in 197Au+197Au and 238U+238U
collisions, for different values of β. The insets show the cor-
responding ⟨ε22⟩ and ⟨ε23⟩. The dashed boxes indicate roughly
the 0-1% range, on which our analysis is focused.

These features are present as well in the curves of the
⟨ε2n⟩, demonstrating the geometric origin of vn in our

simulations. We note that the value of ⟨v23⟩ is larger in
197Au+197Au collisions, due to the smaller A.

Figure 2 shows that ⟨v22⟩ is indeed linear in β2, in agree-
ment with Eq. (1). The calculation is performed for dif-
ferent centrality classes (defined from the distribution of
Nch), showing that the linear relation is valid even in
non-central collisions. To emphasize the geometric ori-
gin of this result, we show that ⟨ε22⟩ is also linear in β2:

⟨ε22⟩ = a
′
+ b′β2 . (7)

Figure 3 shows the centrality dependence of rb, ra, and
rY (X =

197Au, Y =
238U), and demonstrates explicitly the

points made in the previous section.
Figure 3(a) shows rb = bX/bY, and confirms the expec-

tation that this quantity should be close to unity. This is
a geometric effect. We find indeed that plotting r′b, ob-
tained from the linear fits of ⟨ε22⟩ across centrality, yields
a dependence which is essentially identical to that of rb,
implying a minor role of the hydrodynamic response.

Figure 3(b) shows ra = aX/aY as a function of central-
ity. The hydrodynamic expectation given by Eq. (6), is
shown as a line for the most central bins. The agree-
ment with the calculated ra is excellent in the 0–1% bin,
confirming our arguments. The result is ra = 1.18 with
∆(1/A)/1/A = 0.21, x = 4/9 in Eq. (6) and ∆ ⟨v23⟩/ ⟨v

2
3⟩ =

0.136 from AMPT in the 0–1% bin. We have checked that

ε2(β = −0.28) > ε2(β = 0.28) and v2(β = −0.28) > v2(β = 0.28)

2β
0 0.05 0.1 0.15

=
0)

-1
β

)/
Y

(
β

Y
(

0

2

4

6

〉2

2
∈〈Y= 〉2

2
v〈Y=

 
 
 
 

  29-31%
  9-11%
  4-5%
  0-1%

 10×
 4×
 2×
 1×

U+U, AMPT
<2 GeV

T
0.2<p

FIG. 2. ⟨v22(β)⟩ / ⟨v
2
2(0)⟩ − 1 = b/a β2 (empty symbols) and

⟨ε22(β)⟩ / ⟨ε
2
2(0)⟩ − 1 = b′/a′ β2 (full symbols) as a function of

β2 in 238U+238U collisions. Different symbols correspond to
different centrality classes based on Nch.

the estimated value of ra reduces only by ∼ 1% if a larger
coefficient x = 5/9 is used, showing that the uncertainty
on the precise magnitude of the viscous correction does
not affect our analysis. Once more, r′a in Fig. 3(b) cal-
culated from the eccentricity shows the same centrality
dependence, indicating that the hydrodynamic response
yields only a global rescaling factor close to unity.

Figure 3(c) shows rU = aU/bU, which is 25.6 in the
0–1% bin. We argue that this is a generic prediction
of hydrodynamics, and not of our specific setup. From
Eq. (1), and considering v2{2}2 = κ22ε2{2}2 at fixed cen-
trality, one can write

rU =

d ln v2{2}2

dβ2
∣

β2=0

=

1

κ22(β
2
= 0)

dκ22
dβ2

+

1

ε2{2}2(β2
= 0)

dε2{2}2

dβ2
(8)

Now, dκ22/dβ
2 is determined by how an increase in sys-

tem size due to β modifies the hydrodynamic response.
This is dictated by generic scaling laws, irrespective of
the chosen setup. Similarly, from explicit calculations
within different initial-state models we find that the vari-
ation dε2{2}2/dβ2 is essentially model-independent. The
values of κ22 and ε2{2}2 evaluated at β2

= 0 are, on the
other hand, model-dependent. However, if models are
tuned such to return the same v2{2}2, i.e., the same prod-
uct κ22ε2{2}2 after hydrodynamics, then any such model
dependence would disappear in Eq. (8). The value of
rU appears to be, hence, a solid prediction. That said,
Eq. (8) contains 1/ε2{2}2∣β2=0, therefore, one expects rU
to present a strong centrality dependence, confirmed by
the trends in Fig. 3(c). This engenders an uncertainty
from the centrality definition. In particular, repeating
these calculations with the centrality defined according
to Npart instead of Nch, we find that rU increases by
about 20%.
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FIG. 3. Empty symbols: rb = bAu/bU (a), ra = aAu/aU (b),
rU = aU/bU (c), as functions of the centrality percentile. Full
symbols: same, but with a → a′, b → b′. The lines represent
the hydrodynamic expectation, and should match the empty
symbols in the ultra-central limit (0–1%).

In summary, the hydrodynamic expectations on the
ratios rb, ra, and rY pointed out in the previous section
are confirmed by our numerical results. We can thus
move on and apply Eq. (3) to existing data from nuclear
structure and heavy ion experiments.

Application to RHIC data. We apply Eq. (3),
with X =

197Au and Y =
238U, to the 0–1% most central

v2 data collected by the STAR Collaboration, where one
has rv22 = 1.49± 0.05 [13]. For the value of rU, we employ
the estimate of the AMPT model. We take into account
the fact that this quantity is smeared by the centrality
definition, and allow for an asymmetric 20% uncertainty,
i.e., rU = 25.6+0

−5.1. For the value of ra, from Eq. (6) we
obtain ra = 1.18, with no expected sizable uncertainty.
Lastly, for the value of rb we use the large-system limit,
but allow for a small asymmetric error, rb = 1+0

−0.05. Using
these parameters from high-energy heavy-ion collisions,
we plot in Fig. 4, as a solid line, how β2

U depends on
β2
Au, following Eq. (3). The dashed curves represent the

estimated total uncertainty.

Next, we couple this plot to the expectations from low-
energy nuclear structure physics. The quadrupole defor-
mation of 238U is known well. Experimental determi-
nations from transition probabilities give β = 0.286 [14].
On the theoretical side, we look at the state-of-art tab-
ulations of even-even ground-state deformations by De-
laroche et al. [34] (5DCH) and by Bender et al. [35],

Au
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FIG. 4. β2
U as a function of β2

Au. The region between the
dashed lines is consistent with the hydrodynamic expectation
based on Eq. (3) and high-energy elliptic flow data in 0–1%
centrality. The region highlighted in red in the upper-left
corner is allowed by low-energy nuclear data. The chosen
intervals for βU and βAu are motivated in the text.

which give βU = 0.29 and 0.292, respectively. We con-
sider, then, 0.28 < βU < 0.29 as the estimate from low-
energy physics. The situation for the odd-even 197Au is
less transparent, as there is no experimental determina-
tion of its value of β in the literature. Further, 197Au is
in a transition region between well-deformed rare-earth
nuclei and the spherical 208Pb, and as such it is triaxial in
the ground state. Such feature is included in the compre-
hensive 5DCH calculation, which can be used to reliably
estimate the deformation of 197Au from the deformation
of its neighbors, leading to 0.10 < ∣βAu∣ < 0.14.

Adding this knowledge to Fig. 4 shapes a region in
the upper-left corner of the (β2

Au, β
2
U) plane preferred by

low-energy nuclear data. This region lies well outside
the constraint defined by the elliptic flow data, whose
allowed ranges of βU and βAu are highlighted as grey
areas. The recent preliminary observation [36] of a large
anti-correlation between v2 and the average transverse
momentum, ⟨pT⟩, in central 238U+238U collisions points
to βU ≈ 0.3 at high energy [37], in agreement with the low-
energy estimates. Therefore, our result is likely an issue
related to 197Au. Using βU ≃ 0.29, the v2 data implies
0.16 ≲ ∣βAu∣ ≲ 0.20, which is significantly more deformed
than suggested by nuclear structure calculations. This
may be viewed as the first experimental constraint on
the deformation of this nuclide.

Before concluding, we note that additional evidence
that βAu ∼ 0.2 can be found in preliminary STAR
data on the above mentioned correlation between v2 and
⟨pT⟩. Preliminary results [36] indicate that such corre-
lation in mid-central 197Au+197Au collisions is i) bigger
than in 238U+238U collisions, ii) lower than measured
in 208Pb+208Pb collisions (at the same centralities) by
the ALICE collaboration [38] with nearly identical kine-
matic cuts. This ordering among systems is naturally ex-
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plained by 197Au being more deformed than 208Pb and
less deformed than 238U. However, taking βU = 0.29 and
βPb = 0.06 from low-energy data [14], we have checked in
initial-state calculations that capture well the ratios of
vn-⟨pt⟩ correlations between different systems [39] that
the magnitude of the deviations observed experimentally
can not be explained with ∣βAu∣ = 0.1, while implement-
ing ∣βAu∣ ≈ 0.2 improves dramatically the agreement with
data. These results will be reported in future work.

Conclusion and outlook. Anisotropic flow in high-
energy nuclear collisions emerges as a dynamical response
of the QGP to its initial spatial anisotropy. The lat-
ter is affected by the geometric shape of the colliding
nuclei, leading to an intrinsic connection between the
phenomenology of heavy-ion collisions and the structure
of atomic nuclei. Matching high-energy data to low-
energy expectations, we assess if our knowledge of nu-
clear physics across energy scales leads to consistent re-
sults. Equation (3) allows one to do so in a way that is
robust against the details of the hydrodynamic model-
ing. Using the low-energy estimates of βU, our analysis
of 197Au+197Au data points to a deformation of 197Au
larger than found in low-energy literature.

Further efforts are required to elucidate this issue.
At low energy, what is missing is the evaluation of the
structure properties of 197Au in a state-of-art theoretical
framework, such as that of Ref. [42]. This would reduce
the spread of the βAu interval in Fig. 4. At high energy,
one should repeat our analysis on more collision systems.
We have attempted to do so for 0–1% 129Xe+129Xe and
208Pb+208Pb collisions. The ALICE Collaboration re-
ports [40] a large ratio rv22 = ⟨v22⟩Xe

/ ⟨v22⟩Pb
≃ 2.56. We do

not have yet AMPT results for 129Xe+129Xe collisions,
however, we have checked via the initial-state calcula-
tions of Ref. [12] that b′Xe ≈ b

′

U and a′Xe ≃ (238/129)a′U.
The logic of the present discussion should apply, i.e.,
bXe ≈ bU, aXe ≈ (238/129)aU, so that rXe ≈ (129/238)rU.
Using v3{2}Xe/v3{2}Pb = 1.22 from the CMS Collabora-
tion [41], we obtain ra = aPb/aXe ≈ 0.64 from Eq. (6)
(increases to 0.65 if x = 5/9 is used). With rb = 1 and
βPb = 0.06 [14] this leads to βXe ≈ 0.24 via Eq. (3). Much
as for 197Au, this value is larger than found at low energy
models, where βXe ≈ 0.2 [39]. The same analysis should
be performed on collisions of 96Ru, 96Zr, and possibly
63Cu nuclei, to assess whether the discrepancy between
low-energy and high-energy data are systematic.

Arguably, though, the most efficient way to do so
would be collecting data from collisions of even-even
species that are close in size but have different and exper-
imentally measured deformation. The ideal candidates
for such a study are the stable samarium isotopes, which
present a remarkable transition from spherical to well-
deformed shapes [43]. One could collide, for instance,
144Sm, which is essentially as spherical as 208Pb, 148Sm,
mildly deformed with a triaxial ground state, much as
129Xe and 197Au, and 154Sm, which is a well-deformed

nucleus like 238U. With the ideas introduced in this pa-
per, it would thus be possible to assess from high-energy
data if the evolution of β along the isotope chain is con-
sistent with the low-energy expectations. Systematic de-
viations would eventually open deeper physics questions.
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