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We study variants of Shor’s code that are adept at handling single-axis correlated idling errors,
which are commonly observed in many quantum systems. By using the repetition code structure of
the Shor’s code basis states, we calculate the logical channel applied to the encoded information when
subjected to coherent and correlated single qubit idling errors, followed by stabilizer measurement.
Changing the signs of the stabilizer generators allows us to change how the coherent errors interfere,
leading to a quantum error correcting code which performs as well as a classical repetition code
of equivalent distance against these errors. We demonstrate a factor of 3.78 ± 1.20 improvement
of the logical T2∗ in a distance-3 logical qubit implemented on a trapped-ion quantum computer.
Even-distance versions of our Shor code variants are decoherence-free subspaces and fully robust to
identical and independent coherent idling noise.

In quantum error correction, coherent errors are un-
wanted unitary operations applied to the physical qubits.
Unlike stochastic errors, which scale linearly, coherent er-
rors build up quadratically [1, 2, 15]. Coherent errors of
various types can be mitigated through composite pulse
sequences [3–5], random compiling [6, 7], and circuit com-
pilation [8, 9].

We consider errors resulting from spatially or tempo-
rally correlated phase noise. Such noise can arise from
magnetic field fluctuations or instabilities in timing sys-
tems, which are a concern in most architectures, includ-
ing trapped ions, superconductors, neutral atoms, and
nitrogen-vacancy diamonds [10]. For optically addressed
qubits, this type of noise can also appear due to beam
path length fluctuations or finite laser linewidth [11]. Al-
though error correction suppresses these errors [12, 13],
they can increase logical qubit error relative to stochastic
errors.

Previous work on temporally correlated idling error,
also called coherent idling error, has focused on finding
thresholds below which the coherence of the resulting log-
ical channel is reduced [14, 15]. In Ref. [15], the authors
present an exact solution for the logical channel experi-
enced by a repetition code under coherent idling error.
We use this model to solve for the exact logical channels
for a set of variants of Shor’s 9-qubit code [16]. Standard
stabilizer codes stabilize even parity states. By chang-
ing the parity that a stabilizer preserves, we can directly
control how the coherent errors interfere. In this way,
we can create codes where significant fractions of the co-
herent errors cancel out, similar to non-stabilizer code
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constructions [17]. Even-distanced versions of our coher-
ent error resilient code are members of the code family
described in Ref. [18], and fully cancel homogenous co-
herent idling error. The codespaces of these Shor-codes
exist inside of a decoherence-free subspace [19–23].

Our calculations follow the example presented in Ref.
[15]. Consider an error model where all qubits are rotated
along the Z axis by an angle θ, represented by the channel
Nθ(ρ) on an n qubit density matrix ρ:

Nθ(ρ) = Z(θ)⊗nρ(Z(θ)†)⊗n,

Z(θ) = e−iθZ/2,
(1)

Now assume that the qubits are being used to encode one
classical bit of information in a rotated n-bit repetition
code:

|+〉L = |+〉⊗n = 2n/2(|0〉+ |1〉)⊗n,
|−〉L = |−〉⊗n = 2n/2(|0〉 − |1〉)⊗n.

(2)

Once the error in Eq. 1 has been applied, a round of
stabilizer measurements are taken, where the stabilizer
generators of the repetition code are:

Srep = 〈X0X1, X1X2, . . . Xn−2Xn−1〉.

Every syndrome corresponds to two Z-type errors, re-
lated by E1 = E2ZL, where ZL = Z⊗n and {E1, E2}
are Z-type errors. The correction applied is chosen to be
the lower-weight error, which is optimal if sin2(θ/2) <
1/2. If we define αs(βs) as the prefactor to the cor-
rected(uncorrected) Pauli error corresponding to a syn-
drome s in an expansion of Eq. 1, the logical channel
after correction is [15]:

NL(ρ) =
∑
s

(αsIL + βsZL)ρ(α∗sIL + β∗sZL),

=
∑
s

PsZ̄(θs)ρZ̄(θs)
†.

(3)
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FIG. 1: Diagrams for the ferromagnetic (left) and anti-ferromagnetic (right) [[9,1,3]] Shor’s codes, as well as an ion
chain with labeled ion indices. The qubit state representing |0〉L is shown for each variant, with each GHZ state
color coded to match the ions in the chain as well as their location in the code diagrams. The qubits in each GHZ
state are ordered from left to right.

ZL(θ) ≡ e−iθZL/2,

Ps ≡ |αs|2 + |βs|2,

θs ≡ 2 arctan

(
iβs
αs

)
.

(4)

As an example in a 3-bit repetition code, the syndrome
outcome of 01 could be caused by an error IIZ or an
error ZZI. The weight-1 error IIZ is corrected, leading
to

α01 = cos (θ/2)
2

(−i sin (θ/2)) ,

β01 = cos(θ/2)(−i sin(θ/2))2.
(5)

These amplitudes imply a rotation angle of

θ01 = 2 arctan

(
sin(θ/2)

cos(θ/2)

)
= θ, (6)

meaning that the logical rotation angle for this syndrome
is the physical rotation angle.

This is not always true, and as shown in Eq. 3, the log-
ical Z rotation is conditional on the syndrome outcome
measured. In the case of an n-bit repetition code, the
values of αs and βs only depend on n and the weights
of the corresponding errors, and are completely indepen-
dent of the error arrangement. Consequently, one can
define the quantities:

Pn,w(θ) =

(
n

w

)
((cos(θ/2)(n−w) sin(θ/2)w)2

+ (cos(θ/2)w sin(θ/2)(n−w))2),

θn,w = (−1)(n−2w−1)/22 arctan(tann−2w(θ/2)),

(7)

where n is the distance, and w is the weight of the cor-
rectable (lower weight) error. The logical channel in Eq. 3

can then be rewritten as:

NL(θ) =

(n−1)/2∑
w=0

Pn,w(θ)ZL(θn,w)ρZL(θn,w)†. (8)

This compact description of the logical channel relies
on the simple construction of the repetition code. For
most quantum error correcting codes, syndromes do not
translate as directly into easily understood errors. We
study the case of Shor’s codes, which follow this struc-
ture. The 9-qubit code presented in Ref. [16] can be
written as three 3-bit repetition codes with Z-type sta-
bilizers, concatenated into a repetition code with X-type
stabilizers. The resulting code, with 6 weight-2 Z-type
stabilizers and 2 weight-6 X-type stabilizers, has logical
states which are products of Greenberger-Horne-Zeilinger
(GHZ) states:

|0〉L ≡
1

2
√

2
(|000〉+ |111〉)⊗3 ,

|1〉L ≡
1

2
√

2
(|000〉 − |111〉)⊗3 .

(9)

We consider this code, as well as a variant with Z-type
stabilizer generators of opposite parity. In Appendix A,
we discuss the pair of codes created by taking these two
codes and swapping the stabilizer bases.

On the left of Fig. 1 is the standard 9-qubit Shor’s
code. The logical state preparation and measurement
of this code has been demonstrated with trapped ions
[24, 25] and photons [26]. The phase errors on a given
GHZ state combine constructively, as can be seen for
the states shown in Eq. 9. This is a consequence of the
ZZ stabilizers along each row, which lead to Z(θ) errors
being indistinguishable for qubits on the same row. We
can imagine pushing all the errors to the leftmost column
of qubits, which will each experience a rotation of angle
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nθ. The outer repetition code will have the same logical
channel as Eq. 8, with θ → nθ:

NL(θ) =

(n−1)/2∑
w=0

Pn,w(nθ)ZL(nθn,w)ρZL(nθn,w)†. (10)

This represents a worst-case situation where the logical
qubit experiences an error that increases quadratically
with distance n.

We now consider the code on the right of Fig. 1, which
we will refer to as the anti-ferromagnetic case since the
GHZ states composing its logical states resembles the
ground states of an anti-ferromagnetic Ising spin chain.
This code has the same stabilizer structure as that on the
left of Fig. 1, but with the ZZ stabilizers negated. This
does not impact on the code’s ability to correct stochastic
errors, but causes the interference of the coherent idling
errors to go from constructive to destructive. In the even-
distance case, all the errors cancel out. These codes are
immune to errors described by Eq. 1, and are an example
of the codes described in Ref. [18]. For the odd-distanced
cases, a single error does not cancel on each row. The re-
sulting effective error channel seen by the outer repetition
code is identical to that seen in the classical repetition
code case, so the logical error channel is identical to that
seen in Eq. 8. This represents a significant improvement
in the logical error channel, as the repetition code has
the maximum possible threshold of pth = 1/2 [? ].

Our discussion above assumes temporal and spatial
correlation, but these modified codes also improve pro-
tection for errors that are only spatially correlated. This
follows from previous work on correlated dephasing noise
in the context of weak decoherenece free subspaces [27].
Here we do not seek perfect cancellation of correlated
errors, but a linear reduction in the error rate.

We confirm these results on a trapped ion quan-
tum computer that has previously demonstrated fault-
tolerant error-correction protocols [24]. A chain of 15 ions
is trapped above a microfabricated chip trap [28], with
optical individual site addressing controlled by a multi-
channel acousto-optic modulator. Measurement, single-
qubit gate, and two-qubit gate fidelities are > 99.5%,
99.98%, and 98.5% respectively [24]. The qubit in this
system is defined on the electronic ground state hyper-
fine “clock” states of 171Yb+ ions with angular momen-
tum F and projection mf : |0〉 ≡ |F = 0;mF = 0〉,
|1〉 ≡ |F1;mF = 0〉. The qubit frequency is ω0 = 2π ×
(12, 642, 812, 118.5 Hz + δ2), where δ2 = (310.8)B2 Hz is
the second-order Zeeman shift for a magnetic field B in
Gauss [29].

In our system, residual second-order sensitivity to mag-
netic fluctuations and/or local oscillator noise limits the
T2 decoherence time to ≈ 2.75 s, whereas the qubit itself
is capable of T2 > 1 hour [30]. The relevant quantity for
this paper is the un-echoed T ∗2 = 0.6 s decoherence time
using optical control of the qubits, likely dominated by
mechanical vibrations that shift the phase of the optical
standing wave relative to the ion. In contrast to phase

noise, there is also a well-characterized static linear mag-
netic field gradient across the length of ion chain that
results in a qubit frequency shift of ±4 Hz shift relative
to the center ion. In Ref. [24] the chip was rotated so
that the magnetic field was constant throughout the chip,
as opposed to the linearly varying magnetic field in this
geometry. If this shift is not accounted for in software
then it will create relative phase shifts between the ions
that also appear as a coherent idling error.

We first study the individual ferromagnetic and anti-
ferromagnetic GHZ states which compose the logical
states. These states are:

|FMn〉 =
1√
2

(|000 . . .〉+ |111 . . .〉) ,

|AFMn〉 =
1√
2

(|010 . . .〉+ |101 . . .〉) ,
(11)

A code with n × n qubits has a logical state which is a
tensor product of n of these states. The logical states
and ion-to-qubit mappings for the [[9,1,3]] ferromagnetic
and anti-ferromagnetic Shor’s codes are shown in Fig. 1.

After these states are prepared, we perform a Ram-
sey experiment with variable wait time to measure the
coherence of the state as a function of time, as in Ref.
[24]. The result of this experiment for different GHZ
sizes is shown in Fig. 2, where the contrast corresponds
to 〈X⊗n〉. For the ferromagnetic states in Fig. 2a, we ob-
serve an initial fast decay of the contrast on a timescale
that corresponds to the correlation time of phase noise
in our system, followed by a longer slow decay. The anti-
ferromagnetic states in Fig. 2b, exhibit only a slow decay,
indicating that these states are more resistant to the cor-
related phase errors present in the system. Using these
states allows the code to inherit their robustness. While
the 4-qubit AFM GHZ state is predicted to be completely
insensitive to our dominant idling error, we do observe
a small decay over 10 ms, indicating small contributions
from a other error sources. The additional entangling
gates penalize the larger GHZ states, and as shown the
increased robustness to coherent idling error is not quite
enough to outweigh this cost for the 4-qubit AFM state.

We now directly compare the performance of [[9,1,3]]
FM and AFM Shor’s codes in Fig. 3, using a logical
qubit Ramsey experiment identical to the one performed
in Ref. [24]. In this experiment, three separate 3-qubit
GHZ states are constructed, as shown in Fig. 1. Using
the structure of the codestates, we apply one round of
error correction based off the measurement outcomes of
the data qubits [24], leading to the three curves in Fig. 3.
Raw curves are constructed by the total parity of the
9 data qubits after a measurement in the X basis, error
corrected curves reconstruct the stabilizer outcomes from
these measurements and apply one correction, while er-
ror detected curves reconstruct these stabilizer outcomes
and then discard any run in which the stabilizers are vi-
olated. In this manner, error correction corresponds to
“post-processing” of the data, whereas error detection
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a. b.

FIG. 2: Fringe contrast after a Ramsey experiment on
the (a) ferromagnetic and (b) anti-ferromagnetic GHZ
states for different distances. The dashed lines are
present to serve as guides to the eye.

a. b.

FIG. 3: Experimental dephasing performance of (a)
ferromagnetic and (b) anti-ferromagnetic [[9, 1, 3]]
Shor’s code logical states. The Ramsey fringe amplitude
gives the coherence of the states. The data is fit to
A exp(−Γt), where Γ is 1/τ , the lifetime of the state.
Fitting parameters are presented in Appendix B.

corresponds to “post-selection” of the data. A single er-
ror on the data qubits flips the outcome of the raw data,
two errors are required to flip the outcome of the cor-
rected data, and three errors are needed to flip the out-
come of the detected data. The ferromagnetic code per-
forms worse than the anti-ferromagnetic code in all three
cases. We can calculate logical T2∗ times of 115(10) ms
in the ferromagnetic case and 450(150) ms in the anti-
ferromagnetic case.

The logical states presented in Eq. 9 are composed of
three separate GHZ states, allowing us to study their
performance separately in Fig. 4. The reduction in con-
trast for the central AFM GHZ state is due to lower
gate fidelities in its preparation circuit, not coherent er-
ror. By considering the spatial arrangement of the GHZ
states, as shown in Fig. 1, we can study the impact of
the static magnetic field gradient on the code. Any state
which balances the number of excitations in each GHZ
state is resilient to dynamic noise of the form described
in Eq. 1 and shown in Fig. 2. Our particular mapping,
however, is also robust to magnetic fields which slowly
vary in space because our states have errors cancel with
their nearest neighbors. In Fig. 4, we see that the mag-

a. b.

FIG. 4: Individual GHZ state Ramsey fringes after a
20 ms wait time for the (a) ferromagnetic and (b)
anti-ferromagnetic [[9,1,3]] Shor’s code |0〉L logical
states. Colors are selected to match the GHZ state
coloring from Fig. 1. The data is fit to A cos(3φ+ φ0).
Fitting parameters are presented in Appendix B.

netic field appears to vary linearly across the axis of the
trap, leading to GHZ states experiencing different phase
shifts depending on their position in the chain. While
this error does not decrease the coherence of individual
GHZ states, the performance of the code depends on the
three GHZ states remaining in phase with each other.
The physical states shown in Fig. 4a, which correspond
to the FM code in Fig. 1, experience higher relative phase
shifts than their AFM counterparts in Fig. 4b. If we as-
sume that the magnetic field is linearly increasing along
the chain, we can define the angle of a qubit at integer
position x as

θx = θ0 + xδ, (12)

where δ is the difference in phase between a qubit in
position x and the one in x + 1, and θ0 is the phase
accumulated by the central ion. Under these conditions,
the phase accumulated for the FM GHZ states in Fig. 1
would be:

θleft = θ−6 + θ−5 + θ−4 = 3θ0 − 15δ,

θcenter = θ−2 + θ0 + θ2 = 3θ0,

θright = θ4 + θ5 + θ6 = 3θ0 + 15δ.

(13)

In comparison, the phase accumulated for the AFM GHZ
states would be:

θleft = θ−6 − θ−5 + θ−4 = θ0 − 5δ,

θcenter = θ−2 − θ0 + θ2 = θ0,

θright = θ4 − θ5 + θ6 = θ0 + 5δ,

(14)

corresponding to a threefold reduction in accumulated
phase for the individual GHZ states. These accumulated
phases take the place of θ in Eq. 3 when error correction
is applied using a distance-3 code. A threefold reduction
in accumulated phase would correspond to an approxi-
mately 81-fold reduction in logical error rate, assuming
no other error sources existed in the system.
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In Appendix C we discuss a variation on this exper-
iment which allowed us to experimentally confirm our
understanding of the magnetic fields present in our sys-
tem. Of course, if the magnetic fields are static and well
known, a preferable option would be to adjust the qubit
frequencies in classical control. However this option is
not possible for unknown drifts which may occur during a
computation. Additionally, in trapped-ion architectures
that involve extensive shuttling operations [? ], qubits
will acquire a path dependant phase that needs to be
calibrated and pre-calculated. Codes robust to this error
may reduce calibration overheads and circuit compilation
complexity.

Our primary conclusion is that changing stabilizer par-
ity allow us to control the interference between correlated
idling errors. We present a family of codes, which we re-
fer to as anti-ferromagnetic Shor’s codes, which inherit
the one sided threshold of standard Shor’s codes while
also possessing a threshold against correlated idling noise
in the other basis. The even-distanced versions of our
code family are an example of the codes described in
Ref. [18]. The particular choice of qubit mapping we
use also idling errors which are slowly varying in space.
Such idling-resistant codes could be used in a concate-
nated scheme much like the one discussed in Ref. [17]. We
present experimental data from a trapped-ion quantum

computer which demonstrates our codes showing marked
improvements in performance relative to the standard
Shor’s code. We can also change parities preserved by
higher weight stabilizers, as considered in Appendix A,
leading to less drastic cancellations. These modifications
still leave error correcting performance against uncorre-
lated stochastic errors unchanged, while improving the
resilience to correlated idling error, and could be imple-
mented for any CSS code.
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