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The Rashba-Dresselhaus effect is the splitting of doubly degenerate band extrema in semiconduc-
tors, accompanied by the emergence of counter-rotating spin textures and spin-momentum locking.
Here we investigate how this effect is modified by lattice vibrations. We show that, in centrosym-
metric non-magnetic crystals, for which a bulk Rashba-Dresselhaus effect is symmetry-forbidden,
electron-phonon interactions can induce a phonon-assisted, dynamic Rashba-Dresselhaus spin split-
ting in the presence of an out-of-equilibrium phonon population. In particular, we show how Rashba,
Dresselhaus, or Weyl spin textures can selectively be established by driving coherent infrared-active
phonons, and we perform ab initio calculations to quantify this effect for halide perovskites.

The interplay between crystal symmetry and spin-orbit
coupling (SOC) is central to many phenomena in con-
densed matter physics, including multiferroicity [1, 2],
topology [3], chirality [4, 5], the anomalous Hall effect [6],
and skyrmions [7]. An important manifestation of SOC
is the Rashba-Dresselhaus (RD) effect, whereby degen-
erate electron bands split and acquire counter-rotating
spin orientations (Fig. 1) [8–11]. This effect can be used
to generate and manipulate spin currents in Datta-Das
transistors [12, 13], minimize spin dephasing in quantum
devices [11, 14], and realize topological superconductivity
and Majorana modes [15]. In current realizations, the RD
effect is tuned electrically via a gate [13, 16] or chemically
by balancing spin-orbit splitting and inversion-symmetry
breaking [17]. Another theoretical possibility could be to
induce this effect by dynamically breaking inversion sym-
metry [18–20].

In this work we develop the theory of dynamical con-
trol of the RD effect via phonon-assisted processes. To
enable maximum tunability, we focus on non-magnetic
centrosymmetric crystals, for which the RD effect is for-
bidden. We identify the phonon symmetry selection rules
that lead to RD spin splitting with besopke Rashba,
Dresselhaus, or Weyl spin textures, and we identify an
ab initio descriptor to quantify this effect. As a first ap-
plication, we calculate the dynamic RD effect for lead
halide perovskites, and we show that it is within the de-
tection range of current ultrafast experiments.

The RD effect can be understood starting from the
standard SOC Hamiltonian:

VSOC = − e ~
4m2c2

E · σ × p , (1)

where ~, e, m, c, σ, and p denote Planck constant, elec-
tron charge and mass, speed of light, Pauli vector, and
electron momentum, respectively. E is the electrostatic
field experienced by the electrons. In the conventional
Rashba effect one considers a uniform electric field along
the Cartesian direction ẑ as in Fig. 1(a), and a parabolic

electron band with minimum at the Brillouin-zone cen-
ter, so that VSOC is proportional to σxky − σykx, where
k is the Bloch wavevector of the electron. The related
Dresselhaus coupling term is of the form σxkx − σyky.
The resulting band structures and spin textures are il-
lustrated in Fig. 1(b) and (c)-(d), respectively.

In the absence of an external electric field, the vector
E in Eq. (1) is replaced by the gradient of the single-
particle potential energy, E = (1/e)∇V , which depends
parametrically on the atomic coordinates, for example
the Kohn-Sham potential. Here, we ask the following
question: under which conditions, in crystals with both
space and time inversion symmetry, lattice vibrations can
induce a dynamic RD effect via the dependence of V on
the atomic positions.

FIG. 1. (a) In the Rashba-Dresselhaus effect the inversion
symmetry of the crystal is broken, for example by an electric
field. This lifts the spin degeneracy of the band minimum.
(b) As a result, the band minimum is lowered by the Rashba
energy ER, and is displaced by the Rashba wavevector kR.
Crystal symmetry dictates whether the system assumes a (c)
Rashba or a (d) Dresselhaus spin texture as indicated by the
color of the bands and the arrows.
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To answer this question, we consider the phonon-
induced spin-orbit coupling Hamiltonian in second-
quantized notation:

V̂dRD = N−
1
2

∑
k,q,s,s′

gs′s(k+q,k) ĉ†k+qs′ ĉks(âq+â†−q) ,

(2)
where k and q are electron and phonon wavevectors be-
longing to a uniform Brillouin zone grid with N points,
ĉ†ks/ĉks and â†q/âq are creation/annihilation operators for
electrons and phonons, respectively, and the subscript
s = 1, 2 is the spinor label (‘dRD’ stands for ‘dynamic
RD’). The spin-phonon coupling matrix elements are:

gs′s(k + q,k) =
~

4m2
ec

2
〈ψk+qs′ |σ · ∇(∆qV )× p |ψks〉 ,

(3)
where ψks and ψk+qs′ are Pauli spinors, and ∆qV rep-
resents the variation of the potential when the ions un-
dergo a collective displacement along the phonon eigen-
mode with wavevector q. For notational simplicity we
omit electron band and phonon branch indices; complete
expressions are given in Supplementary Note 1 [21].

Thermal equilibrium – For a system with both time-
reversal and inversion symmetry, it is intuitive that
phonon-induced spin splitting must be forbidden in ther-
mal equilibrium, because thermal fluctuations do not
break space and time symmetries, as illustrated in Sup-
plemental Fig. S1(a)-(c). Albeit intuitive, a rigorous
proof of the lack of dynamic RD spin splitting in ther-
mal equilibrium is nontrivial. Here we only sketch the
key steps of the proof, leaving the complete analysis to
Supplementary Notes 2 and 3.

We consider the degenerate states |±k, 1〉 and |±k, 2〉,
obtained from the ground state |0〉 by creating an extra

electron in the conduction band, |ks〉 = ĉ†ks|0〉. We an-

alyze the effect of V̂dRD using many-body perturbation
theory to all orders. Odd orders involve the diagonal-
ization of terms that contains products of the matrix ele-
ments 〈ks|V̂dRD|k′s′〉 with s, s′ = 1, 2 and k′ = ±k. Each
term of V̂dRD either creates or annihilates one phonon,
therefore V̂dRD|k′s′〉 and |ks〉 differ in their phonon oc-
cupations and the matrix elements vanish. Even orders
(say 2n-th) involve products of matrix elements in the
form:

ps′s =
∑
s1

∑
s2

· · ·
∑
s2n−1

gs′s1gs1s2 · · · gs2n−1s , (4)

where we omit electron momenta for clarity. In Supple-
mentary Note 2 we show that parity and time-reversal
symmetry require the matrix element to transform as fol-
lows under spin flip:

gs̄′s̄(k
′,k) = (−1)s

′−s+1eiϕq g∗s′s(k
′,k) , (5)

where s̄ is the spin label other than s, q = k′−k, and ϕq

is a phase associated with the transformation of vibra-
tional eigenmodes upon inversion. Using Eq. (5) inside

Eq. (4) we find ps̄′s̄ = (−1)s
′−sp∗s′s, hence p∗12 = −p21.

Since V̂dRD is Hermitian, we also have p∗12 = p21, hence
p12 = p21 = 0 and even-order terms vanish. In Supple-
mentary Note 3 and 4 we analyze in detail the second-
order and fourth-order energy shifts, and in Supplemen-
tary Note 5 we consider the case of finite temperature.
This analysis confirms that phonons do not cause spin
splitting in thermal equilibrium.

Out-of-equilibrium phonons – Next we move to a non-
thermal phonon population. We focus on coherent Glau-
ber states [Supplemental Fig. S1(d)], which can be gen-
erated and detected using ultrafast pump-probe tech-
niques [22]. A coherent state associated with the phonon
of momentum q and frequency ωq can be written as:

|ks, u〉 = ĉ†ks exp(−Nu2/2) exp
(
N1/2u â†q

)
|0〉 , (6)

where u(t) is the instantaneous fluctuation amplitude
(this expression is for q = 0; when q 6= 0 the exponent is

replaced by â†q+â†−q, see Supplementary Note 6). The in-
stantaneous expectation value of the unperturbed Hamil-
tonian over this coherent state is Ek,u = εk + u2N ~ωq,
where εk and ωq are the non-interacting electron energy
and phonon frequency, respectively. Therefore u2 quan-
tifies the number of excited phonons per crystalline unit
cell. Since |ks, u〉 is an eigenvector of the annihilation op-
erator â†q, the expectation value of the atomic displace-
ments ∆τκ on this state is nonzero:

〈∆τκ〉t = u(t) 2(~/2Mκωq)1/2 eκ , (7)

where Mκ is the mass of the κ-th atom, and eκ is the
phonon polarization. Unlike vibrations in thermal equi-
librium, this state induces time-dependent inversion sym-
metry breaking.

To probe the consequences of symmetry breaking, we
evaluate the instantaneous energy expectation value of
the total Hamiltonian:

〈ks, u| Ĥ0 + V̂dRD |ks′, u〉 = δs′sEk,u + 2 δq,0 u gss′(k,k) .
(8)

From the Kronecker delta δq,0 we see that spin splitting
is only allowed when q = 0. This selection rule arises
from the fact that only zone-center phonons can break
the inversion symmetry of the crystal.

Time-reversal invariance implies that the vibrational
eigenmodes can be chosen to satisfy eκ(−q) = e∗κ(q).
Furthermore, invariance under parity requires eκ̃(−q) =
−eiϕqeκ(q), where the ion κ̃ is the inversion partner of
κ, and ϕq is the same as in Eq. (5) [23]. For zone-
center phonons, these relations imply that the eigen-
modes have definite parity and ϕq = π / 0 for even/odd
phonons. Using this observation in Eq. (5), we obtain
gss̄(k,k) = ∓ gss̄(k,k) for even/odd phonons. It follows
that spin splitting is allowed only for zone-center odd-
parity modes.
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To elucidate the nature of the spin-split bands, we di-
agonalize Eq. (8) by considering a parabolic band of mass
m∗ with extremum at the zone center. After performing
a Taylor expansion of gss′(k,k) at small k, and noting
that gss′(0, 0) = 0 as a consequence of inversion symme-
try (see Supplementary Note 7), we obtain:

∆εk = ±2ER |k|/kR , (9)

where the Rashba energy and wavevectors are ER =
~2k2

R/2m
∗ and kR = ‖k̂ · ∇k gss′(k,k)‖u

√
2m∗/~2, re-

spectively. Here k̂ = k/|k| and ‖·‖ is the Frobenius norm
in the spin indices. Eq. (9) shows that the splitting van-
ishes at k = 0, and increases linearly with k away from
the zone center. This is precisely the hallmark of the
Rashba effect encoded in Eq. (1). The resulting elec-
tronic bands are sketched in Fig. 1(c). In the case of
driven oscillations, the splitting and the associated spin
texture will fluctuate with the amplitude u(t).

In Supplementary Note 8 we show that that the
Rashba energy in Eq. (9) for the Fröhlich interaction as-
sociated with longitudinal-optical (LO) phonons in polar
crystals [24] is negligible. Combined with the fact that
only transverse-optical (TO) modes are excited by light
in bulk crystals, this result suggests that the search for a
dynamic RD effect should focus on zone-center TO modes
of ungerade (u) symmetry, namely the IR-active modes
of polar crystals. Since in centrosymmetric crystals the
modes cannot simultaneously be IR- and Raman- active,
we must rule out the possibility of directly realizing RD
splitting using a Raman-active mode (unless the Raman
mode is used to excite an IR mode via nonlinear cou-
plings [25]).

To examine the spin texture associated with the above
RD splitting, we consider the symmetry of the spin-
phonon matrix element in Eq. (3). Let us call g the
2× 2 matrix with elements gss′(k,k) in the spinor labels
s, s′. Using k · p perturbation theory and the algebra of
Pauli matrices, in Supplementary Note 9 we show that g
can be expressed as:

g =
∑
αβ

kαGαβ σβ , (10)

where the components of the real-valued 3 × 3 ma-
trix Gαβ take the form G11 = (~2/8m2

ec
2)〈0, 1|[σ ×

∇]α∆0V )|0, 2〉 + c.c. , and similarly for the other ele-
ments. The complete matrix is given in Supplementary
Note 9, Eq. (S81). Direct inspection of Eq. (10) shows
that the isotropic part of Gαβ leads to couplings like
kxσx + kyσy + kzσz, and therefore it induces a Weyl spin
texture. The traceless symmetric part of Gαβ leads to
couplings like kxσx − kyσy or kxσy + kyσx, hence it in-
duces a Dresselhaus spin texture. The antisymmetric
part of Gαβ leads to couplings like kxσy − kyσx, which
correspond to a Rashba spin texture. Altogether, the
present findings indicate that a dynamic RD effect with

FIG. 2. (a) Rashba energy for every IR-active mode in MAPI
and for the conduction band bottom. The energy is evaluated
for Nph = u2 = 1 excited phonon per orthorhombic unit cell.
(b) Same as in (a), but for the valence band of MAPI. (c)
Dependence of the Rashba energy on the number of phonons
per unit cell excited in the modes marked by asteriscs in (a)
and (b): the B2u Pb-I-Pb rocking mode at 3.2 meV, and
the B3u Pb-I stretching mode at 7.7 meV. These modes are
schematically illustrated by the ball-and-stick models.

similar phenomenology as the conventional (static) effect
is theoretically possible, and that the spin texture can be
tuned by exciting IR modes of select symmetry.

Proposed experiments – To realize a dynamic RD effect
using out-of-equilibrium coherent phonons, we propose to
perform THz pump/optical probe experiments on halide
perovskites, following recent work on methylammonium
lead iodide (MAPI, CH3NH3PbI3) [20, 26, 27] which is
known to have a large SOC [28]. Below 160 K MAPI
crystallizes in a orthorhombic structure with centrosym-
metric space group Pnma (Supplementary Fig. S4). This
system admits 20 IR-active optical phonons, associated
with the deformation of the PbI6 octahedra [29]. Figure 2
shows the Rashba energy ER for each of these modes, as
calculated using Eq. (9). For the conduction band, we
find that the B2u mode at 3.2 meV, which corresponds to
the Pb-I-Pb rocking vibration, provides the largest spin
splitting [Fig. 2(a)]. For the valence bands, the largest
splitting is found with the B3u mode at 7.7 meV, cor-
responding to the Pb-I stretching vibration [Fig. 2(b)].

The maximum RD splitting achievable in experiments
is limited by the stability of the crystal under illumi-
nation. According to Lindemann’s criterion [30], melt-
ing occurs when the ionic displacements exceed approx-
imately 10% of the equilibrium bond length. An up-
per bound to the displacement in Eq. (7) is ∆τmax =
2(Nph~/2Mminωq)1/2, where Mmin is the smallest atomic
mass. Using the mass of iodine and the frequency of
the B2u mode, and setting ∆τmax to 10% of the Pb-I
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FIG. 3. (a) Allowed spin textures in the kx-kz plane for Au and B2u modes. The Au mode is compatible with a Weyl or
Dresselhaus texture, the B2u mode admits a Dresselhaus or Rashba texture. (b)-(c) Upon driving the Au mode, the spin
texture of the conduction band assumes a Dresselhaus pattern, similar to Fig 1(d). The ball-and-stick model of this mode is
shown in (d). (e) Spin-split band structure resulting from coherently driving the B2u mode in MAPI. (f)-(g) Driving the B2u

mode results into a Rashba spin texture, similar to Fig 1(c). (b) and (f) show the spin texture for the conduction band bottom
projected on the kx-kz plane. (c) and (g) show the spin texture color-coded on the band structure. (h) The RD band splitting
associated with a periodically driven B2u mode induces a fluctuating peak-dip-hump structure in the PL spectrum of MAPI.

bond length (3.2 Å), we find Nph = 50. Figure 2(c)
shows that, even for considerably smaller vibrational am-
plitudes, Rashba energies in excess of 30 meV should be
within reach.

A representative band structure snapshot correspond-
ing to the B2u mode is shown in Fig. 3(a). These bands
describe the system at a given time t. Since the B2u mode
oscillates with a period of 1.3 ps, and the electron life-
time near the conduction band edges of MAPI is ∼10 fs
at 160 K [31], electrons effectively experience a quasi-
static potential. Therefore the notion of ‘instantaneous’
bands is meaningful in this case.

The spin textures for the Au and B2u excitations are
shown in Fig. 3(b), (c), (f), and (g). To understand the
spin patterns, let us consider the elements of the ma-
trix G in Eq. (10) for odd-parity modes in the D2h point
group. If Γα is the irreducible representation of the op-
erator [σ ×∇]α(∆0V ) appearing in Eq. (10), group the-
ory [32] determines which matrix elements of Gαβ can be
nonzero. Using Supplementary Table S1 A, we find that
for any given representation Γα only a single component
β yields a nonzero element. In particular, these are β = 3
(Γα = B1g), β = 2 (Γα = B2g), and β = 1 (Γα = B3g),
which is exactly the representation of σβ as expected.
Next, we need to determine Γα for a given phonon mode.
In Supplementary Table S1 B we give the product of the
irreducible representations of Pauli matrix, gradient, and
phonon mode for the different Cartesian directions, and
we indicate the resulting allowed couplings between k

and σ, corresponding to nonzero elements of the matrix
Gαβ . This analysis indicates that the allowed couplings
correspond to kxσx, kyσy, kzσz for the Au mode, kxσy,
kyσx for the B1u mode with polarization along z, kxσz,
kzσx for the B2u mode with polarization along y, and
kyσz, kzσy for the B3u mode with polarization along x.
The orthorhombic symmetry does not dictate the sign
relationships between the allowed couplings, so the signs
must be determined by direct inspection of the spin tex-
ture. In Fig. 3(e) we show that a B2u mode is compatible
with a Rashba or Dresselhaus spin pattern and the Au

mode with a Weyl or Dresselhaus texture. By manu-
ally inspecting the spin patterns we confirm that our ab
initio calculations follow the above symmetry considera-
tions: For the Au mode a Dresselhaus pattern is estab-
lished [Fig. 3(b) and (c)], whereas the B2u mode leads to
a Rashba pattern [Fig. 3(f) and (g)].

The key experimental challenge to realize the dynamic
RD effect proposed here, is to pump coherent oscillations
in the low-THz range (the B2u mode of MAPI has a fre-
quency ∼0.8 THz) without damaging the sample [33, 34].
A promising approach that has emerged during the past
few years is to exploit resonant sum-frequency excitation
processes [22, 33]. This approach was demonstrated for
Te crystals (2 THz source) [34], SrTiO3 (3 THz) [35],
Bi2Se3 (1 THz) [36], LiNbO3 (1 THz, 4 THz, and
18 THz) [37–39], and CdWO4 (2 THz) [40]. More re-
cently, single-cycle THz pulses have been used to drive
coherent oscillations in MAPI [26]. In his work, the au-
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thors were able to detect coherent oscillations in the dif-
ferential reflectivity spectra lasting as long as 5 ps, which
should be more than sufficient to realize the effect pro-
posed here.

A possible way to probe the driven dynamic RD ef-
fect would be via time-resolved ARPES experiments. In
such experiments the shape of the constant-energy cuts
should oscillate between a circle in absence of RD split-
ting, as observed in Ref. 41, and two distinct circles
for Rashba-split bands. Alternatively one could moni-
tor optical properties such as the oscillator strength of
the first excitonic peak [42], which is expected to be
sensitive to the fluctuating RD splitting of the band
extrema [26]. As an illustrative example, we have cal-
culated the time-revolved photoluminescence (PL) spec-
trum of MAPI with the B2u coherently driven (see Sup-
plementary Methods). Fig. 3(h) shows that the dy-
namic RD effect induces a discernible fluctuating peak-
dip-hump structure in the PL signal.

In summary, we developed an ab initio theory of the
dynamic, phonon-assisted Rashba-Dresselhaus effect and
proposed experimental realizations. We showed that,
in centrosymmetric non-magnetic crystals, it is possible
to establish a spin splitting with Rashba, Dresselhaus,
or Weyl spin texture by driving coherent oscillations of
infrared-active optical modes of select symmetry. Our
work shows that phonons may provide new strategies for
harnessing the spin degrees of freedom in quantum ma-
terials.
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thors acknowledge the Texas Advanced Computing Cen-
ter (TACC) at The University of Texas at Austin for
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