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It has recently been discovered that random quantum circuits provide an avenue to realize rich
entanglement phase diagrams, which are hidden to standard expectation values of operators. Here
we study (2+1)D random circuits with random Clifford unitary gates and measurements designed
to stabilize trivial area law and topologically ordered phases. With competing single qubit Pauli-Z
and toric code stabilizer measurements, in addition to random Clifford unitaries, we find a phase
diagram involving a tricritical point that maps to (2+1)D percolation, a possibly stable critical
phase, topologically ordered, trivial, and volume law phases, and lines of critical points separating
them. With Pauli-Y single qubit measurements instead, we find an anisotropic self-dual tricritical
point, with dynamical exponent z ≈ 1.46, exhibiting logarithmic violation of the area law and an
anomalous exponent for the topological entanglement entropy, which thus appears distinct from any
known percolation fixed point. The phase diagram also hosts a measurement-induced volume law
entangled phase in the absence of unitary dynamics.

Introduction - In the past few years, it has been real-
ized that the interplay between measurements and uni-
tary dynamics can give rise to rich physics in the dynam-
ics of quantum entanglement [1–37]. Originally, it was
shown that when (1 + 1)D random unitary dynamics are
intercepted by local measurements at a rate p, the sys-
tem can undergo a phase transition from a volume law
entangled phase at p < pc to an area law entangled phase
at p > pc [1–3]. Importantly, these phase transitions are
entirely hidden from simple expectation values of opera-
tors but are manifest in quantum-trajectory averaged dy-
namics of entanglement measures, like the entanglement
entropy (EE) [1, 2, 4, 21].

Recently, it was shown that competing measurements
can give rise to entanglement transitions even in the ab-
sence of unitary dynamics [21, 22, 28, 34]. Furthermore,
it was discovered that distinct (1 + 1)D area law phases
can remain well-defined in the context of random quan-
tum circuits[21, 22].

In this work, we consider a class of (2 + 1)D random
quantum circuits that extrapolate between (1) a topolog-
ically ordered phase, characterized by non-zero topologi-
cal entanglement entropy (TEE) [38, 39] and realized by
measuring the Z2 toric code stabilizers [40], (2) a volume
law entangled phase realized by random Clifford unitaries
and, (3) the trivial, area law phase realized by single-
site measurements. As for the single-site measurements,
we study both Pauli-Z and Pauli-Y measurements. This
generalizes the work of Ref. [21] to (2 + 1)D where sym-
metry restrictions are not necessary. Similar to Ref. [21],
at each step of the circuit, an element corresponding to
one of the three phases is selected at random with prob-
ability pg, pu, ps respectively (subject to the condition
pg + pu + ps = 1).

Two typical arrangements of our circuits together
with numerically calculated phase diagrams are shown
in Fig. 1. We find stable topological, trivial area law,
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FIG. 1. (a) A typical measurement-only random circuit. (b)
Phase diagram of (2+1)D measurement-only random circuits.
(c) A typical hybrid random circuit. (d) Phase diagram of
(2+1)D hybrid random circuits. (e) Entanglement dynamics
at the py = 0 line of measurement-only random circuits (as
well as the pu = 0 line of hybrid random circuits) maps to a
classical bond percolation problem on a cubic lattice.

volume law (even without unitary dynamics), and crit-
ical phases. Notably, we also find evidence of several
qualitatively distinct multi-critical points.

In the absence of unitary dynamics and in the case
where single qubits are only measured in the Pauli-Z
basis, we find an exact analytical mapping between a 3D
classical bond percolation problem and the dynamics of
entanglement. We show that EE of rectangular regions
are related to the number of clusters shared between that
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region and the rest of the system in percolation picture.
On the other hand, when single qubits are only mea-

sured in the Y direction, we show that an Ising duality
restricts the phase diagram. We find a novel tricritical
point at the self-dual point (pz, py) = (0, 0.5), separating
topological, trivial area law, and volume law phases, in
which the critical behavior of the system is qualitatively
different from the rest of the phase diagram. Intriguingly,
the circuit has non-trivial subsystem symmetries at this
point.

Extensive numerical study of the phase diagram shows
that away from the self-dual point discussed above: (1)
The critical points are area law entangled, similar to
usual (2 + 1)D scale invariant field theories. The sub-
leading correction to this area-law scaling also agrees
with results found in a variety of (2 + 1)D scale invari-
ant field theories [41–44] (in contrast to the results of
Ref. [30]). (2) We find a correlation length exponent
ν = 0.8(1) and a dynamical critical exponent z = 1,
which are set by the classical 3D bond percolation the-
ory. Within margin of error, these exponents stay con-
stant along phase boundaries.

However, the critical dynamics at the self-dual pz =
0, py = 0.5 point is entirely distinct and characterized
by: (1) Logarithmic corrections to the area law scaling
of EE reminiscent of Fermi liquids. (2) Non-percolation
correlation length exponent ν = 0.47(8) and a dynamical
critical exponent z = 1.46(6). (3) A non-zero anomalous
γ = 1.0(2) exponent for the TEE (see Eq. (2)).
Models - We consider N = L2 qubits laid on the ver-

tices of a two dimensional periodic square lattice of linear
length Lx = Ly = L. Three different sets of gates are
considered where each gate set, when applied exclusively,
drives the system into one of distinct phases discussed
above.

For the topological phase, we consider measurements
corresponding to toric code stabilizers,

gi,j =

{
Xi,j Xi+1,j Xi,j+1 Xi+1,j+1 i+ j is even

Zi,j Zi+1,j Zi,j+1 Zi+1,j+1 i+ j is odd
,

(1)
where (i, j) denotes the coordinates and Xi,j and Zi,j are
the Pauli operators acting on the corresponding qubit.
We denote the set of all gi,j operators as Mg.

For the trivial phase, we can pick any set of single qubit
measurements. We use MP to denote the set of single
qubit Pauli-P operators (P could be either X,Y or Z).
For the volume law phase, we use the set C4 consisting of
four qubit Clifford unitaries Ui,j , acting on neighboring
qubits located at (i, j), (i+1, j), (i, j+1) and (i+1, j+1).

We study two types of random circuits. First, we
consider measurement-only random circuits comprised of
only measurements. More specifically, we start with the
product state |0〉⊗N and at each updating step, we mea-
sure an operator which is chosen uniformly at random
from eitherMZ with probability pz,MY with probabil-

ity py or Mg with probability pg = 1 − pz − py. Each
time step is defined as N consecutive updating steps. A
typical example of such a circuit is shown in Fig. 1a.

We also consider hybrid random circuits, which are
comprised of unitary gates as well as measurements. We
start with |0〉⊗N and at each updating step we either
apply a gate chosen uniformly at random from C4 with
probability pu or measure an operator chosen uniformly
at random from MZ or Mg with probabilities pz and
pg = 1− pu − pz respectively.
Order Parameters - One can use TEE [38, 39] denoted

by Stopo to distinguish phases. Stopo equals 1 for the
eigenstates of the toric code Hamiltonian while it is 0 for
quantum states in the trivial phase. As for the volume
law phase, the contribution which is proportional to the
size of each region cancels out and one may expect Stopo

to vanish in this phase as well. However, the (1 + 1)D
results[4, 35] suggest that the EE of a region has sub-
extensive contributions [33, 35] in the volume law phase,
which results in a system-size dependent value for Stopo.
Our numerical results support this scenario.

We also utilize the ancilla order parameter introduced
in Refs.[5, 6] which captures the transition in purifica-
tion dynamics. It is defined using Na ancilla qubits in
addition to the system qubits, as follows. First a random
local Clifford unitary circuit of depth O(N) is applied to
the entire set (system + ancilla) of qubits, which results
in a maximally entangled stabilizer state of all qubits.
Next, the system qubits are evolved under the random
quantum circuit of interest for T time-steps and then the
EE of the set of all ancilla qubits, denoted by Sa(T ), is
measured. In the T →∞ limit, the ancilla system will be
entirely disentangled from the system. However, this pu-
rification dynamics happens with a rate which depends
on the phase of the system. In the trivial area law phase,
the ancilla qubits will be disentangled in constant time,
independent of the system size. In the topological phase,
although the bulk disentangles in constant time, the logi-
cal qubits remain entangled with the ancilla system until
a time exponentially large in system size. In the volume
law phase, the bulk remains entangled with the ancilla
qubits up to exponentially large time-steps. Therefore
for large enough system sizes and at T = O(L), Sa(T )
will be 0, NL and Na in trivial, topological and volume
law phases respectively, where NL denotes the number of
logical qubits in the topological phase (NL = 2 for the
torus topology). We assumed that NL � Na � L2. We
use Na = 10 ancillas throughout this work.

We note that while in our setting the purification tran-
sition occurs concurrently with TEE phase transition,
they are not exactly the same[5]. One can, for instance,
repeat the study here on a triangulation of a 2-sphere,
for which NL = 0, so purification protocols cannot dis-
tinguish the trivial and topological phases, while TEE
can.

Results - We start by studying the phase diagram of the
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measurement-only circuits. First, we focus on the py = 0
line. Notably, as shown in the Supplemental Material,
there is an exact mapping which maps the entanglement
dynamics at this line of the phase diagram to a classical
bond percolation problem on a 3D cubic lattice. Fig. 2a
and b show the TEE and the ancilla order parameter
as a function of pz. As can be seen from the plots, there
exists a stable topological phase extending up to pc ≈ 0.2,
at which point a continuous phase transition takes the
system to the trivial phase.

On general grounds, we may assume the following scal-
ing forms governing the order parameters near the phase
transition

Stopo(p;L) = LγF ((p− pc)L1/ν), (2)

Sa(p, t, L) = G((p− pc)L1/ν , t/Lz), (3)

where F (x) and G(x) are arbitrary functions and ν and z
are the correlation length critical exponent and dynam-
ical critical exponent respectively. We find our data for
the percolation critical point to be consistent with set-
ting γ to 0. By collapsing Stopo near the critical point
for different system sizes, we find pc = 0.188(2) and
ν = 0.85(6). Note that ν is consistent with the values
obtained from numerical simulation of classical percola-
tion in 3D[45]. By investigating the time dependence of
the ancilla order parameter Sa at p = pc, we find it to
be consistent with z = 1 (see Supplemental Material for
relevant plots). Collapsing Sa at t = O(L) then yields
ν = 0.88(7), in agreement with the value found via col-
lapsing Stopo.

Another quantity of interest is the scaling form of the
EE with sub-system size at the critical point. We con-
sider the cylindrical region R with a smooth boundary,
which has length x in one direction and goes all the way
around the torus in the other direction. Let SR(x) de-
note its EE. Note that the boundary length |∂R| is 2L,
independent of x. As is discussed in the Supplemental
Material, in the percolation picture this quantity is re-
lated to the number of clusters with shared support on
region R and its complement.

For a conventional CFT in (2 + 1)D, the non-universal
leading area-law term scales with |∂R| = 2L. The
sub-leading term for a cylindrical subregion is less well-
understood and several forms have been suggested,
among which two are of particular interest. One is a
quasi-(1 + 1)D scaling function, inspired by the exact
form found in (1 + 1)D CFTs, which seems to decently
capture EE scaling in certain (2+1)D gapless models[42]

Sq1d
R (x) = b+ a log

(
L

π
sin
(π x
L

))
, (4)

where b contains the non-universal area law term. The
other relevant scaling form was originally derived for the
quantum Lifshitz model[43] but was found to describe

the EE scaling in various other (2+1)D gapless models
as well, including some (2+1)D CFTs [41].

Sqlm
R (x) = b+ aJλ(x/L) (5)

Jλ(u) = log

(
θ3(iλu)θ3(iλ(1− u))

η(2iu)η(2i(1− u))

)
, (6)

where θ3(z) and η(z) are the Jacobi theta function and
the Dedekind eta function respectively (see Supplemental
Material for definitions). b contains the non-universal
area-law contribution and λ is a model parameter, which
we will use to find the best fit.

Fig. 2c shows SR(x) for system size L = 64 at pc
alongside the best fit of the scaling functions. As can
be seen from the graph, Sqlm

R (x) results in a good fit

(solid line), while Sq1D
R cannot capture the scaling form.

Moreover, we find that the best fit values of a = −1.16(1)

and λ = 0.91(5) for SqlmR remain constant for different
system sizes within the margin of error (see Supplemental
Material). As is shown in the inset, the b parameter scales
linearly with system size, which shows that the leading
term scales with |∂R|.

We now turn our attention to the pz = 0 line. Here the
circuit has a self-duality mapping py → 1−py. Note that
along this line, the system has 2L subsystem symmetries
generated by the product of Y (or stabilizer) operators
along horizontal or vertical loops, e.g.

∏
j Yi,j . On a re-

lated note, there is a unitary transformation which maps
the g and Y operators to the gauge operators of the 2D
Bacon-Shor subsytem code[46, 47] on a square lattice (see
the Supplemental Material for details).

By examining the TEE Stopo(Fig. 2d), we find the
topological phase to be extended up to the self-dual point
py = 0.5. However, at py = 0.5, Stopo grows with system
size, which suggests a non-zero γ exponent. Collapsing
Stopo data near the critical point yields pc = 0.502(1),
γ = 1.0(2) and ν = 0.47(8), which shows that this crit-
ical point is distinct from the percolation fixed point.
Moreover, by looking at the time dependence of the an-
cilla order parameter at py = 0.5, we find that, in con-
trast to the percolation critical point, the best fit to the
scaling form in Eq. 2 corresponds to z = 1.46(8) (see
Supplemental Material for relevant plots). Accordingly,
by collapsing Sa(p, t, L) data at t = O(L1.46) (Fig. 2e),
we find ν = 0.48(3), in agreement with the result obtain
from collapsing Stopo.

As for the cylindrical subregion EE SR(x) (Fig. 2f),
we find that the quasi-1d scaling form Sq1d(x) – rather
than Sqlm(x) – fits the data. However, as is shown in
the inset, the a parameter in Eq.(5) is not constant, but
has a linear dependence on system size L, demonstrating
that the leading term scales as L logL rather than L as is
expected in an area law state. The origin of the L logL
violation is unclear; it may be related to the existence
of subsystem symmetries along the pz = 0 axis, which
translates to the stabilizers of the Bacon-Shor code under
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FIG. 2. Phase transitions across the py = 0 (top row) and pz = 0 (bottom row) lines of the phase diagram for the measurement-
only circuit: (a) Stopo and (b) Sa measured at t = 4L versus pz for fixed py = 0. Insets show the corresponding data collapse.
(c) SR(x) for system size L = 64 at the percolation critical point (pz, py) = (0.188, 0), with the best fit of scaling functions
Sqlm(x) (solid line) and Sq1D (dashed line). The inset is the best fit value of the b parameter in Eq.(5) as a function of L. (d)
Stopo and (e) Sa measured at t = 0.6 L1.46 versus py for fixed pz = 0. Insets show the corresponding data collapse. (f) SR(x)
for system size L = 64 at the self-dual critical point (pz, py) = (0, 0.5), with the best fit of scaling functions Sq1D (solid line)
and Sqlm(x) (dashed line). The inset shows the linear dependence of the best fit value of the a parameter in Eq.(4).

the aforementioned duality map.

The rest of the phase diagram can be determined anal-
ogously (Fig. 1a). We find that the percolation critical
point is part of a critical line that persists up to some
finite non-zero value of py, while the self-dual critical
point at (pz, py) = (0, 0.5) splits into two critical lines
with an intermediate volume law entangled phase in be-
tween, making it tricritical. Interestingly, the numerical
data for all critical points that we considered, other than
(pz, py) = (0, 0.5), are consistent with z = 1 and γ = 0,
with ν remaining close to 0.8, similar to the percolation
critical point. Their EE scaling is given by Sqlm(x) as
well, with an area law scaling leading term. Remarkably,
this makes the self-dual point special in this regard, as
it is the only point in the phase diagram with L logL
violation of area law, as well as quite different ν and
γ exponents. We also note that the extracted a and λ
parameters in Sqlm(x) change throughout the phase di-
agram. The relevant plots can be found in the Supple-
mental Material.

lastly we present the numerical results for the hybrid
random circuit which has unitary dynamics. The pu = 0
line of phase diagram is exactly the same as pz = 0 line of
the measurement-only random circuit. Fig. 3a shows the
ancilla order parameter along pu = 0.01, which signals

the emergence of an intervening phase between topolog-
ical and trivial phases, suggesting that the percolation
critical point is actually a tricritical point in this phase
diagram. In the intermediate phase, Sa does not saturate
to Na = 10, as is expected to be the case in the volume
law phase, but rather increases weakly with system size,
showing indications that it may saturate at a finite value
less than 10. Indeed, for a point in the intermediate phase
and for large systems, Sa(t;L) seems to be a function of
only t/L (Fig. 3b) which is a signature of a critical phase
with z = 1 (see Eq. 3). Moreover, we find that in the
intermediate phase, Sqlm(x) fits the EE of a cylindrical
subregion as well. These points suggest that the interme-
diate phase is a critical region. Nonetheless, we remark
that the observed behavior could be just related to finite
size effects and the proximity to the critical lines.

The critical region extends to the pu axis, ending at
pu ≈ 0.06, which appears to be a tricritical point, al-
though within the precision of this study, we cannot
rule out the existence of a narrow critical region around
pu = 0.06. By collapsing the Sa data along the pu axis,
we find pc = 0.059(1) with critical exponent ν = 0.78(8).
On the right, the critical region ends on the boundary of
the trivial phase and the volume law phase. The trivial
phase itself ends at pu = 0.238(2) along the pu + pz = 1
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FIG. 3. (a) The ancilla EE Sa measured at t = L as a function
of pz for fixed pu = 0.01 in the hybrid random circuit. (b) Sa

as a function of time at (pz, pu) = (0.17, 0.01) in the hybrid
random circuit. The inset is the same, plotted as a function
of t/L.

line. We find ν = 0.80(7) at the corresponding phase
transition (see the Supplemental Material for relevant
plots). The overall phase diagram of the hybrid circuit
in 2D is illustrated in Fig. 1b.
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