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Understanding how atoms interact with hot dense matter (HDM) is essential for astrophysical
and laboratory plasmas. Interactions in high-density plasmas broaden spectral lines providing a
rare window into interactions that govern, for example, radiation transport in stars. However, up to
now, spectral line-shape theories employed at least one of three common approximations:2nd-order
Taylor treatment of broadening operator, dipole-only interactions between atom and plasma, and
classical treatment of perturbing electrons. In this letter, we remove all three approximations for
the first time and test the importance for two applications: neutral hydrogen and highly-ionized
magnesium and oxygen. We found 15-50% change in the spectral line widths, which are sufficient
to impact applications including white-dwarf mass determination, stellar-opacity research, and lab-
oratory plasma diagnostics.

Introduction.— Understanding atomic behavior in hot
dense matter (HDM) is essential for understanding as-
trophysical [1–3] and laboratory [4–6] plasmas but cal-
culations of perturbed atomic structure in the complex
environments of HDM plasmas are challenging. High
temperature introduces randomness into this perturba-
tion. HDM properties depend on the ensemble average
of these random perturbations. This affects ionization
and equation of state because the perturbations dissolve
atomic states into the continuum, an effect known as
ionization-potential depression [7–9]. The perturbations
also broaden spectral lines. This leads to convenient
plasma diagnostics and affects radiation transport and
opacity because photon transport at energies between
lines depends on how broad the lines are [1, 10].

Inaccuracies of line-shape models could have conse-
quences in many astrophysics and laboratory plasma
physics applications. For example, inconsistencies in
Balmer line shapes [11–14] create uncertainties in the
determination of white-dwarf masses, which is important
for a variety of applications including cosmochronology
[15] and type Ia supernovae, and high-density accretion
disks around black holes [16, 17]. For laboratory applica-
tions, true disagreement between measured and modeled
solar iron opacity [18] may be obscured by uncertainties
in plasma conditions diagnosed by unverified line shapes
[19–21].

There are many competing line-shape models [22–28];
their calculational accuracies are inconclusive due to vari-
ous untested approximations. Line-shape theory is multi-
disciplinary, requiring atomic physics, plasma physics,
collision physics, and statistical mechanics. There are
three common approximations: 2nd-order approxima-
tion for the broadening operator, dipole approximation

for Coulomb interaction between atoms and plasma par-
ticles, and classical approximation for perturbing elec-
trons. Some line-shape calculations remove one or two
of the three approximations, but their calculational su-
periorities are unclear due to the remaining approxima-
tion(s). The three aspects, i.e., broadening operator,
Coulomb interaction, and treatment of electrons, are fun-
damentally related, and we cannot fully investigate the
importance of one approximation without removing the
other two approximations.

Ideally, models would be validated by benchmark ex-
periments [29–33], but since they are few and far between,
continued theoretical scrutiny is needed. Benchmark ex-
periments must have uniform plasma conditions with ac-
curate line-shape measurements and independent diag-
nostics; this is challenging to achieve. Different physics
becomes important depending on element, conditions,
and transitions, and the existing data are far from suf-
ficient to validate all relevant physics at various condi-
tions. Thus, continued theoretical work aimed at simul-
taneously removing known approximations is valuable.

Simultaneous removal of the three approximations has
been the next step but has not been realized for many
decades due to technical challenges, especially because
simultaneous removal of 2nd-order and classical approx-
imations has been difficult. All approaches without
the 2nd-order approximation [26–28, 34–37] rely on a
classical-electron assumption, and there is no easy ex-
tension for quantum electrons. All order with quan-
tum electron formulation was introduced in 1963 [23],
but has only been evaluated with 2ndorder. Incorpora-
tion of higher orders significantly complicates the calcula-
tion. The path towards simultaneous removal of the three
approximations—while critical—has not been clear.
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In this letter, we present the first line-shape calculation
that simultaneously removes all three approximations by
extending our recent work and adopting the technique
developed in another field. Our recent work revived the
state-of-the-art quantum line-shape calculation [38] and
was refined to include missing physics [39]. Adopting
a numerical technique used in collision physics [40] helps
resolve the longstanding technical problem. These refine-
ments allow us to perform line-shape calculations without
the three approximations for the first time. We test the
validity of decade-old approximations for K-shell transi-
tions of neutral hydrogen and highly-ionized magnesium
and oxygen. We find that, for hydrogen, the 2nd-order
approximation overpredicts Lyβ line width by a factor
of two at some conditions. Also, classical calculations
severely underestimate Lyα line width at low tempera-
tures. Mg Heγ line shapes calculated for stellar-opacity
measurements [18, 21] revealed that full-Coulomb inter-
action was essential for accurate density diagnostics while
2nd-order approximation was found reasonably accurate.
Understanding the validity of each approximation is es-
sential for efficient and accurate radiation transport and
plasma diagnostics. This work not only significantly ad-
vances the line-shape theory but also emphasizes the im-
portance of continued theoretical scrutiny, benchmark
experiments, and crosstalk between relevant fields for ef-
ficient scientific breakthroughs.

Line-Broadening Fundamentals.—In HDM, the lines
are broadened primarily by a radiating atom being per-
turbed by nearby electrons and ions. Due to the mass
differences, ion perturbation is often approximated as
a static electric microfield, ε. Every atom feels a dif-
ferent microfield, and its probability distribution is de-
noted by W (ε) and can be calculated by Refs. [41,
42]. The total spectral line shape, I(ω), is then com-
puted by probability-weighted integration of the electron-
broadened line shapes over ε [43]:

I(ω) = I
−1

π

∞

∫
0

dεW (ε)∑
ββ′αα′

⟨β′∣D∣α′⟩ ⟨α∣D∣β⟩×

⟨α′β′∣ [ω −H(ε) +H∗
(ε) −H(ω)]−1 ∣αβ⟩ , (1)

where I denotes the imaginary part; D is the dipole
operator of the atom; α, α′ and β, β′ denote upper
and lower states respectively; H(ε) and H∗(ε) are the
atomic Hamiltonians for the upper- and lower-state, re-
spectively; and H(ω) is the electron-broadening opera-
tor.

H(ω) is defined as thermal average of collision ampli-
tudes, called T -matrices [22–24]. H(ω) contains upper-
state, lower-state and interference terms (see Eq. (55) of
Fano [23]). For K-shell transitions considered here, the
lower-state and interference terms are negligible. The
thermal average is calculated by integrating the T -matrix
over the perturbing free-electron states, k, weighted by

its probability, f(k), (i.e., often Boltzmann):

⟨αβ∣H(ω)∣α′β′⟩=δββ′ne∫ dkf(k)⟨αk∣T (ω+Eβ+Ek)∣α
′k⟩, (2)

where ne is the electron density and T (ω+Eβ+Ek) is the
T -matrix operator. It is important to note here that the
T -matrix has a frequency dependence, which makes the
line profile non-Lorentzian and potentially asymmetric.
Electron broadening is therefore reduced to the evalua-
tion of the T -matrix, which is formally defined as [44, 45],

T (E) =
1

1 − V (E −H0)
−1V ; (3)

This is a function of the energy, E = ω + Eβ + Ek, the
non-interacting Hamiltonian, H0, and the atom-electron
interaction, V . The V is a screened Coulomb interaction

V =
N

∑
a=1

e−∣ra−rp∣/λscr

∣ra − rp∣
−
e−∣rp∣/λscr

∣rp∣
+ VEx. (4)

The first term is the Coulomb repulsion between the N
atomic electrons and the perturbing electron. The sec-
ond is the nuclear potential felt by the perturbing elec-
tron. The third contains electron-exchange terms be-
tween atomic electron(s) and the perturbing electron [40].
λscr is the screening length [46]. The electron states, ∣k⟩,
are usually plane waves for neutrals and Coulomb waves
for charged radiators.
Approximations.— Here, we elaborate each approxi-

mation and explain how we remove these approximations:
2nd-order, dipole, and classical.
2ndorder: The calculation of the T -matrix is simpli-

fied with a 2nd-order approximation. Since inverting
[1−V (E −H0)

−1] is challenging, it is common to Taylor
expand the T -matrix to 2ndorder in V ,

T (E) ≈ V + V
1

E −H0
V. (5)

This approach is accurate only when the interaction V is
small.
Dipole: The Coulomb interaction, V , is often approx-

imated by the dot product of the atomic dipole mo-
ment with the microfield by the perturbing electrons, εp
[47, 48],

V ≈
N

∑
a=1

ra ⋅ εp; εp = rp
1

∣rp∣3
[1 +

∣rp∣

λscr
] e−∣rp∣/λscr . (6)

This is called the dipole approximation. While this is a
very common approximation for line-shape calculations,
its accuracy is not sufficiently studied.
Classical: Perturbing electrons are often treated clas-

sically [28, 34, 36, 37, 47, 49]. In this approximation, the
perturbing electron wavefunction is replaced by a point
particle moving on a classical trajectory, such as

⟨r∣k⟩=
1

√
2π

3
ei(k⋅r+Ekt) ⇒ rp(t)=r0+vt. (7)
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The accuracy of this approximation becomes question-
able at low temperature and high density where quantum
effects become important.

While the three approximations (5), (6), and (7) make
calculations efficient [47], their potential inaccuracies
have been raised repeatedly. For example, 2nd-order ap-
proximation does not preserve unitarity of the scattering
S-matrix [44]. Ad-hoc strong-collision corrections are in-
troduced to remedy this problem [4, 50], but its accuracy
and universality are unknown. The dipole approxima-
tion breaks down when the plasma electrons get close to
the radiator. However, past investigations on this found
conflicting results: Woltz and Hooper [51] found a reduc-
tion in the width, Alexiou [52] found an increase in the
width, and Junkel et al. [53] found additional redshifts.
These conflicting results are likely caused by differences
in residual approximations. Also, some literature warns
that neglected quantum effects [39, 54] may underesti-
mate the broadening. Despite the plausibility of these
investigations, the accuracy of their claims is unclear be-
cause these investigations were done without removing
other fundamentally related approximations. This situa-
tion then makes it imperative that a calculation includes
all-order (3), full-Coulomb (4), and quantum electrons
simultaneously.

We removed all three approximations by extending
our recent work and adopting a technique from colli-
sion physics. Our previous investigations [38, 39] al-
ready removed classical and dipole approximations, leav-
ing only 2nd-order to be removed. Direct inversion of
[1−V (E−H0)

−1] is too computationally expensive to be
practical. We recently learned that Bray and Stelbovics
[40] solved this problem two decades ago by using effi-
cient linear Ax = b solvers, where A = [1− V (E −H0)

−1],
x = T (E), and b = V . To perform our calculations, we
incorporate the techniques of [40, 46, 51, 55–57], which
are summarized in the supplemental material.

Results.– The rest of the letter demonstrates the im-
portance of all-order T -matrix, Coulomb interaction, and
quantum electrons for three cases: neutral hydrogen, He-
like magnesium, and H-like oxygen lines. These cases are
chosen due to recent concerns [14, 19, 20, 54]. Addition-
ally, these cases give insight on which approximations are
valid for neutral and highly-ionized radiators.

First, accuracy of hydrogen line shapes is investigated
for its importance for stellar modeling, in particular
white dwarfs [58] and increasing concerns in their accu-
racy have been raised. There are inconsistencies between
measured and modeled line shapes [59, 60], which ques-
tioned the accuracy of the existing calculations. Addi-
tionally, there is some uncertainty in modeling Lyα line
shapes [61]. Lastly, Iglesias [54] suggested that quantum
line-shape calculation might be necessary even for neu-
tral hydrogen.

Figure 1a shows Lyβ hydrogen line shapes calcu-
lated under different approximations: 2nd-order+dipole
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FIG. 1. a) Comparison of different approximations for H Lyβ
at Te = 1 eV and ne = 1018e/cm3: SO+D is second-order with
dipole; AO+D is all-order with dipole; SO+FC is second-
order+full Coulomb; and AO+FC is all-order+full Coulomb.
b) Comparison of Lyα calculations between this work and
VCS [49] and Ref. [37] at ne = 1018e/cm3 with different tem-
peratures; correspondence is achieved at high temperatures,
but not at low temperatures.

(dot-dashed orange), 2nd-order+Coulomb (dotted
green), all-order+dipole (dot-long-dash blue), and
all-order+Coulomb (solid red); all calculations used
quantum electrons. The red curve is the most accurate
one without the three approximations. By comparing
the three-approximated line shapes to the one without
(red), we found that 2nd-order is inaccurate, having twice
the width of all-order. The comparison also suggests
that dipole approximation is sufficiently accurate as long
as it is computed in all-order.

Next, we investigate the importance of quantum effects
for Lyα. In Fig. 1b), we compared our best calcula-
tions (red) with classical calculations (black and green).
According to the correspondence principle [62], quan-
tum effects would be important for low quantum num-
ber (e.g., Lyα) at low temperatures. The black curve
is computed with the Vidal-Cooper-Smith (VCS) model
[49], which is semi-analytic calculation done with classi-
cal electrons. The green curve is a classical particle sim-
ulation Xenomorph [36, 37]. Both classical calculations
give identical results at all temperatures considered here.
At Te = 80,000K, our quantum calculation agrees with
the classical calculations. However, as the Te drops, the
quantum calculations becomes much broader than the
classical calculations, proving the importance of quan-
tum effects at low temperatures.

Fig. 2a) shows that, at Te = 10,000K, the wing of the
Lyα opacity is higher than VCS by up to 50% due to the
extra broadening caused by the quantum effects. The line
wings are important for Rosseland-mean-opacity calcula-
tions, and this may have notable impact on stellar mod-
eling and spectroscopy [10]. Preliminary investigations
with the TLUSTY atmosphere code [63] show that the
increase in the opacity of Lyα changes the model spectra
by more than the uncertainties for spectral calibrations
[64, 65]; see Fig. 2c). Detailed analysis is beyond the
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scope but should be investigated in near future.
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FIG. 2. a) Comparison of wing behavior between our new
calculation and VCS. b) Emergent white dwarf spectrum with
new Lyα line shapes. c) Same as b) but focusing on the
visible. The visible flux is raised beyond previously-estimated
uncertainties because of the broader Lyα profile.

We also investigated the impact of each approximation
for a highly-ionized radiator. The magnesium Heγ line
(n = 1 → 4) is of particular interest due to its use as a
density diagnostic in the iron-opacity experiments [18].
Nagayama et al. [20] showed that the inferred densities
depend significantly on the choice of line-shape models.
Two of the most commonly used line-shape codes, TO-
TAL and MERL, infer electron densities that differ by
nearly 70%. TOTAL and MERL use different electron
broadening models, Lee [66] and O’Brien and Hooper
[67] (hereafter OH), respectively, which use different ap-
proximations.

To understand the impact of the electron-broadening
models, Iglesias [19] investigated how much difference is
caused by the electron-broadening models. Iglesias [19]
showed that Lee electron-broadening model better repro-
duces neutral hydrogen experimental data [29] while OH
overpredicts the measured widths. This extra broaden-
ing could be caused by OH neglecting strong collisions
[4, 50]. However, the result is not conclusive because
both calculations still use both 2nd-order and dipole ap-
proximations.

Our work here can refine this investigation by removing
the limiting approximations used by Lee and OH. For this
comparison, we use the same basis set as Iglesias [19] so
that any differences are solely due to electron-broadening
models.

First we test our understanding of Lee (dashed purple)
and OH (dashed black) from Iglesias [19] by reproducing
them (Fig 3a) with similar approximations. These were
computed at Te = 180eV and ne = 3.1 × 1022e/cm3, and
the line shapes are convolved with the instrument width
(λ/∆λ = 1000). To reproduce the Lee model in [19],
we used 2nd-order approximation and retained only the
dipole term of the full-Coulomb interaction. For our im-
plementation of the OH model, we used 2nd-order, the
dipole interaction (6) and set the screening length to in-

finity. We show that our model can reproduce Lee and
OH results by introducing similar approximations.

Now, we remove the remaining approximations and
compare our best calculations (red) with the Lee and
OH models. We find that the width of the calculation
is between those of Lee and OH. Also, our calculation
exhibits the red shift previously explored in Junkel et al.
[53], which is not present in either Lee or OH.

Based on our preliminary investigation of Heγ line, the
true density could be roughly 30% higher than reported
in [18]. Determination of the temperature and density
of [18] requires careful analysis involving multiple lines
with multiple sources of errors to be propagated, which
is the beyond the scope of this paper. However, it is
likely that the refined line shapes suggest the true density
to be significantly higher than Ref. [18]. The model-
data iron-opacity discrepancies need to be revisited at
the refined temperature and density to understand the
radiation-transport puzzle in the Sun.
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FIG. 3. Comparison of Mg Heγ (n = 1→ 4) line-shape models
at Te = 180eV and ne = 3.1 × 1022e/cm3. a) Comparison of
our work against Lee [66] and OH [67] plus our attempts to
reproduce each calculation, indicated by the * for each model;
line shapes here are Doppler and instrument [18] convolved.
b) Same as Fig. 1a) but for Mg Heγ (same legend). Contrary
to hydrogen, 2nd-order is valid, but the full-Coulomb is nec-
essary, causing the redshift that is not present in either Lee
or OH.

To understand what approximations are important for
highly-ionized radiators, we compared calculations with
different approximations (Fig. 3b) with the same color
scheme as Fig. 1a. Contrary to hydrogen, we found
that the 2nd-order calculation is sufficiently accurate for
highly ionized line shapes; this is confirmed for the very
first time. Additionally, we found that the dipole ap-
proximation is inaccurate, full Coulomb treatment is
needed. The redshift and asymmetries are introduced by
the monopole contribution to the Coulomb interaction.

It has been well established that the including the
frequency dependence of the broadening (equivalent to
including “off-shell” [68] components in the T -matrix,
as we have done here) affects line shapes in a mea-
surable way [29]. Figure 4 demonstrates how neglect-
ing the frequency dependence can alter the spectrum of
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H-like oxygen at solar interior conditions (Te = 180eV,
ne = 3 × 1023e/cm3). This example was chosen due to
its potential importance for the stellar opacity problem
[18]. The frequency-dependent T -matrices gives struc-
ture to the wings of Lyα. Additionally, the opacity is
raised between Lyα and Lyβ and affects the intensity of
the high-n lines. This example suggests potential impact
on the solar-opacity work because oxygen is the biggest
opacity contributor and the Rosseland-mean weighting
function peaks around 700eV [69].
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Lyγ, Lyδ, and Lyε. The frequency-dependent T -matrices re-
sult in decreased opacity in the red wing of Lyα, but raised
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Summary.—We removed three long-standing line-
shape approximations (dipole, semi-classical, and 2nd-
order) simultaneously for the first time and investigated
its impact on neutral hydrogen and high-ionized mag-
nesium line shapes. These calculations not only pro-
vide the most theoretically-sound line-shapes but also
revealed that different approximations are important for
the two cases. For hydrogen, 2nd-order and semi-classical
approximation can change the line width by 50% at some
conditions, which can affect white dwarf modeling and
diagnostics. For magnesium, commonly used dipole ap-
proximation with an ad-hoc strong-collision correction
would underestimate the magnesium Heγ width by 15%
without introducing the necessary line shift. This can
have notable impacts on the determination of the den-
sity of laboratory plasmas [20]. We also demonstrate
the need for detailed line-shape calculations on oxygen
opacity, where off-shell T -matrices lead to substantial
changes in the spectra. While we only explore these
examples, the importance of detailed line-shape calcula-
tions extend to other elements and transitions [70]. While
we removed three major approximations, other improve-
ments could still be made. For example, in this work,
we use Debye screening; this will fail at high plasma cou-
pling and a more accurate screening prescription will be
needed. Line-shape theory refinements and benchmark
experiments should continue to refine our understanding

of atomic interaction with HDM.
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