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We investigate the spectral and transport properties of many-body quantum systems with con-
served charges and kinetic constraints. Using random unitary circuits, we compute ensemble-
averaged spectral form factors and linear-response correlation functions, and find that their char-
acteristic time scales are given by the inverse gap of an effective Hamiltonian—or equivalently, a
transfer matrix describing a classical Markov process. Our approach allows us to connect directly
the Thouless time, tTh, determined by the spectral form factor, to transport properties and linear
response correlators. Using tensor network methods, we determine the dynamical exponent, z, for a
number of constrained, conserving models. We find universality classes with diffusive, subdiffusive,
quasilocalized, and localized dynamics, depending on the severity of the constraints. In particu-
lar, we show that quantum systems with “Fredkin” constraints exhibit anomalous transport with
dynamical exponent z ' 8/3.

Introduction.— Recent years have seen substantial
progress in understanding how isolated quantum systems
thermalize under their own dynamics. The eigenstate
thermalization hypothesis (ETH) [1, 2] proposes that en-
tanglement between subsystems allows for local equili-
bration: Generic unitary evolution scrambles local quan-
tum information into highly nonlocal degrees of freedom,
which are inaccessible to local observables. Early tests of
ETH [3–7] relied on small scale numerics and extensions
of integrable models, which are fine tuned; understand-
ing the universal aspects of quantum chaotic dynamics
requires a more general approach.

A hallmark of chaotic systems is that they dynam-
ically forget as much information about their past as
symmetries allow. Hence, the salient features of chaotic
systems are well captured by replacing the microscopic
model with a random matrix with the same symmetries.
Random unitary circuits (RUCs) invoke the potency of
random matrix theory (RMT) while also introducing spa-
tial locality, with the system evolved by a brickwork
“circuit” of `-site gates [8–16]. RUCs are fully generic,
and their study has elucidated the universal dynamics of
chaotic quantum systems: Entanglement grows linearly
in time until saturating to a volume law, with fluctua-
tions in the Kardar-Parisi-Zhang (KPZ) universality class
[10, 17]; operator fronts (and out-of-time-ordered corre-
lation functions) propagate ballistically and broaden dif-
fusively [11, 12, 14], etc.

However, these RUCs are designed to be featureless;
an interesting question is how these properties change as
one reintroduces other physical ingredients, such as sym-
metries. With conserved charges, one can consider trans-
port: For a typical U(1) symmetry, one expects conserved
charges to diffuse [16, 18–20], and operators that overlap
with conserved quantities to have slower dynamics, dom-
inated by hydrodynamic modes. It is also interesting to
study dynamics with more complicated symmetries or

constraints [21–31]. Fractons, e.g., are excitations in sys-
tems with charge and dipole conservation that are con-
strained to move in pairs only [32, 33]. This higher-order
symmetry can also be viewed as a constraint ; recent stud-
ies of fractons in the contexts of RUCs and hydrodynam-
ics have found evidence for subdiffusion, with dynamical
exponent z = 2(m+1), where m is the highest conserved
moment of charge [34–40].

In this Letter we analyze the general consequences
of kinetic constraints on charge-conserving many-body
quantum dynamics in one dimension. Kinetic constraints
restrict the local rearrangements of charges and have
been intensely studied as models of classical systems with
glassy dynamics [21, 25–28, 41–44]. Depending on the lo-
cally forbidden rearrangements, adding constraints may
anomalously slow down or completely freeze the process
of thermalization. Using variations of RUCs, we probe
how imposing constraints on generic quantum systems
leads to new universality classes with slow dynamics. Us-
ing Floquet random circuits, in the limit of large on-site
Hilbert space, we relate the scaling of the many-body
Thouless time—the time scale for a system to show RMT
spectral rigidity—with system size [13–16, 20, 45–49] to
the inverse gap of the transfer matrix of a stochastic clas-
sical model; or equivalently, of an effective Hamiltonian,
which lies at a Rokhsar-Kivelson (RK) point [16, 40, 50].
We show that the same transfer matrix also controls the
dynamics of linear response correlators, providing a gen-
eral relation between the Thouless time and transport
[20]. Depending on the severity of the model’s con-
straints, we find diffusive, subdiffusive, quasilocalized,
and localized dynamics, and identify a new universality
class of constrained z ' 8/3 “Fredkin” systems [51–59].

Spectral rigidity and transport correlators.— A useful in-
dicator of quantum chaos is level repulsion [1, 2, 20, 60],
characterized by an RMT distribution of the eigenvalues
of the evolution operator [9, 14–16, 20, 45, 48, 60]. Pe-
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riodically driven (Floquet) RUCs [13, 14, 16, 45], afford
such a spectrum, as time evolution follows from the Flo-
quet unitary, F , that evolves the system by one time step.
For Hamiltonian or Floquet systems, it is convenient to
measure the ratio of consecutive energy gaps (the “r ra-
tio”) [61]; another robust probe of spectral rigidity is the
two-point spectral form factor (SFF) [14–16, 20, 45–49],

K(t) ≡
D∑

m,n=1

ei(θm−θn)t = |tr[F t ]|2 , (1)

where {θm} are the eigenphases of F , D = qL with L the
number of sites and q states per site, and the overline de-
notes averaging over an ensemble of statistically similar
systems. In the limit q →∞, RUCs reproduce the spec-
tral properties of nonlocal random matrix models [14, 62]:

K(t) = t for 0 < t < tHeis = D, the Heisenberg time, and

K(t) = D for t > tHeis. In this limit, thermalization—
characterized by a linear ramp K = t—is instantaneous.

Away from this limit, one expects an initial overshoot
of the linear ramp until interactions thermalize the sys-
tem [45, 48]. A noninteracting Floquet RUC has K = tL;
one can imagine divvying the system into weakly inter-
acting blocks of size ξ(t), so that K(t) ∼ tL/ξ(t), with
ξ(0) ∼ 1 [45]. Under time evolution, interactions lead

ξ(t) to grow, saturating to ξ(t) = L for t ≥ tTh, so that

K(t) = t [9, 14, 20, 45, 46]. The Thouless time, tTh—
in analogy to single-particle disordered wires [63, 64]—is
the time it takes for a chaotic system to thermalize fully,
signaled by a linear ramp, K(t) = t.

One can also observe delayed thermalization even for
q → ∞ with conserved charges [16, 20]. Symmetries
(and constraints) lead to independent sectors of F whose
eigenvalues do not repel; thus, a chaotic system with N
independent sectors will have K(t) = N t after thermal-
izing [16, 40]. Ref. 16 provides a recipe for computing
the SFF in the presence of symmetries, mapping K(t) to
a classical Markov process, itself equivalent to a quan-
tum Hamiltonian at an RK point [65]. Study of the cor-
responding classical lattice gas reveals that diffusion of
the U(1) conserved charge delays thermalization, with

K(t) → N t for t & tTh ∼ L2. Slower, subdiffusive

scalings of tTh have also been observed in systems with
dipole-moment conservation [40].

In this Letter, we investigate the effect of constraints
and symmetries on thermalization by studying the SFF
and linear response (connected) transport correlators,

C(x, t) = 〈 q(x, t) q(0, 0) 〉c , (2)

with q(x) the local charge density, Q =
∫
dx q(x) the con-

served U(1) charge, and 〈 . . . 〉 = D−1 tr [ . . . ], the equi-
librium average at infinite temperature [66]. We provide
a recipe for computing the structure factor (2) for arbi-
trary q, and the SFF (1) for q →∞ in generic, quantum
chaotic models, using the machinery of RUCs. We show

FIG. 1. Models and setup. Top: Cartoon depiction of the
allowed dynamical moves for the five models presented; •◦ in-
dicates a particle and •◦ denotes a hole. Bottom Left: Cartoon
sketch of the spectral form factor for a generic chaotic system
(red) and the RMT prediction (blue); the linear ramp regime
(K(t) = N t) sets in for t & tTh, the Thouless time, which
scales as Lz. Bottom Right: Heat map of the structure factor
(charge two-point function), shown here for Fredkin RUCs,
with the variance used to extract z, the dynamical critical
exponent (z ' 8/3 for Fredkin constraints).

that the important physics of both quantities is controlled
by the low energy properties of the same transfer matrix,
T , which also describes a discrete-time Markov process
with the same conservation laws and constraints [67]. We
can also view T t ≈ e−tHRK , where HRK lies at an unfrus-
trated RK point [16, 40, 50]. Within a given charge sec-
tor, the gap of T (or HRK) scales as ∆ ∼ L−z; its inverse

is the Thouless time, tTh ∼ Lz, the time required for in-
formation to relax throughout the system. The same dy-
namical exponent controls transport properties (2), and
we find a universal scaling form C(x, t) ∼ t−1/zf(x/t1/z),
with z = 2 and f(·) Gaussian for diffusive systems, and
z > 2 for subdiffusive systems.

Models.— We consider several constrained models acting
on a chain of L qubits (q = 2), which may be occupied
(•◦) or empty (•◦), with a U(1) conserved charge corre-
sponding to particle number. A cartoon of the allowed
dynamical moves is given in Fig. 1: Essentially, particles
are allowed to hop if the neighboring sites are appropri-
ately occupied/unoccupied. Time evolution is generated
by a circuit of gates with the general form

Ur =
∑
α

Pr,α Ur,α Pr,α +
∑
β

Pr,β , (3)

where α labels constraint-satisfying configurations of
cluster r with fixed U(1) charge Qr =

∑
j ∈ r qj ; β la-

bels individual constraint-violating configurations on r
(with no corresponding unitary dynamics); and Ur,α is a
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nα × nα Haar unitary that mixes the nα states in block
α with fixed U(1) charge Qα [16, 18, 19].

The allowed moves for the models considered are de-
picted in Fig. 1. The Fredkin model [51–59], allows hop-
ping between sites j and j+1 if j+2 is occupied or j−1
is unoccupied, respectively implemented by gates Ur,R
(right) and Ur,L (left). The Gonçalves-Landim-Toninelli
(GLT) model [68] allows hopping if either neighboring
site is occupied; XNOR allows hopping if both neigh-
boring sites are in the same state [36, 69–73]; U(1) East
allows hopping only if the right (“East”) neighbor is occu-
pied; and PXYP [74] allows hopping only if both neigh-
boring sites are occupied [23, 44, 75–78]. Each model
is implemented via minimal gates of the form given in
Eq. 3. Each type of `-site gate, Ur, requires ` layers per
“time step”, and is always block diagonal in the charge
basis [79]. Models with different constraints or encodings
thereof are also discussed in the Supplement [79].
Spectral form factor.— Evaluating the SFF (1) requires
the use of Floquet circuits to guarantee a spectrum: The
unitaries comprising the first time step, F , are drawn
independently; evolution to time t is generated by F t .
For arbitrary t, ensemble averaging Eq. 1 is generally
intractable [8, 14, 16, 40]; to simplify Haar averaging—
and to wash out any features not related to particular
symmetries and constraints—we include an ancillary d-
dimensional qudit on each site [80] so q = 2d, and take
the limit d → ∞ [16, 40]. The leading contribution to
K(t) can be evaluated diagrammatically [62], and yields
t equivalent “Gaussian” diagrams [14, 16, 62]. This pro-
cedure is fully generic [16, 40, 79]: The Haar averaging
contracts the indices of gates in the two traces, eliminat-
ing one trace as well as the d-state variables, leaving only
a single trace over the physical qubits,

K(t) = t tr
[
T t

]
, (4)

where the transfer matrix, T , encodes the contribution
of configurations of the physical qubits to K(t).

The form of T for such models is simple [16, 40, 79]:
T is a circuit with the same geometry as F , comprising
Hermitian [81] gates, Tr, i.e. T =

⊗
λ

⊗
r∈λ Tr, where

λ labels layers of the circuit, and Tr has the same block
structure as the corresponding Ur; each block has uniform
entries 1/n, with n the block size [16, 40, 79]:

Tr =
∑
α

1

nα

∑
m,m′ ∈α

|m〉〈m′| , (5)

where m,m′ run over the nα configurations in block α.
Note that T describes a discrete-time Markov process
for a classical lattice gas with the same constraints and
conservation laws as the quantum circuit [16, 40, 79, 82].
Relatedly, we can define local Hamiltonian terms, Hr =
1r − Tr, so that at long wavelengths, T t ≈ e−tHRK ,
where HRK =

∑
rHr always lies at an unfrustrated RK

point [16, 40, 50]. The Thouless time, tTh, marks the

start of the linear ramp regime, K(t) = N t. Each of the
N sectors has largest eigenvalue unity; the linear ramp
sets in after subleading contributions have decayed: i.e.,
tr [T t ] ≈ tr

[
e−tHRK

]
→ N

(
1 + e−t∆

)
at late times,

where ∆ = L−z is the gap of HRK (or T ). We extract
the Thouless time from K(t) as [16, 20, 40]

K(t) ∼ t
(
N + e−t∆ + . . .

)
=⇒ tTh =

1

∆
= Lz , (6)

with z the dynamical exponent. Thus, tTh gives the time
scale over which K(t)→ N t, and lower bounds the time
required for generic models with the same symmetries
and constraints to thermalize [14, 16, 40, 48, 79]. For
some of the models considered, the low-energy properties
of HRK have been reported: The Fredkin Hamiltonian,
e.g., has a gap ∆ ∼ L−z with z > 2 [54, 55]. Our results
imply that the same dynamical exponent, z, also controls
thermalization and transport properties (see below), for
generic many-body quantum systems in this class [20].
Two-point correlations.— To compute Haar-averaged
two-point functions, we dispense with the ancillary qudit
and Floquet structure: The five models considered act
on L qubits (q = 2) with Haar unitaries independently
drawn at each time step. Correlators (2) in RUCs can
generically be written in terms of a transfer matrix,

Ci,j =
〈
Oi(t)Oj(0)

〉
=
(
Oi
∣∣ T t

∣∣Oj) , (7)

where |O) is an element of the q2L-dimensional opera-
tor space, and T acts therein, is implicitly Haar aver-
aged [83], and has the same circuit structure as F (and
the SFF transfer matrix). For models with q states per
site and unitaries given by Eq. 3, the gates of T take

the form [79] (σµr |Tr|σνr ) = q−` tr
[
σµr U†r σνrUr

]
, where

(σµr |σνr ) = δµ,ν are orthonormal basis operators (e.g.
Pauli strings for q = 2). Haar averaging gives

Tr =
∑
α

1

nα

∑
m,m′ ∈α

|πm)(πm′ | , (8)

for diagonal (i.e., charge conserving) operators, where
|πm) =

√
q |m〉〈m| is a projector onto state m in block

α, and (πm|πn) = δm,n form an orthonormal basis for the
q diagonal operators on each site [79].

Crucially, we note that T (8) is identical to the SFF
transfer matrix (5), with the q states per site replaced
by q charge-conserving operators. Thus, the universal
features of both spectral and physical correlations are
controlled by the low energy spectrum of T , generically
relating the Thouless time (related to spectral rigidity) to
transport properties, as proposed in Ref. 20. As an aside,
we note that nondiagonal (charge-changing) operators do
not mix with diagonal operators under T , but evolve un-
der a different transfer matrix if at all [79]. However, we
need only consider correlators of diagonal (charge) oper-
ators to extract universal transport properties.
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FIG. 2. Numerical results from the transfer matrix, T . Left: Variance of the correlation profile in each of the five
models; the slope goes like 2/z, with z the dynamical exponent. The variance saturates for PXYP, indicating localization,
while charges eventually spread across the system in the other models. Middle: Apparent z(t) extracted from the left panel
via 2/z(t) = d log σ2/d log t. GLT shows diffusion (z = 2), while XNOR and Fredkin show subdiffusion (z = 4 and z = 8/3,
respectively). For U(1) East, z(t) appears to grow without bound (z(t) ∼ log t), indicating quasilocalized dynamics with spread

slower than any power law; extracting z(t) from the return probability, C(x = 0, t) ∼ t−1/z, leads to a different, larger estimate
of z ≈ 7 on accessible time scales [79]. Right: Collapse of charge profiles for Fredkin, rescaled by the dynamical exponent

z = 8/3. Inset: Collapse in momentum space showing C(k, t) ∼ e−C|k|zt at small k. TEBD data use maximum bond dimension
χmax = 1024 for Fredkin and χmax = 512 for the other models to ensure convergence.

Numerics.— We efficiently simulate the dynamics
generated by T using time evolving block decima-
tion (TEBD) applied to matrix-product operators
(MPOs) [84–87], exploiting slow entanglement growth
compared to the underlying unitary dynamics. We sim-
ulate infinite-temperature correlation functions C(x, t) =

D−1 tr
[
q(x, t) q(0, 0)

]
, where q(x, t) is the occupa-

tion of site x at time t. We also use the spatial
variance of the correlator, σ2(t) =

∑
x x

2 C(x, t) −
(
∑
x x C(x, t))2 ∼ t2/z, to extract the dynamical ex-

ponent, z—characterizing the transport of charge—via
2/z(t) ≡ d log σ2/d log t (shown in the center panel of
Fig. 2). For GLT, z(t) → 2, indicating diffusive trans-
port and consistent with classical results [68]; for XNOR
and Fredkin, z = 4 and z ' 8/3, respectively, indicating
subdiffusion; for PXYP, σ2(t) itself saturates, indicating
localization; and for U(1) East, z(t) grows slowly without
saturation, indicating quasilocalization.

The PXYP and U(1) East cases can be understood in
terms of Hilbert space fragmentation [88–93]: The num-
ber of sectors, N , for both models scales exponentially
in system size [79]. In the terminology of Ref. 90, PXYP
is “strongly fragmented” and does not thermalize (i.e.
there is no transport; charges are localized), while U(1)
East is “weakly fragmented” and thermalizes very slowly
(σ2(t) grows more slowly with t than any power law).
XNOR also shows weak fragmentation, and its dynam-
ical exponent, z = 4, can be derived analytically from
the unusual spin-wave spectrum, E(k) ∼ k2/L2 of the
underlying effective RK Hamiltonian [79]. This subdiffu-
sive transport with z = 4 can also be understood in terms

of the “screening” of the effective charge carried by the
diffusive magnon excitations in this model [79, 94–97].

We remark that z(t) appears to approach 8/3 for Fred-
kin constraints—a similar numerical estimate, z ≈ 2.69,
was reported in Ref. 55 in the context of low-temperature
physics of the Fredkin Hamiltonian. While our results de-
rive from RUCs, we expect that this z = 8/3 character-
izes a new dynamical universality class of generic many-
body quantum or classical systems (Floquet, Hamilto-
nian, or noisy) with Fredkin constraints. The Fredkin
correlator satisfies the universal scaling form C(x, t) ∼
1/t1/zf(x/t1/z), with f(·) a non-Gaussian function (see
third panel of Fig. 2 and Ref. 79). Remarkably, we
find numerically that the Fredkin RK Hamiltonian has
a low-energy spectrum E(k) ∼ k4/3/L4/3, reminiscent of
the XNOR model, suggesting the possibility of a similar
mechanism for subdiffusion in both models [79].

Discussion.— We studied spectral and transport prop-
erties of generic many-body quantum systems with con-
served charges and kinetic constraints using random uni-
tary circuits. We computed ensemble-averaged spectral
form factors and linear-response correlation functions for
various classes of constraints, and showed that both re-
late to the same transfer matrix, T , describing a classical
Markov process. This mapping holds for any choice of
symmetries and constraints, and in any dimension; how-
ever, numerical simulation of T becomes intractable for
d > 1. Our results establish a general correspondence be-
tween the Thouless time and transport properties in con-
serving systems, and we unearth a broad range of possible
transport properties depending on the constraint. The
Fredkin universality class is especially interesting: Fur-
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ther characterizing its dynamical exponent of z ' 8/3
presents a clear direction for future work.
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Note Added.— While completing this manuscript,
Ref. 98 appeared on the arXiv, and reports subdiffusive
hydrodynamics for the “Motzkin” Hamiltonian; Motzkin
constraints are very similar to Fredkin constraints, and
appear to lie in the same universality class with dynam-
ical exponent z ' 8/3 [79].
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