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We report the development of an electronic-vibrational convergent close-coupling method for
electron-molecule scattering with an ab-initio account of the coupling between the electronic and
vibrational motions. The technique has been applied to scattering on molecular hydrogen, including
coupling between vibrational levels in the first 11 electronic states. Distinct resonances associated
with the temporary formation of the H−

2 ion are present between 10 and 14 eV for numerous
transitions, including vibrational excitation of the X

1Σ+
g state, dissociation via the b

3Σ+
u state,

and excitation of the B
1Σ+

u state. With both resonant and nonresonant scattering treated in
a single calculation, this method is capable of providing self-consistent sets of cross sections for
electron-molecule scattering in regions where the adiabatic-nuclei approximation breaks down.

Over the last few decades it has been the goal of the
convergent close-coupling (CCC) method to provide a
“complete scattering theory” – one capable of accurately
describing all processes of interest over the entire range
of collision energies for a given scattering system [1]. The
ab initio CCC method is particularly well suited for this
endeavor, since its expansion of the total scattering wave
function over the target states explicitly couples all re-
action channels, and the pseudostate representation of
the target continuum allows accurate elastic, excitation,
and ionization amplitudes to be extracted from a sin-
gle calculation [2, 3]. The distinguishing feature of CCC
compared to other methods based on the close-coupling
principle is the efficiency of its implementation, allow-
ing large-scale convergence studies to be performed. For
electron and positron scattering on quasi one- and two-
electron targets, the CCC method can be considered a
complete scattering theory.

The molecular CCC (MCCC) method is a separate im-
plementation of the CCC theory for scattering on molec-
ular targets, and has been shown to completely solve the
electronic scattering problem for collisions with molecu-
lar hydrogen (H2) within the fixed-nuclei (FN) approx-
imation [4]. The extension of the MCCC method to
generate vibrationally-resolved cross sections using the
adiabatic-nuclei (AN) approximation has been a major
step forward in producing a comprehensive set of data
for electron scattering on H2 and its isotopologues [5, 6].
However it is well-known that the AN approximation
is unable to describe resonant processes, even approx-
imately. For electron-atom scattering, close-coupling
methods are able to properly represent resonances in the
calculated cross sections by virtue of the implicit repre-
sentation of the compound states in the close-coupling
expansion of the scattering wave function. A similar im-

plicit treatment of resonances in molecular scattering re-
quires both electronic and nuclear states of the target
to be included in the close-coupling expansion, leading
to calculations which have historically been intractable.
Current methods for the computation of resonant scatter-
ing cross sections typically utilize the projection-operator
formalism of Feshbach [7] to project out the nonreso-
nant scattering channels and explicitly couple the target
and compound states involved in each transition [8–13].
These techniques require input from electronic scatter-
ing calculations (generally R-matrix) for the resonance
energies and widths, before solving the nuclear dynamics
problem.
Our goal now is to incorporate resonant scattering into

the MCCC method, with the motivation of having a sin-
gle theoretical framework within which all scattering pro-
cesses of interest can be calculated. As a first step, we
continue to treat the rotational motion adiabatically, but
explicitly couple the electronic and vibrational motions.
We refer to this method as vibrational-electronic molec-
ular convergent close-coupling (VE-MCCC). For simplic-
ity, we assume that the Born-Oppenheimer approxima-
tion is valid for the target states, allowing us to write the
close-coupling expansion for the vibronic (vibrational and

electronic) scattering state |Ψ
(+)
ivi

〉 as

|Ψ
(+)
ivi

〉 ≈ |Ψ
N (+)
ivi

〉 = A
∑

(n,v)∈N

|f
N (+)
nv,ivi

〉|Φn〉|νnv〉, (1)

where A is the antisymmetrization operator, |f
N (+)
nv,ivi

〉 are
the multichannel projectile states, |Φn〉 is an electronic
target state, |νnv〉 is a target vibrational state in the elec-
tronic state n, andN denotes the set of all vibronic states
included in the expansion.
The corresponding momentum-space close-coupling

equations for the scattering T matrix are
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〈qfνfvfΦf |T |Φiνiviqi〉 = 〈qfνfvfΦf |V |Φiνiviqi〉+
∑

(n,v)∈N

∫
〈qfνfvfΦf |V |Φnνnvq〉G

(+)
nv (q)〈qνnvΦn|T |Φiνiviqi〉dq, (2)

where T and V are the transition and interaction-
potential operators, respectively, and G

(+)
nv (q) is the

asymptotic Green’s function. The solution of the
Lippmann-Schwinger equations (2) proceeds in a similar
manner as in the FN MCCC method [14]. The represen-
tation of the vibronic scattering state in a complete ba-
sis (1) implicit in the solution of these equations leads to
an accurate description of the compound three-electron
states. Hence, without requiring explicit information
of the resonance states, we expect to see the effects of
both resonant and nonresonant scattering in the calcu-
lated cross sections. Further developments to include re-
arrangement channels explicitly, in a similar manner to
the two-center CCC method for positron scattering on
atoms [15], would allow cross sections for the important
dissociative electron attachment process to be extracted.

The interaction potential contains both the direct and
exchange interactions:

V = Vd + Vexch, (3)

the latter arising due to the antisymmetrization opera-
tor in Eq. (1). The Born-Oppenheimer representation of
the target states allows for a simplification of the direct
V -matrix elements by calculating the electronic matrix
element first as a function of the internuclear separation
before performing the vibrational integrations:

〈q′νn′v′Φn′ |Vd|Φnνnvq〉 = 〈νn′v′ | 〈q′Φn′ |Vd|Φnq〉 |νnv〉.
(4)

The electronic matrix elements are taken from the
spheroidal-coordinate implementation of the MCCC
method to ensure their accuracy at all internuclear sepa-
rations required (see Ref. [16] for details of the spheroidal
implementation). The exchange potential operator is
given by

Vexch = (E −Hel −Kv)

2∑
j=1

P0j , (5)

where P0j is the spin- and space-exchange operator,
E is the total scattering energy, Hel is the electronic
scattering-system Hamiltonian, and Kv is the target vi-
brational kinetic-energy operator. We apply the common
approximation of neglecting the effect of Kv on the elec-
tronic target wave functions [17], which are assumed to
vary slowly with R compared to the vibrational wave
functions, so the exchange V -matrix element can be ex-

pressed as

〈q′νn′v′Φn|Vexch|Φnνnvq〉

= 〈νn′v′ | 〈q′Φn′ |(E −Hel)
2∑

j=1

P0j |Φnq〉 |νnv〉

− 〈νn′v′ |〈q′Φn′ |
2∑

j=1

P0j |Φnq〉Kv|νnv〉. (6)

In this Letter, we investigate resonances in the cross
sections for scattering on the ground (electronic and vi-
brational) state of H2, considering pure vibrational exci-
tation, dissociation via the b 3Σ+

u state, and excitation of
the B 1Σ+

u state, in the 10–14 eV energy region. The most
prominent resonance in this region is the well-known
C 2Σ+

g state of H−
2 , which has been the focus of many

previous studies [12, 13, 18]. A number of resonances of
other symmetries have also been identified by Stibbe and
Tennyson [19]. We have performed VE-MCCC calcula-
tions including the X 1Σ+

g , b
3Σ+

u , a
3Σ+

g , B
1Σ+

u , c
3Πu,

EF 1Σ+
g , C

1Πu, e
3Σ+

u , h
3Σ+

g , B
′ 1Σ+

u , and d 3Πu elec-
tronic states of H2, and a projectile partial-wave expan-
sion with Lmax = 6. This model yields sufficiently con-
verged cross sections (within 5%) for the transitions of
interest below the ionization threshold (≈ 16 eV). Previ-
ous R-matrix studies have shown that an accurate rep-
resentation of the H−

2 resonance states can be achieved
using an expansion with fewer than 10 low-lying H2

states [19, 20], so we expect the present model to give
an accurate account of resonant scattering.

The close-coupling expansion (1) includes bound vibra-
tional states as well as vibrational pseudostates which
discretize the dissociative continuum of each electronic
state, leading to an account of dissociation equivalent to
the pseudostate treatment of ionization in the CCC or
R-matrix with pseudostates (RMPS) methods [21, 22].
Convergence in the transitions of interest was confirmed
with respect to the number of vibrational levels included,
with the final calculations containing a total of 587 vi-
bronic states. To handle the large number of coupled
equations in Eq. (2) we utilize a hybrid OpenMP-MPI
parallelism scheme with the V matrix distributed across
many supercomputer nodes.

In Fig. 1, we present the cross sections for excitation
of the b 3Σ+

u and B 1Σ+
u states considering only the 2Σg

scattering symmetry. There are prominent resonances in
both cross sections, associated with the temporary for-
mation of the excited Rydberg C 2Σ+

g state of the H−
2

ion. The resonance positions are in excellent agreement
with the experimentally-determined vibrational energies
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FIG. 1. Electron-impact cross sections for excitation of the
b
3Σ+

u and B
1Σ+

u states of H2 from the ground state, consid-
ering only the 2Σg scattering symmetry. The vertical dashed
lines indicate the C

2Σ+
g vibrational energy levels of the H−

2

ion determined experimentally by Comer and Read [23].

of Comer and Read [23] for this state, which are indi-
cated by the vertical dashed lines in the figure. Similar
resonances were found in recent local complex-potential
(LCP) calculations [13] of the D2 b 3Σ+

u excitation, al-
though these calculations do not include the nonresonant
contribution.

An illustration of the resonant and nonresonant pro-
cesses contributing to dissociation through the b 3Σ+

u

state in the 2Σg symmetry is provided in Fig. 2. The
nonresonant process corresponds to the electronically
free scattering channels, while the resonant process cor-
responds to the electronically bound scattering chan-
nels [24, 25]. The resonant process proceeds via capture
of the incident electron to form the H−

2 ion in one of
a number of possible vibrational levels, before the com-
pound state decays back into neutral H2 plus a free elec-
tron. For a given final energy in the b 3Σ+

u continuum, the
nonresonant process has a lower threshold than the res-
onant process because it does not require the formation
of a higher-energy intermediate state. Each of the reso-
nance peaks in the calculated cross section corresponds
to the formation of a different vibrational level in the
compound C 2Σ+

g state. The C 2Σ+
g state primarily de-

cays into the X 1Σ+
g , b

3Σ+
u , and B 1Σ+

u states of H2 [19],
leading to similar resonance structures in the excitation
cross sections for each of these states.

In Fig. 3 we present cross sections for excitation of
the b 3Σ+

u , B
1Σ+

u , and X 1Σ+
g states, showing the contri-

butions from the four dominant scattering symmetries:
2Σu,

2Σg,
2Πg, and 2Πu. The B 1Σ+

u cross section is
summed over all final vibrational levels, while the X 1Σ+

g

cross section is summed over levels vf > 0 since the
vibrationally-elastic cross section is dominated by nonres-
onant scattering and would obscure the resonance struc-
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FIG. 2. Illustration of the resonant and nonresonant pro-
cesses contributing to the X

1Σ+
g → b

3Σ+
u transition. The

H2 potential-energy curves are taken from Refs. [26–28], and
the H−

2 curve from Ref. [19]. The vibrational energies of the
C

2Σ+
g state are taken from Ref. [23].

tures. For dissociative excitation of the b 3Σ+
u state there

are prominent resonances in both the 2Σg and 2Πu sym-
metries, and barely visible features in the others. The
B 1Σ+

u cross section has resonance structures in all four
symmetries, which we compare with measured or calcu-
lated resonance positions taken from the literature: 2Σg

and 2Σu from the measurements of Comer and Read [23],
2Πu from the calculations of Stibbe and Tennyson [19],
and 2Πg from the measurements of Kuyatt et al. [29].
In the 2Σu symmetry the present calculations appear to
show a number of resonance features above the levels
identified in Ref. [23], however inspection of the contri-
butions from each exit vibrational level suggests these
are the result of interference between nonresonant chan-
nels as higher vibrational levels open with increasing en-
ergy. In the 2Πg symmetry we do not see the first two
resonances found by Kuyatt et al. [29], either because
they were incorrectly identified, or because the calcu-
lated cross section is too small near threshold for the res-
onances to be visible. In the X 1Σ+

g cross sections there
are prominent peaks in the 2Σg and 2Πu symmetries,
with only faint features in the other two symmetries.

In Fig. 4 we present cross sections for pure vibrational
excitations (from vi = 0) within the X 1Σ+

g state in
the 2Σg scattering symmetry. The vibrationally-elastic
v = 0 → 0 cross section is dominated by nonreso-
nant scattering. The nonresonant contribution dimin-
ishes with increasing exit vibrational level, so that for
vf > 2 only the resonance peaks are visible. Celiberto
et al. [12] have previously calculated cross sections for
resonant vibrational excitation of H2 involving the 2Σg

symmetry in this energy range, using the LCP method.
Although the resonance structures seen in the LCP re-
sults are similar to those in the present calculations, the
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FIG. 3. Electron-impact cross sections for excitation of
the b

3Σ+
u , B

1Σ+
u , and X

1Σ+
g states of H2 from the

X
1Σ+

g (vi = 0) state. The results are displayed separately for
each of the four dominant scattering symmetries: 2Σu,

2Σg ,
2Πu, and

2Πg. The B
1Σ+

u cross section is summed over final
vibrational levels, while the X

1Σ+
g cross section is summed

over levels vf > 0.

two data sets are not directly comparable, since the LCP
calculations do not account for nonresonant scattering.
In fact, the vibrationally-elastic v = 0 → 0 cross sec-
tion presented by Celiberto et al. [12] has prominent res-
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FIG. 4. Electron-impact cross sections in the 2Σg scattering
symmetry for excitation of the vf = 0 → 14 vibrational levels
from the vi = 0 level in the X

1Σ+
g state of H2. Note the

different vertical scale for the v = 0 → 0 cross section.

onance peaks corresponding to the C 2Σ+
g vibrational-

level energies, while in the present calculations there are
dips at the resonance energies in this cross section. A
novel feature of our method which is not present in al-
ternative approaches is the proper account of coupling
between resonant and nonresonant scattering channels,
which captures the redistribution of flux from nonreso-
nant elastic scattering into the resonant excitations and
leads to the dips in the v = 0 → 0 cross section.

Resonances also appear in FN calculations of electron-
molecule cross sections, associated with the formation
of a compound state at the fixed internuclear sep-
aration. In Fig. 5 we compare the 2Σg-symmetry
X 1Σ+

g (vi = 0) → b 3Σ+
u cross section obtained using the

present VE-MCCC method with results obtained using
the FN approximation. The FN calculation utilizes an
electronic close-coupling expansion consisting of the same
electronic states included in the VE-MCCC calculations.
Above 13 eV the two methods produce similar results,
but in the resonance region the FN approximation clearly
break down. The FN cross section has a prominent res-
onance just below 12 eV, corresponding to the vertical
excitation energy of the H−

2 C 2Σ+
g state at the mean

internuclear separation [19]. Evidently, the FN approxi-
mation is able to roughly identify the energy region where
the resonances should occur, but cannot predict the num-
ber of resonances or their positions. The magnitude of
the FN resonance peak is also substantially larger than
any of the true resonances.

In this Letter we have demonstrated the feasibility of
extending the MCCC method to include both electronic
and nuclear states in the close-coupling expansion, allow-
ing the calculation of self-consistent sets of absolute cross
sections where the adiabatic-nuclei approximation breaks
down. The method treats both resonant and nonresonant
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FIG. 5. Electron-impact cross sections in the 2Σg scattering
symmetry for excitation of the b

3Σ+
u state from the ground

state of H2. Comparison is between calculations performed
with the vibrational-electronic and fixed-nuclei MCCC meth-
ods (VE-MCCC and FN-MCCC, respectively).

scattering on the same footing, and does not require the
input of resonance data from external calculations. We
have applied the method to the resonance structures in
the 10–14 eV incident-energy region of electron scatter-
ing on H2, and found agreement with previously mea-
sured or calculated resonance positions. As the MCCC
method is extended to more complex diatomic molecules
in the future, the techniques described here can be imme-
diately applied. This will allow the benefits of large-scale
close-coupling calculations, such as rigorous demonstra-
tions of convergence and a proper account of interchannel
coupling, to be be applied to all molecular scattering pro-
cesses. Thus, a complete description of electron-molecule
scattering previously believed to be unfeasible is becom-
ing within reach of present-day computational methods.
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