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Bundles of filaments are subject to geometric frustration: certain deformations (e.g. bending while
twisted) require longitudinal variations in spacing between filaments. While bundles are common—
from protein fibers to yarns—the mechanical consequences of longitudinal frustration are unknown.
We derive a geometrically-nonlinear formalism for bundle mechanics, using a gauge-like symmetry
under reptations along filament backbones. We relate force balance to orientational geometry and
assess the elastic cost of frustration in twisted toroidal bundles.

Elastic zero modes are a ubiquitous feature of soft
materials, from mechanical metamaterials [1, 2] to liq-
uid crystal elastomers [3]. Such systems can undergo
large deformations with minimal strain, as geometrically
coupled rotations and translations preserve local spac-
ing between microscopic constituents. The smectic and
columnar liquid crystalline phases provide paradigmatic
examples of zero modes in soft elastic systems, permit-
ting relative “sliding” of 2D layers and 1D columns, re-
spectively. Smectic and columnar phases with zero-cost
sliding displacements bear a striking resemblance to a
much broader class of laminated and filamentous struc-
tures with largely inelastic, disipative forces tangent to
their layers or columns and without longitudinal correla-
tions between material points, ranging from multi-layer
graphene materials [4] and stacked paper [5] to biopoly-
mer bundles [6, 7], nanotube yarns [8], and wire ropes
[9].

While there are well established frameworks which cap-
ture the geometric nonlinearities of smectic liquid crys-
tals (i.e., the strain tensor accurately describes arbitrar-
ily large and complex deformations) [10], no such frame-
work exists for columnar and filamentous materials. The
orientations of column backbones impose constraints on
inter-filament spacing, generating rich modes of geomet-
ric frustration without counterpart in smectic liquid crys-
tals. In the simplest non-trivial case of helical bundles,
predictions from a minimally non-linear approximation of
columnar elasticity [11] and tomographic analysis of elas-
tic filament bundles [12] show that twist in straight bun-
dles gives rise to non-uniform inter-filament stress and
spacing in transverse sections (see Fig 1a). Except for
the restrictive classes of straight, twisted bundles [13]
and twist-free developable domains [14, 15], bundle tex-
tures also generate longitudinal frustration, requiring lo-
cal spacings to vary along a bundle [16]. Although defor-
mations that introduce longitudinal frustration are the

FIG. 1. In (a), an equilibrium twisted bundle with straight,
untwisted reference configuration, ΩR = 1, and 2D Poisson
ratio ν = 0.8, colored by the local pressure P = −Sαα/2.
Reptation of the gold filament by σ along its contour, draws
the filament (in the direction indicated by the gold arrow)
above the planar cross-section of the bundle, but leaves the
local separation d∆ unchanged. In (b), a twisted-toroidal
bundle found by bending the same bundle to κ0 = 0.2/R and
optimizing inter-filament elastic cost.

rule rather than the exception—for example, wire ropes
or toroidal biopolymer condensates are both twisted and
bent (e.g. Fig. 1)—existing frameworks of columnar elas-
ticity fail to capture this effect.

In this Letter, we develop a fully geometrically non-
linear Lagrangian elasticity theory of columnar materi-
als, which completely captures the interplay between ori-
entation, and both lateral and longitudinal frustration
of inter-filament spacing. We construct this theory by
imposing a gauge-like local symmetry under reptations,
deformations that slide filaments along their contours
without changing the inter-filament spacing. The resul-
tant equilibrium equations point to the role geometrical
measures of non-equidistance play in bundles’ mechan-
ics. Within this framework, we compute the energetic
costs of longitudinal frustration in twisted, toroidal bun-
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dles, and give evidence that 1) optimal configurations
generically incorporate splay and 2) the bending cost
that derives from non-uniform compression depends non-
monotonically on pretwist.

To construct the elastic theory, we divide space into
points on filament backbones, labeled by two coordinates:
v, a 2D label of filaments; and s, a length coordinate
along filaments. Hence, the location of each point in the
bundle is described by a function r(s,v), with ∂sr(s,v)
parallel to the tangent vector t = ∂sr/|∂sr|. Because
they lack positional order along their backbone curves,
filament bundles and columnar liquid crystals have a fam-
ily of continuous zero modes, corresponding to reptations
(Fig. 1),

r′(s,v) = r(s+ σ(s,v),v). (1)

We assume that changes in local spacing can be described
by an energy density function W, that depends only on
the deformation gradient [17].

To account for reptation symmetry, we demand that
W depend on a modified deformation gradient, which
transforms as a scalar under σ(s,v), depends solely on
the deformation, r, of the material itself, and recovers
the well-established 2D elasticity of developable bundles
(i.e. parallel arrays) [14, 15]. Specifically, we con-
struct a covariant derivative DIr = ∇Ir − AI , where
∇I is the usual covariant derivative on tensors in the
material space and r determines AI , such that if two
configurations, r and r′, are related by Eq. (1), then
DIr = D′Ir

′. In order for DIr to be reptation invari-
ant, we must have that −A′I +AI = ∇Iσ∂sr. Therefore,
−A′I+AI = −(t·∇Ir′)t+(t·∇Ir)t. To construct an elas-
tic theory of columnar materials, we set AI = (t · ∇Ir)t,
which is manifestly reptation invariant, and leads to a
deformation gradient that only measures deformations
transverse to the local backbones,

DIr ≡ ∇Ir− (t · ∇Ir)t. (2)

Notably, for two nearby filaments at r(v) and r(v + dv)
in material coordinates, the covariant derivative gives the
local distance of closest approach d∆ = dvI DIr, for
which d∆ · t = 0 (see again inset of Fig. 1a). As shown
explicitly in the Supplemental Information, this covariant
deformation gradient captures the standard 2D deforma-
tion gradients of developable domains.

From this deformation gradient, we construct an effec-
tive metric geff

IJ = DIr ·DJr, which is naturally invariant
under rotations of r, and which encodes the metric inher-
ited by the local 2D section transverse to the filaments
in the bundle [18]. Because Dsr = 0, the effective metric
only has components for 2 × 2 block I, J 6= s, which we
denote using index notation α, β ∈ {1, 2}. We can now
define the Green - Saint-Venant strain tensor [17, 19, 20]
as

εαβ = 1
2

[
Dαr ·Dβr− gtar

αβ

]
, (3)

where gtar
αβ is the target metric corresponding to strain-

free state, which for this Letter, we take to be developable
with uniform spacing, so gtar

αβ = δαβ . For weak deflec-
tions from the uniform parallel state, Eq. (3) reduces
to the small-tilt approximation to the non-linear colum-
nar strain [11, 21, 22], which captures the lowest-order
dependence of spacing on orientation [23].

Assuming that strains are small though deformations
may be large, we can treat the elastic energy as quadratic
in the strain, so that

Es =

∫
dV W(ε) =

1

2

∫
dV Sαβεαβ , (4)

where Sαβ = ∂W
∂εαβ

= Cαβγδεγδ is the nominal stress ten-

sor, and Cαβγδ is a tensor of elastic constants which de-
pends on both the crystalline symmetries of the underly-
ing columnar order and the target metric, gtar

αβ [24]. En-
ergetics of columnar materials also include other gauge-
invariant costs, including the Frank-Oseen orientational
free energy (particularly filament bending) and the cost
of local density changes along columns [25]. Here, for
clarity, we focus only on the energetics of columnar strain
and detail the combined effects of other contributions
elsewhere [26]. Given this gauge-invariant formulation
of the columnar strain energy, we first illustrate the me-
chanical effects of orientational geometry on local forces.
This follows from the bulk Euler-Lagrange equations of
Eq. (4) (see Supplemental Information for a complete
derivation),

δEs
δr

= −∇α
(
SαβDβr

)
+∇s

(
SαβDβr

t · ∇αr

|∇sr|

)
. (5)

The bulk terms represent body forces generated by the
columnar strains, which must be balanced by other in-
ternal stresses or external forces. To cast them in a more
geometrical light, we consider separately the components
tangential and perpendicular to t, F‖ and F⊥, respec-
tively.

Making use of the identity, t · ∇αDβr = −∂αt · ∂βr,
the tangential forces can be recast simply as

F‖ = Sαβhαβ , (6)

where

hαβ = 1
2

[
∂αt · ∂βr + ∂βt · ∂αr (7)

− t · ∂αr

|∂sr|
∂st · ∂βr− t · ∂βr

|∂sr|
∂st · ∂αr

]
,

is the convective flow tensor that measures longitudinal
variations in inter-filament spacing [16]. Just as the sec-
ond fundamental form measures gradients of a surface’s
normal vector [27], hαβ measure the symmetric gradi-
ents of t in its normal plane (i.e. its trace is the splay of
filament tangents).
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FIG. 2. A 2D schematic of local forces in a filament bundle
(with a uniform, parallel reference state), illustrating trans-
verse stress S⊥⊥ with regions under compression in blue and
those under extension in red. The forces parallel and tangent
to t are shown at two points, and push material points to
regions of vanishing stress.

Here, we see that tangent forces couple non-
equidistance to the stress tensor much like the Young-
Laplace law couples in-plane stresses to normal forces in
curved membranes [19]. This analogy becomes exact for
zero twist textures: when t ·(∇×t) = 0, filaments can be
described by a set of surfaces normal to t. In this case, it
is possible to choose coordinates so that ∂αr · t = 0, and
tangential forces give the Young-Laplace force normal to
each surface, with hαβ reducing to their second funda-
mental form. This illustrates the intuitive notion, shown
schematically in Fig. 2, that columnar strain generates
tangential body forces that push material points towards
lower-stress locations in the array.

The bulk components of Eq. (5) perpendicular to t give
the transverse force

F⊥ = −Dα

[
SαβDβr

]
+Ds

[
Sαβ

t · ∂αr

|∂sr|
Dβr

]
. (8)

This form captures the divergence of stress in the planes
perpendicular to backbones. The second term accounts
for the corrections arising from material derivatives that
lie along the backbone, such as twisted textures, when
∂αr · t 6= 0. Thus, the longitudinal derivatives in F⊥ are
needed to capture transverse mechanics of even equidis-
tant twisted bundles beyond the lowest order geometric
non-linearity [11].

We now illustrate the energetics of longitudinal frustra-
tion by considering a prototypical non-equidistant geom-
etry: twisted toroidal bundles. Motivated in large part by
the morphologies of condensed biopolymers [6, 7], theo-
retical models of twisted toroids have focused on their ori-
entational elasticity costs [28–30], ignoring the unavoid-
able frustration of inter-filament spacing in this geom-
etry. While satisfying force balance in non-equidistant
bundles requires physical ingredients beyond the colum-
nar strain energy, which we consider elsewhere [26], for
the purposes of this Letter we take advantage of the full
geometric-nonlinearity of Eq. (5) to explore the specific
costs of longitudinal gradients in spacing required by si-
multaneous twist and bend.

We construct twisted toroids from equilibrium twisted

helical bundles of radius R and constant pitch, 2π/Ω
by bending them such that their central curve r0 is de-
formed from a straight line into a circle of radius κ−1

0

(see Fig. 1b). We then define perturbative displacements

r(s+ δs, ρ+ δρ, φ+ δφ) ' r0 + ρρ̂+ ∂sr
(0)δs+ δρρ̂+ δφφ̂

relative to the bent, pre-twisted bundles, where ρ and φ
describe the (Eulerian) distance from the central curve
and the angular position relative to its normal in the
plane perpendicular to its tangent t0, and where ∂sr

(0) =
t0 + Ωρφ̂. The small-ρ limit of the force balance equa-
tions for the strain energy motivates the following dis-
placements δsδρ

δφ

 =

 asΩκ0ρ
3 sinφ

aρΩ
2κ0ρ

4 cosφ
aφΩ2κ0ρ

3 sinφ

 (9)

where as, aρ, and aφ are variational parameters. No-
tably, to linear order in curvature, these parameterize
the“almost equidistant” ansatzes considered previously,
including splay-free (tr(h) = 0) [28] configurations and
det(h) = 0 [16] ansatzes.

We expand the energy to quadratic order in κ0, holding
the center of area at r0, which constrains as = aρ − aφ,
then minimize Eq. (4) with respect to the displacements
for a given ΩR. Examples of the distribution of pressure
P = −Sαα/2 are shown in Fig. 1b. Relative to the axisym-
metric pressure induced by helical twist in the straight
bundle, bending into a twisted toroid requires bunching
(spreading) of the filaments at the inner (outer) positions
in the toroid, leading to a polarization of the pressure to-
wards the normal.

Because bending and twisting of bundles introduces
longitudinal strain variation, bending pre-twisted bun-
dle introduces additional stresses whose elastic cost can
be characterized by an effective bending stiffness B, de-
fined by Ebend = B

2

∫
dsκ2

0, which derives purely from
columnar strain, rather than intra-filament deformations.
Fig. 3 shows that longitudinal frustration leads to a bend-
ing cost that increases with small twist as B ∼ (ΩR)4,
but eventually gives way to remarkable non-monotonic
behavior at large pre-twist. We note further that the
bending cost grows with the 2D Poisson ratio ν of the
columnar array, highlighting the importance of local com-
pressional deformations in optimal twisted toroids.

We analyze the optimal modes of deformation via
the convective flow tensor, in particular, the trace
tr(h) (splay) and deviatoric components hdev = hαβ −
tr(h)δαβ/2 (biaxial splay) [31], which characterize lon-
gitudinal gradients of dilatory and shear stress in the
columnar array. In contrast to a heuristic view that op-
timal packings should favor the uniform area per filament
of splay-free textures, the inset of Fig. 3 instead shows
that optimal toroids incorporate a mixture of both splay
and biaxial splay where we define the respective measures
of average splay and biaxial splay, Ψ ≡ 1

κ2
0V

∫
dV tr(h)2
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FIG. 3. The effective bending modulus B which results from
the frustration of constant spacing in twisted-toroidal bun-
dles. The inset shows dimensionless measures of mean splay
(Ψ) and biaxial splay (Γ) defined in the text, for fixed twist
ΩR = 0.8 for a range of 2D Poisson ratios, from ν = 0.2 to 1.0.
Approaching incompressiblity (ν → 1), Ψ goes to zero, main-
taining uniform area-per-filament at the expense of expense
of markedly increased strain energy.

and Γ ≡ 1
κ2
0V

∫
dV tr(h2

dev). Only in the incompressible

limit, as ν → 1, does the splay vanish, and only at the
expense of additional biaxial splay and energetic cost,
implying counterintuitively that splayed textures are in
fact energetically favorable in longitudinally frustrated
twisted toroids. Indeed, the energetic preference for splay
in non-equidistant bundles, can be traced to force balance
conditions in this geometry [26].

As an elastic theory, our treatment of reptation invari-
ant energetics neglects the non-conservative forces of tan-
gential friction in 2D ordered bundles. Such a description
will apply, by definition, to equilibria of any system with
columnar order (i.e. without long-range inter-axial cor-
relations between filaments), conditions widely encoun-
tered in a range of molecular bundle-forming systems,
from supermolecular fibers [32, 33] to nanotube ropes
[34–36]. For example, simulations of nanotube ropes
[34, 35], confirm that inter-filament cohesion is sufficient
to maintain dense, 2D order while columns reptate under
highly contorted, twisted and bent deformations. Con-
densed states of DNA and other polynucleotides, for ex-
ample, exhibit columnar states [37], and notably exhibit
twisted, contorted and 2D ordered packings within viral
capsids [7, 38], although the existence of inter-helical cor-
relations in such structure and their effects on observed
packing remains a matter of open investigation [39].
The question of when the reptation symmetric elastic de-
scription captures goemetrically non-linear deformations
of macroscopic bundles, in which static friction between
filaments may transmit axial shears, is more complex.
While some recent experiments [12, 40] with macroscopic
bundles of densely-packed, 2D ordered and twisted bun-
dles demonstrate that large degrees of distortion are pos-
sible without noticeable effects of sliding friction, pre-
vailing theoretical models, backed up by finite-element

simulations, of twisted cables, indicate that the effects
of static friction lead to mechanical transitions between
shear coupled and un-coupled regimes [41, 42]. Notably,
models of bending in pretwisted cables show that above
a threshold bending (which increases with static friction
and pre-tension), deformation transitions to a slipping
regime, [43, 44]. In this context, we might speculate that
deformations in the post-slipping regimes of these models
tends towards those captured by the minimal reptation-
invarient elasticity. It may indeed by possible to ex-
plore this conjecture via a homogenization approach to a
suitable constitutive model of fibered elastic composites
[45–48], in which the inter-fiber matrix transmits strictly
no elastic shears, but instead only an elastoplastic slip-
ping of fibers determined by local transverse pressure (i.e.
Coulomb friction).

In summary, we have shown that gauge-theoretic
principles underlie the geometrically-nonlinear theory of
columnar elasticity, providing a means to quantify the
cost of longitudinal frustration in the mechanics of bun-
dles. Unlike phase field models of nonlinear elasticity
(such as [49, 50]), this description depends neither on
the presence of a planar reference state, nor presupposes
uniform crystalline order, allowing us to both accommo-
date the effective curvature of bundles of constant pitch
helices [51], and providing a natural generalization to ar-
bitrary target metrics [19]. Because this approach to
elasticity relies only on the existence of local, continu-
ous zero modes, we note that it can be generalized to
other liquid crystals, like smectics, and anticipate that it
may have applications beyond liquid crystals, including
mechanical metamaterials.
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