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We study the statistical properties of the complex generalization of Wigner time delay τW for
sub-unitary wave chaotic scattering systems. We first demonstrate theoretically that the mean
value of the Re[τW] distribution function for a system with uniform absorption strength η is equal
to the fraction of scattering matrix poles with imaginary parts exceeding η. The theory is tested
experimentally with an ensemble of microwave graphs with either one or two scattering channels,
and showing broken time-reversal invariance and variable uniform attenuation. The experimental
results are in excellent agreement with the developed theory. The tails of the distributions of both
real and imaginary time delay are measured and are also found to agree with theory. The results are
applicable to any practical realization of a wave chaotic scattering system in the short-wavelength
limit, including quantum wires and dots, acoustic and electromagnetic resonators, and quantum
graphs.

Introduction. In this paper we are concerned with the
general scattering properties of complex systems, namely
finite-size wave systems with one or more channels con-
nected to asymptotic states outside of the scattering do-
main. The scattering system is complex in the sense that
classical ray trajectories will undergo chaotic scattering
when propagating inside the closed system. We focus on
the properties of the energy-dependent scattering matrix
of the system, defined via the linear relationship between
the outgoing |ψout〉 and incoming wave amplitudes |ψin〉
on the M coupled channels as |ψout〉 = S |ψin〉. In the
short wavelength limit the complex M × M scattering
matrix S(E) is a strongly fluctuating function of energy
E (or, equivalently, the frequency ω) of the incoming
waves, as well as specific system details. Those parts
of the fluctuations which reflect long-time behavior are
controlled by the high density of S-matrix poles, or reso-
nances, having their origin at eigenfrequencies (modes) of
closed counterparts of the scattering systems. At energy
scales comparable to the mean separation ∆ between the
neighboring eigenfrequencies, the properties of the scat-
tering matrix are largely universal, and depend on very
few system-specific parameters. The ensuing statistical
characteristics of the S-matrix have been very success-
fully studied theoretically over the last 3 decades using
methods of Random Matrix Theory (RMT) [1–9].

The scattering matrix can be characterized by the dis-
tribution of poles and associated zeros in the complex
energy plane, which are most clearly seen when one ad-
dresses its determinant. In the unitary (zero loss) limit,
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the poles and zeros of the determinant form complex con-
jugate pairs across the real axis in the energy plane. In
the presence of any loss, the poles and zeros are no longer
complex conjugates, but if the loss is spatially-uniform
their positions are still simply related by a uniform shift.
This is no longer the case for spatially-localized losses,
with poles and zeros migrating in a complicated way to
new locations, subject to certain constraints. For a pas-
sive lossy system the poles always remain in the lower half
of the complex energy plane, while the zeros can freely
move between the two sides of the real axis. Among other
things, rising recent interest in characterizing S-matrix
complex zeros, as well as their manifestation in physical
observables, is strongly motivated by the phenomenon of
coherent perfect absorption [10], see [11–15] and refer-
ences therein.

One quantity which is closely related to resonances is
known to be the Wigner time delay τW. In its tradi-
tional definition [16, 17] for unitary, flux conserving scat-
tering systems the Wigner time delay τW is a real pos-
itive quantity measuring how long an excitation lingers
in the scattering region before leaving through one of the
M channels. Fluctuations of τW and related quantities
was the subject of a large number of theoretical works
in the RMT context [18–27], and more recently [28–32],
as well in a semiclassical context in [33–36] and refer-
ences therein. In particular, for the one and two channel
cases most relevant to this paper the distribution of τW
is known explicitly for all symmetry classes, β = 1, 2 and
4 [24].

Experimental work on time delays in wave chaotic bil-
liard systems was pioneered by Doron, Smilansky and
Frenkel in microwave billiards with uniform absorption
[37], where the relation between the Wigner time de-
lays and the unitary deficit of the S-matrix has been ex-
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plored. Later experiments on time delay statistics were
made by Genack and co-workers, who studied microwave
pulse delay times through randomized dielectric scatter-
ers [38, 39]. The quantity studied in that case is a type of
partial time delay associated with the complex transmis-
sion amplitude between channels [40], somewhat different
from the Wigner time delay. In particular, contributions
to the transmission time delay due to poles and zeros
of the off-diagonal S-matrix entries have been identified
[41].

Despite strong interest in the standard Wigner time de-
lay over the years, its use for characterising statistics of S-
matrix poles and zeros beyond the regime of well-resolved
(isolated) resonances have been always problematic. In
our recent paper [15] we noticed that in the presence of
losses one may propose a complex-valued generalization
of the Wigner time delay τW (CWTD) which reflects the
phase and amplitude variation of the scattering matrix
with energy. Subsequently, we developed a method, both
experimentally and theoretically, for exploiting CWTD
for identifying the locations of individual S-matrix poles
En and zeros zn in the complex energy plane. The method
has been implemented in the regime of well-resolved, iso-
lated resonances, for systems with both localized and
uniform sources of absorption. However, no statistical
characterization of CWTD for large numbers of modes
has been attempted.

To this end it is worth mentioning that one of the
oldest yet useful facts about the standard Wigner time
delay is that the mean of the τW distribution is sim-
ply related to the Heisenberg time τH of the system,
〈τW〉 = 2π~/M∆ := τH/M [42]. As such it is absolutely
insensitive to the type of dynamics, chaotic versus inte-
grable. More recently this property was put in a much

wider context and tested experimentally [43].
In this paper we reveal that the mean value of Re[τW] of

CWTD is, in striking contrast to the flux-conserving case,
a much richer object and can be used to obtain nontrivial
information about the distribution of the imaginary part
of the poles of the S-matrix. For this we develop the
corresponding theory for the mean values and compare
to the experimentally observed evolution of distributions
of real and imaginary parts of CWTD with uniform loss
variation.
Theory. The appropriate theoretical framework for

our analysis is the so called effective Hamiltonian formal-
ism for wave-chaotic scattering [3, 4, 7, 9, 44]. It starts
with defining an N ×N self-adjoint matrix Hamiltonian
H whose real eigenvalues are associated with eigenfre-
quencies of the closed system. Further defining W to
be an N ×M matrix of coupling elements between the
N modes of H and the M scattering channels, one can
in the standard way build the unitary M ×M scatter-
ing matrix S(E). In this approach the S-matrix poles
En = En − iΓn (with Γn > 0) are complex eigenval-
ues of the non-Hermitian effective Hamiltonian matrix
Heff = H− iΓW 6= H†eff, where we defined ΓW = πWW †.
A standard way of incorporating the uniform absorption
with strength η is to replace E → E+iη making S-matrix
subunitary, such that its determinant detS(E + iη) is
given by the ratio

det[E −H + i(η − ΓW )]

det[E −H + i(η + ΓW )]
=

N∏
n=1

E + iη − E∗n
E + iη − En

, (1)

Using the above the expression, the Wigner time delay
can be very naturally extended to scattering systems with
uniform absorption as suggested in [15] by defining:

τW(E; η) :=
−i
M

∂

∂E
log detS(E + iη) = Re τW(E; η) + iIm τW(E; η), (2)

Re τW(E; η) =
1

M

N∑
n=1

[
Γn + η

(E − En)2 + (Γn + η)2
− η − Γn

(E − En)2 + (Γn − η)2

]
, (3)

Im τW(E; η) = − 1

M

N∑
n=1

[
4ηΓn(E − En)

[(E − En)2 + (Γn − η)2][(E − En)2 + (Γn + η)2]

]
(4)

For a wave-chaotic system the set of parameters Γn, En
(known as the resonance widths and positions, respec-
tively) is generically random. Namely, even minute
changes in microscopic shape characteristics of the sys-
tem will drastically change the particular arrangement of
S-matrix poles in the complex plane in systems which are
otherwise macroscopically indistinguishable. To study
the associated statistics of CWTD most efficiently one
may invoke the notion of an ensemble of such systems. As
a result, both Re[τW] and Im[τW] at a given energy will

be distributed over a wide range of values. Alternatively,
even in a single wave-chaotic system the CWTD will dis-
play considerable statistical fluctuations when sampled
over an ensemble of different mesoscopic energy inter-
vals, see below and [45] for more detailed discussion. In-
voking the notion of spectral ergodicity one expects that
in wave-chaotic systems the two types of ensembles (i.e.
those produced by perturbations to the system at fixed
energy vs. those created by considering various energy
windows) should be equivalent.
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Consider the mean value of the CWTD in systems with
uniform absorption η > 0. In contrast to the case of flux-
conserving systems the mean of Re[τW] becomes highly
nontrivial as it counts the number of S-matrix poles
whose widths exceed the uniform absorption strength
value. In other words,

〈Re[τW(E; η)]〉E
τH/M

=
#[Γn > η such that En is inside IE ]

total # resonances inside IE
(5)

where IE is a mesoscopic energy interval that is much
larger than the mean mode spacing ∆, absorption η and
the widths Γn, but small enough so that the interval has
a roughly constant mode density. To prove this, perform
an energy average of Eq. (3):

〈Re[τW(E; η)]〉E ≈

π/2

M |I|

N∑
n=1

{[
sign

(
ER − En
η + Γn

)
− sign

(
EL − En
η + Γn

)]
−
[
sign

(
ER − En
η − Γn

)
− sign

(
EL − En
η − Γn

)]}
=

2π

M |I|

N∑
n=1

θ(Γn − η) (6)

where |I| := |ER − EL| is the mesoscopic energy in-
terval, and the step function θ(x) = 1 for x > 0
and θ(x) = 0 otherwise. Under the assumption that
#(En ∈ I) ≈ |I|/∆ we arrive at the statement Eq. (5)
above. Alternatively, invoking ergodicity, one may use
the RMT for analysing the mean CWTD, which inde-
pendently confirms Eq. (5). Such analysis also predicts
that 〈Im[τW(E, η)〉E = 0, independent of η. Details of
these calculations are presented in Supp. Mat. section
I [45]. The distribution of imaginary parts Γn of the S-
matrix poles relevant for Eq. (5) have been examined
theoretically in the RMT framework [50–53] and experi-
mentally [54–59] by a number of groups.

Experiment. We test our theory by using an ensemble
of tetrahedral microwave graphs with either M = 1 or
M = 2 channels coupled to the outside world. We fo-
cus on experiments involving microwave graphs [60–63]
for a number of reasons: one can precisely vary the uni-
form loss and the lumped loss over a wide range; one
can work in either the time-reversal invariant (TRI) or
broken-TRI regimes; one can gather very good statis-
tics with a large ensemble of graphs; one can vary both
the (energy-independent) mode density and loss to go
from the limit of isolated modes to strongly overlapping
modes. The disadvantages of graphs for statistical stud-
ies include significant reflections at nodes, which can cre-
ate trapped modes on the bonds [64], and the appearance
of short periodic orbits in cyclic graphs [65].

The microwave graphs are constructed with coaxial ca-
bles with center conductors of diameter 0.036 in. (0.92
mm) made with silver plated copper clad steel, and outer
shield of diameter 0.117 in. (2.98 mm) made with a

(a)

(b)

FIG. 1. Evolution of the PDF of measured Re[τW] with in-
creasing uniform attenuation (η̃) from an ensemble of two-
port (M = 2) tetrahedral microwave graphs with broken-TRI.
Main figure and inset (a) show the distributions of the pos-
itive and negative Re[τW] on a log-log scale for three values
of uniform attenuation, respectively. Reference lines charac-
terizing power-law behavior are added to the tails. Inset (b)
shows the distributions of Re[τW] on a linear scale for the
same measured data.

copper-tin composite. An ensemble of microwave graphs
is created by choosing 6 out of 9 cables with different
incommensurate lengths (for a total of

(
9
6

)
= 84 realiza-

tions) and creating uniquely different tetrahedral graphs.
The scattering matrix of the 1 and 2-port graphs are mea-
sured with a calibrated Agilent PNA-X N5242A Network
Analyzer (see insets of Fig. 3) over the frequency range
from 1 to 12.4 GHz, which includes about 250 modes in a
typical realization of the ensemble. The graphs are mea-
sured with a finite coupling strength ga, which varies from
1.06 to 1.80 as a function of frequency, where ga = 2

Ta
−1

and Ta = 1− |Srad|2 is the transparency of the graph to
the scattering channel a determined by the value of the
radiation S-matrix.[66] The effects of the coupling are
then removed through application of the Random Cou-
pling Model (RCM) normalization process [67–70]. This
is equivalent to creating an ensemble of data with perfect
coupling, ga = 1 and Ta = 1 for all frequencies, ports,
and realizations.

Time-reversal invariance was broken in the graph by
means of one of 4 different microwave circulators [71] op-
erating in partially overlapping frequency ranges going
from 1 to 12.4 GHz (see Supp. Mat. section VI [45]).
The CWTD τW is calculated using the RCM-normalized
scattering matrix S as in Eq. (2), and the statistics of
the real and imaginary parts are compiled based on real-
ization averaging and frequency averaging in a given fre-
quency band. The overall level of attenuation was varied
by adding identical fixed microwave attenuators to each
of the 6 bonds of the tetrahedral graphs [72]. The atten-
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FIG. 2. Evolution of the PDF of measured Im[τW] with in-
creasing uniform attenuation (η̃) from an ensemble of two-
port (M = 2) tetrahedral microwave graph data with broken-
TRI. The main figure shows a log-log plot of the PDF versus
|Im[τW]| for three values of uniform attenuation. A reference
line is added to characterize the power-law tail. Inset shows
the distributions of Im[τW] on a linear scale for the same mea-
sured data.

uator values chosen were 0.5, 1 and 2 dB.

Comparison of Theory and Experiments. Our prior
work showed that CWTD varied systematically as a func-
tion of energy/frequency for an isolated mode of a mi-
crowave graph [15]. The real and imaginary parts of
τW take on both positive and negative values. We now
consider an ensemble of graphs and examine the distri-
bution of these values taken over many realizations and
modes. We first examine the evolution of the PDF of
Re[τW] (Fig. 1(b)) and Im[τW] (inset of Fig. 2) with
increasing uniform (normalized) attenuation η̃. The uni-
form attenuation is quantified from the experiment as
η̃ = 2π

∆ η = 4πα, where α = δf3dB/∆f , δf3dB is the typ-
ical 3-dB bandwidth of the modes and ∆f is the mean
frequency spacing of the modes [73].

Fig. 1 shows that as the uniform attenuation (η̃) of
the graphs increases, the peak of the Re[τW] distribution
shifts to lower values. Furthermore, Fig. 1(a) shows that
Re[τW] acquires more negative values as the attenuation
increases. Fig. 1 demonstrates that the PDF of Re[τW]
exhibits power-law tails on both the negative and pos-
itive sides, respectively. The positive-side PDFs shown
in Fig. 1 have different power-law behaviors for different
ranges of Re[τW], which is further explained theoretically
in the Supp. Mat. section II [45]. Fig. 2 shows the PDF
of |Im[τW]| on both linear and log-log scales for the same
values of uniform attenuation. We find that the Im[τW]
distribution is symmetric about zero to very good ap-
proximation. Once again a power-law behavior of the
tails of the distribution is evident.

Figure 3 shows a plot of the Mean(Re[τW]) vs. uni-
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FIG. 3. Mean of Re[τW] as a function of uniform atten-
uation η̃ evaluated using tetrahedral microwave graph data
with broken-TRI for both one- and two-port configurations.
(a) shows the one-port experimental data (black circles) com-
pared with theory (red line). (b) shows the two-port experi-
mental data (black circles) compared with theory (red line).
A detailed discussion about the estimated error bars (blue)
can be found in Supp. Mat. section V. [45] Insets show the
mean of the Im[τW] (green circles) as a function of uniform
attenuation η̃ evaluated using the same datasets for the one-
and two-port configurations, respectively. Other insets show
the experimental configurations.

form attenuation (η̃) in ensembles of microwave graphs
for both (a) M = 1 and (b) M = 2 ports. The black
circles represent the data taken on an ensemble of mi-
crowave graphs with constant η̃. The red line is an eval-
uation of the relation Eq. (5) above, based on the an-
alytical prediction for the P (Γn) distribution for the a)
M = 1 and b) M = 2 cases, both with perfect coupling
(g = 1) [4, 51]. Note that the distribution of Γn for
M = 1 is very different from the multi-ports cases (see
Fig. S3 in the Supp. Mat. [45]). Nevertheless there
is excellent agreement between data and theory over the
entire experimentally accessible range of uniform atten-
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uation values for both 1-port and 2-port graphs. We can
conclude that the theoretical prediction put forward in
Eq. (5) is in agreement with experimental data. A more
detailed comparison with random matrix based compu-
tations over a broad range of uniform attenuation is pre-
sented in Supp. Mat. section IV [45].

We have also examined the experimentally obtained
statistics of Im[τW]. As seen in the insets of Fig. 3 (a)
and (b), we find that the mean of Im[τW] is consistent
with theoretically predicted zero value for all levels of
uniform attenuation in the graphs.

We now turn out attention back to the power-law
tails for the distributions of Re[τW] and Im[τW] pre-
sented in Figs. 1 and 2. By examining the statis-
tics of large values of Re[τW] that appear in Eq. (3),
one finds that the tails of the PDFs will behave as
P(Re[τW]) ∝ 1/Re[τW]3, on both the positive and neg-
ative sides, as long as MRe[τW]/τH � 1/η̃ (details dis-
cussed in Supp. Mat. section II [45]). This behavior
is clearly observed on the negative side of the PDF, as
shown in Fig. 1(a). The tail on the positive side is
more complicated due to a second power-law expected
in the intermediate range: P(Re[τW]) ∝ 1/Re[τW]4 when
1 � MRe[τW]/τH � 1/η̃. Unfortunately we were not
able to obtain such data within this range (requiring very
low attenuation η̃) experimentally, but a narrow range
of Re[τW]/τH between approximately 0.3 and 1 in Fig.
1 shows a steeper power-law behavior, consistent with
P(Re[τW]) ∝ 1/Re[τW]4, giving way to a more shallow
slope at larger values of Re[τW]/τH, consistent with the
theory. As seen in Fig. 2, the distribution of the imagi-
nary part of the time delay has a wide range with a power
law P(|Im[τW]|) ∝ 1/|Im[τW]|3, consistent with our the-
oretical prediction.

Discussion. We demonstrated that the CWTD is an

experimentally accessible object sensitive to the statis-
tics of S-matrix poles in the complex energy/frequency
plane. In addition to the experimental results discussed
above, we have also employed Random Matrix Theory,
as well as associated numerical simulations, for studying
the distribution of the CWTD. Through these simula-
tions (Supp. Mat. section IV [45]) we can explore much
smaller, and much larger, values of uniform attenuation
than can be achieved in the experiment. These simula-
tions show agreement with all major predictions of the
RMT-based theory, including the existence of an inter-
mediate power-law on the positive side of the P(Re[τW])
distribution for low-loss systems. Finally we note that all
results in Eqs. (1)–(5) are insensitive to the presence or
absence of TRI. The power-law tail predictions are also
insensitive to TRI, as shown in Supp. Mat. section II
[45].
Conclusions. We have experimentally verified the the-

oretical prediction that the mean value of the Re[τW]
for a system with uniform absorption strength η counts
the fraction of scattering matrix poles with imaginary
parts exceeding η. This opens a conceptually new oppor-
tunity to address resonance distributions experimentally,
as we convincingly demonstrated with an ensemble of mi-
crowave graphs with either one or two scattering chan-
nels, and showing broken time-reversal invariance and
variable uniform attenuation. The tails of the distribu-
tions of both real and imaginary time delay are found to
agree with theory.

We acknowledge Jen-Hao Yeh for early experimen-
tal work on complex time delay statistics. This work
was supported by AFOSR COE Grant No. FA9550-15-
1-0171 and ONR Grant No. N000141912481. Y.V.F.
acknowledges a financial support from EPSRC Grant
EP/V002473/1.
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Resonance Widths in Open Microwave Cavities Stud-
ied by Harmonic Inversion, Physical Review Letters 100,
254101 (2008).

[55] A. Di Falco, T. F. Krauss, and A. Fratalocchi, Lifetime
statistics of quantum chaos studied by a multiscale anal-
ysis, Applied Physics Letters 100, 184101 (2012).

[56] S. Barkhofen, T. Weich, A. Potzuweit, H.-J. Stöckmann,
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