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We show that combining randomized measurement protocols with importance sampling allows
for characterizing entanglement in significantly larger quantum systems and in a more efficient way
than in previous work. A drastic reduction of statistical errors is obtained using classical techniques
of machine-learning and tensor networks using partial information on the quantum state. In current
experimental settings of engineered many-body quantum systems this significantly increases the
(sub-)system sizes for which entanglement can be measured. In particular, we show an exponential
reduction of the required number of measurements to estimate the purity of product states and
GHZ states.

Measuring the properties of many-body states, and in
particular quantifying entanglement for increasing sys-
tem sizes is a key challenge in assessing and utilizing the
power of large-scale quantum computers [1] and simula-
tors [2, 3]. The recent development of randomized mea-
surements provides us with a general toolbox to mea-
sure in a state-agnostic way physical quantities associ-
ated with entanglement [4–17], scrambling [18–20], topo-
logical order [21, 22], and in cross-device quantum ver-
ification [23]. Randomized measurements are particu-
larly well suited to current experimental settings, requir-
ing only (random) single qubit rotations and site-resolved
measurements. Moreover, estimations are made directly
from the measured data, with low number of measure-
ments compared to tomography [24]. These protocols
have enabled in recent experimental work the measure-
ment of (entanglement) Rényi entropies [16, 25], negativ-
ities [12], state-fidelities [23], and scrambling [26].

While these experiments have been performed in the
regime of subsystems with ten particles, the ongoing de-
velopment of quantum systems involving hundreds of
qubits [1–3] raises the challenge to scale these protocols
to significantly larger (sub-)system sizes. The current
bottleneck is the required number of measurements to
overcome statistical errors: For instance, the number of
randomized measurements to estimate the purity with a
given accuracy is of the order of 2aN for a (sub-)system of
N qubits, with a ≈ 1 [6, 11]. In this letter, we show that
importance sampling will allow us to push randomized
protocols to study significantly larger (sub-)system sizes.
In particular, our scaling analysis for product states and
GHZ states shows that the required number of measure-
ments 2a

′N has a reduced exponent a′ < a compared
to our previous ‘uniform’ sampling approach. We also
observe below significant reductions of statistical errors
when estimating with importance sampling the purity of
random states, and highly entangled states created by a
quantum quench.

While our approach can be realized in any randomized
measurement protocol, we consider for concreteness the
situation of probing entanglement for a bipartite quan-
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FIG. 1. Randomized measurement protocol with importance
sampling. In the first phase, we construct a classical function
XIS(u). In the second phase, unitaries are sampled from the
appropriate classical representation. In the last phase, mea-
surements are performed in the quantum system, and are an-
alyzed to construct different properties accessible by random-
ized measurements. The measurement data obtained during
the experiment could also be considered as additional samples
to obtain improved classical function for future experiments.

tum system A and B. Our aim is to measure the purities
p2 = Tr(ρ2), and second Rényi entropies S2 = − log(p2)
of a subsystem A of N qubits described by a reduced
density matrix ρ. The values of p2 and S2 can be used to
quantify entanglement [27], but also to unravel universal
aspects of many-body quantum matter [28]. Using the
protocol presented in this Letter, the number of measure-
ments to access the purity in existing setups can be ex-
ponentially reduced, allowing for instance to probe topo-
logical order on large-scale surface codes [29], or to verify
in a state-agnostic way large quantum circuits [23, 30].

The purity p2 can be written as an integral
p2 =

∫
X(u)du of the quantity [6, 8, 25]

X(u) = 2N
∑
s,s′

(−2)−D[s,s′]Pu(s)Pu(s′), (1)

with the integration performed over all local unitary
transformations u = u1 ⊗ · · · ⊗ uN , with respect to
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the Haar measure du = Πi dui (see Supplemental Ma-
terial (SM) [31]). Here, Pu(s) = 〈s|uρu† |s〉 are the
probabilities of measuring a particular bitstring s in
the computational basis after rotation u (c.f. Fig 1),
and D is the Hamming distance. In practice, the pu-
rity can be evaluated using a Monte Carlo integration
p2 ≈ (Nu)−1

∑
rX(u(r)), obtained by uniformly sam-

pling a finite number of local transformations u(r) =

u
(r)
1 ⊗ · · · ⊗ u

(r)
N (r = 1, . . . , Nu).

Statistical errors in the estimation of the purity are due
to both shot noise (the finite number of measurement
samples NM used to estimate the probabilities Pu(s)),
and to the finite number of transformations Nu. The
challenge to overcome statistical errors is related to the
fact that the function X(u) takes values in an exponen-
tially large interval [2−N , 2N ] (see SM [31]). Here, we
propose to sample unitaries from a distribution pIS that
prioritizes the ‘important’ regions of X giving larger con-
tributions to the total integral (1), and we write the pu-
rity as

p2 =

∫ (
X(u)

pIS(u)

)
pIS(u)du. (2)

The gain in estimating the purity via Monte Carlo in-
tegration with importance sampling becomes apparent
when quantifying the statistical error E in measuring p2
for NM → ∞ with a finite number of unitaries Nu, be-
ing of the order of stdIS(X/pIS)/

√
Nu, when compared

with uniform sampling std(X)/
√
Nu [33]. Here std and

stdIS are the standard deviations according to the Haar
measure du, and the distribution pIS(u)du, respectively.

Our protocol is summarized in Fig. 1. (i) Building XIS:
We first construct on a classical computer an approxima-
tion XIS(u) of the function X(u). This function can be
built based on partial information on the quantum state
(classical data). We can also form XIS(u) from measure-
ments performed on a quantum system (quantum data).
This can be data from prior experiments under study,
but could also be data from another experiment, poten-
tially a more noisy quantum device or platform running
the same quantum task. (ii) Sampling: We define a prob-
ability distribution pIS(u) = |XIS(u)|/

∫
|XIS(u)|du [34],

and sample a set ofNu random unitaries via the Metropo-
lis algorithm [33]. (iii) Measurements: For each u(r), we

collect m = 1, . . . , NM bitstrings s
(r)
m from randomized

measurements performed on the quantum device. (iv)

Estimation: As the bistrings s
(r)
m are distributed accord-

ing to the probabilities Pu(r)(s), we use Eq. (1), and con-
struct an unbiased estimation of X(u(r))

Xe(u
(r)) =

2N

NM (NM − 1)

∑
m 6=m′

(−2)−D[s(r)m ,s
(r)

m′ ], (3)

which only differs from X(u(r)) due to shot noise.
Averaging (Xe(u

(r))/pIS(u(r))) over the unitaries u(r),

r = 1, . . . , Nu, we obtain an estimation of the purity
[p2]IS.

Importance sampling reduces the total required num-
ber of measurements NuNM associated with a given sta-
tistical error E . When sampling unitaries u according to
pIS, we first reduce the required number of unitaries Nu

to achieve E in the limit NM → ∞, as discussed above.
In addition, the number of shots NM required to sat-
isfy an error threshold is also less compared to uniform
sampling. The intuition behind this result is that the
unitaries u sampled according to pIS are preferentially
chosen in the vicinity of the maximum of X, where the
effect of shot noise is minimal. For instance, with a prod-
uct state, the maximum value of X(u) is obtained when
the distribution is peaked as Pu(s) = δs,s0 (see SM [31]),
i.e., when one shot only NM = 1 is sufficient to obtain
convergence Xe(u) = X(u). When estimating the pu-
rity by averaging Xe(u) over pIS, we indeed numerically
observe, for product and GHZ states, an exponential re-
duction of the required value of NM .

Task (i) of our protocol is the crucial part governing
the efficiency of our protocol. If the quantum state can
be represented classically up to unknown decoherence ef-
fects, such as for the product state, or a GHZ state, we
can build a quasi-exact representation XIS(u) of X(u).
Our protocol is also relevant when only approximations
XIS(u) of X(u) are available, for instance if we have
only access to a mean-field or a variational wavefunction.
In particular, we show below that tensor networks [35],
which, with limited bond dimension, cannot faithfully
represent a highly entangled state, are indeed useful to
access the purity with reduced number of measurements
compared to uniform sampling. Similarly, when build-
ing XIS(u) from quantum data, we can use recent tomo-
graphic techniques [24, 36–39], even in situations when
they do not accurately represent the quantum state.

The rest of this letter presents a detailed recipe to build
the approximation XIS(u) from limited information on
the state, as well as performance tests and scaling anal-
yses of statistical errors with various quantum states.

Building the sampler XIS—To construct XIS, we as-
sume we have access to a finite number Nsamples of ran-
dom measurements Xa(u(k)), k = 1, . . . , Nsamples. These
measurements can be obtained from classical data, i.e.,
from a representation of the state on a classical com-
puter. Xa(u(k)) is only an approximation of the true
measurement X(u(k)). This can be due to unknown
decoherence effects, but also to fundamental reasons
that limit our ability to represent classically a quan-
tum state. For instance, we can consider that Xa is
generated by a mean-field, variational tensor-network
methods [35] (e.g., matrix-product-states (MPS) - two-
dimensional projected-entangled pair states (PEPS))
with limited bond dimension, or machine-learning rep-
resentations [40]. Alternatively, we can also have prior
access to the experimental system realizing the quantum
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state and measure Xa(u(k)) = Xe(u
(k)) via Eq. (3) based

on quantum data, c.f. Fig. 1. Note that step (i) leads to
a result that can be saved classically, i.e. this step does
not need to be repeated every time we want to probe a
given quantum system.

As detailed in SM [31], we can parametrize single qubit
random unitaries ui = Ry(θi)Rz(ϕi) in terms of two ro-
tations. The function X(u) we would like to approximate
is thus a multivariate function of 2N variables θi, ϕi,
i = 1, . . . , N . In order to construct XIS(u) as an ob-
ject that can be used for sampling, we rely on machine-
learning (ML) techniques of nonlinear multivariate re-
gression. We use existing highly optimized algorithms
to fit our samples by a neural network representing our
target multivariate function XIS(u). For each sample k,

the 2N angles θ
(k)
i , ϕ

(k)
i parametrizing u(k) are used as

inputs of the neural network, while the value of the mea-
sured function Xa(u(k)) is the output of the network.
This provides a ‘training’ procedure, which results in a
fitted neural network XIS(u), which we can finally save
and use for the next step of sampling unitaries (ii) of the
protocol. Note that, when a theory representation Xa is
available, one could define XIS = Xa, i.e., avoid fitting
with ML and sample directly from Xa. While this ap-
proach is probably the most obvious for small systems,
using ML offers in the large scale scenario the possibility
of converting the result of a very costly classical compu-
tation into a neural network XIS(u). This neural network
can be seen as a ‘compressed object’ and can be saved
and shared classically on-demand (multiple times and/or
for multiple users) to realize the sampling task (ii).

Performance tests— We now benchmark our proto-
col. For all states that we analyzed, product states, GHZ
states, random states and other highly entangled states,
we observe a drastic reduction of statistical errors with
importance sampling.

We begin by considering product states ρ = |ψ〉 〈ψ|,
with |ψ〉 = |0〉⊗N . We consider having access to classi-
cal data with samples of randomized measurements that
are not affected by shot-noise. The details of the training
procedure are presented in the SM [31]. For such product
state, the training of a neural network XIS(u) is straight-
forward, and we achieve a fit of X(u) using three layers
of neurons, with mean absolute error below five percents,
see SM [31]. To assess the performance of importance
sampling, we will compare the average statistical error
E in estimating the purity, with the one obtained with
uniform sampling (XIS = 1). We compute E = |p2 − p2e|
by numerically simulating our protocol, with an aver-
age over simulated experiments. The results are shown
in Fig. 2(a). With uniform and importance sampling, the
error decays as 1/

√
Nu, with a prefactor that is approxi-

mately 5 times smaller for importance sampling. We con-
sider GHZ states |ψ〉 = (|0〉⊗N + |1〉⊗N )/

√
2 in Fig. 2(b).

Here, importance sampling provides a significant advan-
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FIG. 2. Statistical error scalings for product and GHZ states
Average statistical error E of the estimated purity for (a) 10-
qubit product state and (b) 5-qubit GHZ state in function of
Nu with NM = 1000 for a uniform sampling (Uniform) and
importance sampling from a machine learning model (ML).
(c-d) Scaling of the required total number of measurements
NuNM as a function of N for uniform and importance sam-
pling for a product state, to obtain a statistical error of
E = 0.1 (c), and E = 0.05 (d), respectively. We represent
with cross the analytical prediction (c.f. SM) and with circles
the numerical simulations. Panels (e-f) show the numerical
simulations for the GHZ states for E = 0.1 and E = 0.05 with
corresponding exponential fits of the type 2b+aN .

tage over uniform sampling, meaning that the neural net-
work succeeded in learning how to sample correlated ran-
dom unitaries that are adapted to probe a GHZ state.

We can also extract from numerical simulations the
total number of measurements NuNM , minimized over
possible choices of Nu, NM , that is required to achieve a
statistical error E . Here, to ensure that we extract scaling
relations that are independent of the choice of the neural
network ansatz, with importance sampling, we sample
directly from the ideal theory state XIS(u) = X(u). In
this case, for a fixed number of measurements, the sta-
tistical error is minimized for Nu = 1. We present in
the SM [31] additional numerical simulations, using opti-
mized neural networks for Nu = 200, 500 which support
the same conclusions. For the product state, we observe
in Fig. 2(c-d) that the required NuNM grows as 2b+aN

(see also Ref. [25]) with a ≈ 0.93 for uniform sampling,
and a ≈ 0.65 for importance sampling. Our numerical
results for the GHZ states [panels (e)-(f)] show similar
results, with favorable scaling exponents for importance
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FIG. 3. Purity estimation of a highly entangled 10 qubit state
with ML and MPS samplers. Panel (a) shows the average
statistical error E of the estimated purity in function of Nu

with NM = 7500 for a uniform sampling and importance sam-
pling done from a neural network and a MPS representation
of the corresponding state respectively. Panel (b) illustrates
the scaling of the error E w.r.t different bond dimensions D
used for the MPS representation of the state for Nu = 5 and
NM = 7500.

samplings, in particular at high accuracy E = 0.05 [panel
(f)]. As the exponent a is reduced compared to uniform
sampling, we see that importance sampling offers an ex-
ponential reduction of the required number of measure-
ments. In addition, in all panels (c-f), the prefactor 2b

obtained for importance sampling is smaller than the one
for uniform sampling.

For pure product states, we can compare our numerical
results with analytical calculations, which are presented
in the SM [31], and extend them to the large N limit.
Our analytical study shows the existence of two regimes:
For N . Nc, smaller than a certain value Nc ∝ log(1/E),
we find a strongly favorable scaling exponent of a = 0.37
for importance sampling. For large N & Nc, the expo-
nent increases towards a ≈ 0.88 which is however still
smaller than in the case of uniform sampling, a ≈ 0.92.
In particular, we note that the favorable scaling regime,
N < Nc ∝ log(1/E), grows with the inverse error thresh-
old E , in agreement with the results shown in Fig. 2(c-
d). The advantage of importance sampling is thus most
pronounced at high accuracy (small E), enabling estima-
tion of the purities with exponentially less measurements
compared to uniform sapling.

We have demonstrated that importance sampling pro-
vides an exponential reduction of the measurement bud-
get for two specific states, product and GHZ states, which
are ‘well-conditioned states’ , and whose fidelity can be
efficiently estimated via direct fidelity estimation [41, 42].
However, importance sampling is not useful only for these
states. First, we show in the SM [31] a scaling analysis
for pure random states that show a significant gain in
using importance sampling compared to uniform sam-
pling, which is here however constant with N . Sec-
ond, we can also use our protocol to probe mixed, and
highly entangled states, which are created via a quan-
tum quench [25]. Here, we consider a state modelling a
trapped-ion 10−qubit experiment described in Ref. [25],
which corresponds to the dynamics of a long-range XY

Hamiltonian [43]. This highly entangled state is char-
acterized by a purity of p2 ≈ 0.62, and a half-system
purity of p′2 ≈ 0.16, in agreement with the experimen-
tally measured values [25]. In order to mimic a situation
when the decoherence parameters are unknown, we train
our neural network on an ideal pure state, i.e., modelling
the system without errors, and use it to estimate the
purity of the mixed state ρ. The results are shown in
Fig. 3. While we see a clear improvement w.r.t uniform
sampling, here importance sampling does not achieve the
level of performance seen for GHZ states and product
states. This is due to an imperfect training of the used
convolutional neural network (CNN). While the training
can obviously be improved by changing the structure of
the neural network, we propose now a ‘physics-motivated’
complementary approach based on tensor networks, and
which offers for this particular state an improvement over
ML and provides a simplified approach to build XIS.
Importance sampling from Matrix-Product-States– We

illustrate how we can use approximate theory representa-
tion for importance sampling. Here, we consider Matrix-
Product-States (MPS), which have been introduced to
solve numerically condensed-matter problems [35]. With
N qubits, MPS are wavefunctions of the form

|ψD〉 =
∑

s1,...,sN
`1,...,`N−1

[A1](`1)s1 [A2](`1,`2)s2 . . . [AN ](`N−1)
sN |s〉 , (4)

with |s〉 = |s1〉 ⊗ . . . |sN 〉, and where each ‘bond’ index
`i can take at most D different values. A schematic
of the sequence of 2, 3 leg tensor Ai representing the
MPS is shown in Fig. 1. The bond dimension D is
the key parameter of a MPS, setting the maximum en-
tanglement entropy ∝ log(D) that can be captured by
such state [35]. MPS are in particular relevant for ap-
proximating ground states of a many-body Hamiltoni-
ans [28, 35]. The MPS framework thus appears as a
‘physically-inspired’ approach to build an importance
sampling function XIS(u), which complements the ML
approach (c.f., Fig. 1.). The training of XIS(u) here is
straightforward: (i.1) Form via a MPS algorithm an ap-
proximation |ψD〉 〈ψD| of the quantum state ρ [35]. (i.2)
Build the function XIS(u) with Eq. (1), by realizing pro-
jective measurements (sku)D on the MPS. While this step
can be realized efficiently [44], here we simply use the
probabilities [Pu(s)]D to build XIS(u).

As shown in Fig. 3a), importance sampling with a MPS
with D = 15 already provides a reduction of statisti-
cal errors compared to our best neural network model,
while the fidelity 〈ψD| ρ |ψD〉 = 0.7 shows that this MPS
is indeed only an approximation of ρ. Here, |ψD〉 was
formed by an algorithm that approximates the dynam-
ics of a system with long-range interactions [45], see also
Ref. [25]. When using MPS importance sampling, an
interesting trade-off appears in terms of required classi-
cal versus quantum hardware to measure entanglement:
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MPS with increasing bond dimensions require more clas-
sical resources, but are more performant for importance
sampling. This is shown in Fig. 3b), where the statistical
error is represented as a function of D. As shown in the
SM [31], we can draw the same conclusions when consid-
ering subsystems of 5 and 10 qubits being part of a 10
and 20 qubit system, respectively.

Conclusion— Importance sampling boosts the power
of randomized measurements protocols, allowing for mea-
suring more efficiently purities and second Rényi en-
tropies. Our approach is immediately applicable in all
randomized measurement protocols, e.g. to measure
scrambling [18], topological invariants [21, 22] , and fi-
delities [23, 41, 42].

We have studied how the investment of classical re-
sources for building an importance sampling function
‘pays off’ in terms of statistical errors. We believe that
further studies extending our scaling analysis can help
us to answer this conceptual question, but also to again
push the limits of randomized measurements.

Finally, as an extension of our protocol, it would be
interesting to consider an adaptive measurement scheme,
where the distribution pIS is iteratively adapted based on
prior measurements.
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