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Establishing a minimal microscopic model for cuprates is a key step towards the elucidation
of a high-Tc mechanism. By a quantitative comparison with a recent in situ angle-resolved
photoemission spectroscopy measurement in doped 1D cuprate chains, our simulation identifies
a crucial contribution from long-range electron-phonon coupling beyond standard Hubbard models.
Using reasonable ranges of coupling strengths and phonon energies, we obtain a strong attractive in-
teraction between neighboring electrons, whose strength is comparable to experimental observations.
Non-local couplings play a significant role in the mediation of neighboring interactions. Considering
the structural and chemical similarity between 1D and 2D cuprate materials, this minimal model
with long-range electron-phonon coupling will provide important new insights on cuprate high-TC

superconductivity and related quantum phases.

The origin of high-Tc superconductivity in cuprates re-
mains one of the greatest mysteries in condensed matter
physics [1–4]. The microscopic mechanism is believed to
be related to the strong correlations represented by the
Hubbard model [5–7]. Although numerical simulations
using this model have reproduced some observations in
cuprates, such as antiferromagnetism [8], spin and charge
stripe phases [9–12], and strange metallic behavior [13–
15], the most significant phase – high-Tc d-wave super-
conductivity – remains an enigma. To date, numerical
evidence for quasi-long-range-ordered superconductivity
has been reported for specific systems and methods [16–
20], but the exact solutions with cylinder geometry
always reveal a coexistence of the charge order with
comparable strength, and superconducting correlations
progressively decay on shorter length scales as the nu-
merical cluster size increases [21–24]. This contrasts
sharply to the robust high-Tc superconducting phases
observed in a large family of cuprate compounds. In-
creasing experimental evidence in the low-energy regime,
e.g. polaronic dressing near half-filling [25] and lattice
dressing effects that manifest as kinks or replica bands in
photoemission measurements [26–32], has suggested that
small ingredients missing from the Hubbard model may
have an outsized impact that can dramatically tip the
balance towards some instability.

To understand models with multiple degrees of free-
dom, which all play a significant role at low energies,
presents technical challenges in dealing with the coexis-
tence of strong correlations and quantum fluctuations [33,
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FIG. 1. (a) Schematic diagram of a local effective interaction
mediated by high-frequency phonons (anti-adiabatic limit)
and the non-locality for finite frequencies. (b) Schematic
explaining the geometry regarding local and non-local e-ph
couplings, estimated by the inverse distance between the
apical oxygen and corresponding copper atoms.

34], intertwined instabilities, and microscopic competi-
tion [35, 36]. Theoretical calculations in 2D are limited
by the rapid increase of Hilbert-space dimension and
entanglement with system size. Hubbard-like correlated
models in 2D, and in the thermodynamic limit, have
yielded only limited rigorous results. An alternative
approach to better understand the problem may lie in an
examination of the microscopic ingredients necessary to
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describe 1D cuprate analogs with comparable structural
and chemical environments [37–39].
With better control of theory in 1D systems, quan-

titative comparisons to experiment can be made with
higher fidelity, which enable a determination of the most
significant missing microscopic ingredients. Recently, in
situ molecular beam epitaxy and angle-resolved photoe-
mission techniques have enabled a study of the single-
particle spectral function across a range of doping in
1D cuprate chains [40]. These experiments have revealed
an anomalously strong “holon folding” near kF with the
same velocity as the holon, which reflects interactions in
the charge channel. The intensity of this “holon folding”
spectral features cannot be captured in simulations of
the typical single-band Hubbard model. Only by adding
a substantial, attractive, near-neighbor interaction to
the model can the theoretical simulations well-explain
the experimental observations [40]. Due to the repulsive
nature of the electrostatic interaction between electrons,
such an attraction must be mediated by a virtual process
that may involve degrees of freedom not present in
the single-band electronic model. This interaction is
anomalously strong, far exceeding the effective t2/U
density interaction term obtained by a Schrieffer-Wolff
transformation of the Hubbard model. Motivated by
existing experimental evidence for strong lattice effects in
cuprates, a possible explanation may lie in the coupling
between electrons and phonons (e-ph), although this still
lacks a quantitative demonstration.
Here, we demonstrate that the experimentally ob-

served strong attractive interaction V can be addressed
naturally in a model that includes a reasonable, long-
range e-ph coupling, determined from Madelung po-
tentials and Franck-Condon fitting [41]. An intuitive
argument is sketched in Fig. 1, where retardation effects
spread the effective attraction mediated by phonons over
longer distances. While retardation itself gives rise
to a weak, near-neighbor, attractive interaction in the
Hubbard-Holstein model, we find that a long-ranged e-ph
coupling determined by the lattice geometry [i.e. g′, g′′,
and g′′′ in Fig. 1(b)] provides a substantial enhancement
necessary to account for the experimental observations.
Considering the structural and chemical similarity be-
tween these 1D chain and 2D planar cuprate materials,
a combination of the well-known electron correlations
present in the Hubbard model and long-ranged e-ph
coupling provides a minimal description on which to base
future cuprate studies.
We consider a Hubbard-Holstein-like model with

strong on-site Coulomb repulsion

H = −
∑

iσ

t(c†iσci+1,σ + h.c.) + U
∑

i

ni,↑ni,↓

+
∑

i,j,σ

gijniσ(a
†
j + aj) +

∑

i

ωa†iai (1)

where ciσ (c†iσ) annihilates (creates) an electron at site i

with spin σ and aj (a†j) annihilates (creates) a phonon
at site j. The bare electronic kinetic and potential
energies are parameterized, respectively, by the hopping
integral t, and the on-site Coulomb interaction U , the
largest energy scale in this microscopic model. We ig-
nore the extended Coulomb interactions originating from
electronic repulsions, as they are substantially screened
by the copper-oxygen covalent bond. The phonons are
treated as Einstein optical modes with bare frequency ω,
and a real-space coupling gij between the charge density
ni on site i and phonon displacement on site j. A local
restriction on the e-ph coupling gij (i.e. gij = g δij)
reduces Eq. (1) to the standard Hubbard-Holstein model
(HHM). With translation symmetry, periodic boundary
conditions, and no disorder, gij can be expressed as a
function of only the relative distance between sites |i−j|;
and it is convenient to express this in reciprocal space
(bosonic momentum) as gq. In this latter representation,
a momentum independent gq corresponds to a spatially
local coupling, while a strong momentum dependence
indicates a longer-range coupling.
The physical properties of the 1D HHM have been

studied by various numerical methods such as exact di-
agonalization (ED) [42–45], density-matrix renormaliza-
tion group (DMRG) [46–49], and quantum Monte Carlo
(QMC) [50–53]. Here, we employ a recently developed
variational non-Gaussian ED (NGSED) method [54],
which has been benchmarked with exact QMC results
for the HHM [54, 55] and can be extended easily to
longer-range interactions like those considered in Eq. (1).
More importantly, NGSED provides direct information
about the phonon mediated effective interations V , which
can be used to benchmark parameters extracted from
experimental comparisons [40]. Following the NGSED
framework, we consider a wavefunction ansatz [54]

∣

∣Ψ
〉

= Uplrn(fq)|ψph〉 ⊗ |ψe〉, (2)

Uplrn(fq) = e
i 1
√

N

∑
q
fqp−q.ρq , (3)

as the solution to this strongly correlated model.
Here, the momentum-space electron density ρq =
∑

iσ niσe
−iq·ri and phonon momentum operator pq =

i
∑

i
(a†

i
− ai)e

−iq·ri/
√
N . The right-hand-side is a direct

product of electron and phonon states (denoted as |ψe〉
and |ψph〉, respectively), where |ψe〉 is treated as a full
many-body state while |ψph〉 is a Gaussian state [56].
The polaron transformation Uplrn(fq) in Eq. (2) en-
tangles the two parts of the wavefunction. Note that
different from the Lang-Firsov transformation [57], the
fq’s are momentum-dependent variational parameters
determined self-consistently within NGSED [54].
Within the wavefunction ansatz of Eq. (2), the ground

state is obtained by iteratively minimizing the energy
E =

〈

Ψ
∣

∣H
∣

∣Ψ
〉

with respect to the electronic wavefunc-
tion |ψe〉 and the variational parameters. With fixed vari-
ational parameters, the effective electronic Hamiltonian
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FIG. 2. Effective interactions obtained from the Hubbard-Holstein model (left) and the Hubbard-extended-Holstein model
(HHM+g′, right). (a) The momentum distribution of Vq as a function of q, for different phonon frequencies with fixed λ = 0.95.
(c) The spatial distribution of V (r) as a function of distance r. Both (a) and (c) are obtained for 12.5% doped HHM. (b,d)
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is given by tracing over the phonon state [54]

H(eff)
e = 〈ψph|Uplrn(fq)

†HUplrn(fq)|ψph〉 . (4)

The polaronic dressing is reflected in the electronic

Hamiltonian H(eff)
e through its effective kinetic energy

and the additional electronic attraction mediated by
phonons [for a detailed derivation see Ref. 54 or the
Supplementary Material [58]]

Vq = 2ω|fq|2 − 4gqRe[fq]. (5)

Physically, this effective Vq is sketched in Fig. 1(a): anti-
adiabatic phonons (ω → ∞) can be integrated out and
lead to a closed-form interaction Vq ≡ −2g2q/ω. For a
Holstein-type coupling (gq = g), this (anti-adiabatic)
interaction is momentum independent, or equivalently,
local in coordinate space. It implies that the lattice
potential mirrors the instantaneous variation of the local
electron density and immediately acts back on that
density. The net effect is a correction to the on-site
Coulomb interaction. However, at finite frequency the
phonons are retarded and carry information about the
electron hopping, mediating a non-local interaction [see
Fig. 1(a)]. Such a non-local effect already will be
present with an infinitesimally small e-ph coupling [see
the Supplementary Materials [58] for discussions].
We first consider the HHM with only local e-ph cou-

pling at an intermediate strength λ = g2/ω = 0.95 (such
a value, while serving an illustrative purpose here, will be

justified on physical grounds later), using a 16-site chain
with periodic boundary. After self-consistently solving
for the ground-state wavefunctions using NGSED, we
obtain the phonon-mediated attraction Vq shown in
Figs. 2(a) and (b). With an increasing phonon frequency,
Vq exhibits weaker momentum dependence. To quantify
the neighboring attractive interaction, we extract the
spatial distribution of V (r), which decreases rapidly
with distance , resulting in a near-neighbor interaction
∼ 0.1t. The comparison between experiment and the-
ory presented in Ref. 40 suggests that a near-neighbor
attraction ∼ t is required to account for the observed
“holon folding” [40], while the attractive interactions
presented in Figs. 2(a) and (b) are an order of magnitude
smaller than that experimental assessment. Therefore,
the results from a pure HHM model fail to provide a
strong Veff = V (r = 1) unless we increase the coupling
to an unphysically large strength.

To address the effective interactions within a reason-
able range of e-ph coupling, we note that the electrostatic
interaction has an intrinsically long-range nature. As
shown in Fig. 1(b), for the case where the phonon
originates from the motion of the apical oxygens, the e-
ph interaction strengths at different sites can be approx-
imated through the geometric distances. The local e-ph
coupling strength is proportional to 1/d0 ∼ 2/a, where a
is the lattice constant for a CuO unit cell. The ratios for
subsequent Cu-O distances can be read off immediately:
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FIG. 3. Comparison of the effective V (r) mediated by e-ph coupling of different ranges. (a1-a5) The spatial distribution of
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65). The
phonon frequency is fixed at ω = 70meV. (b1-b5) Same as (a1-a5) but for 25% doping.

d1/d0 ≈
√
5, d2/d0 ≈

√
17, and d3/d0 ≈

√
37. The

influence on the electrons in the CuO chain can be
approximated by the potential proportional to 1/dn, so
g′ = g/

√
5, g′′ = g/

√
17, and g′′′ = g/

√
37. (Here, we

employ the simplest geometric relation to give an order-
of-magnitude estimation. A more realistic model should
also consider the anisotropy, the dielectric constant, and
the integration towards the thermodynamic limit [59].)

The impact of these long-range e-ph couplings is
prominent. Figures 2(e-h) present the momentum and
spatial distribution of Vq, including the influence of g′,
for different phonon frequencies and a fixed λ = 0.95
(i.e., all coupling strengths scale quadratically with the
frequencies). Compared to the local (Holstein) coupling
in Figs. 2(a-d), this effective interaction with non-local
g′ produces a more momentum dependent Vq , which
is further amplified for small phonon frequencies. In
real space, this q-dependence corresponds to a non-local
V (r). Therefore, the near-neighbor effective interaction
Veff obtained in the Hubbard-extended-Holstein model
increases for two reasons: 1) the additional g′ increases
the strength of the interaction mediated by phonons; 2) g′

provides a direct, non-local interaction between electrons
and phonons. The effective V (r) for both 12.5% and
25% doping have comparable values, as it describes how
phonons dress neighboring electrons and mediate local
attraction, with little relevance to other electrons. This
observation is consistent with experiments, in the sense
that independent fittings of all spectral functions for
different doping levels result in an almost uniform value
of the near-neighbor, attractive interaction V = −t [40],
which lends further support to the ideas presented here
that phonons are ultimately responsible for this attrac-
tion.

Armed with knowledge of the significant effects of
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FIG. 4. The effective neighboring interaction Veff extracted
from the variants of models for (a) 12.5% doping and (b)
25% doping. Different colors denote the longest range of e-ph
coupling included in the model: local e-ph coupling g (red), up
to neighboring e-ph coupling g′ (green), up to next-, 3rd-, and
4th-neighboring e-ph coupling g′′ (blue, purple, and black).
For different g values, the ratio between allowed non-local
coupling are fixed as the geometric ratios in Fig. 1(b). The
gray line denotes the experimentally extracted strength, while
the brown arrow denotes the Veff obtained by the Schrieffer-
Wolff transformation of the Hubbard model.

non-local e-ph couplings, we now investigate the impact
of coupling strengths and the range of the interaction.
To provide a basis for realistic comparison, we fix
ω =70meV in the following discussion, identified in
cuprates with CuO2 plaquette modes [41, 60, 61]. As
shown in Figs. 3(a1) and (b1), the interaction strength
extracted from the HHM with only local e-ph coupling
leads to a small Veff , impractical if the goal were to reach
the experimentally observed value ∼ t for reasonable
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coupling g [40]. However, introducing g′, even restricted
by geometric considerations to g′ = g/

√
5, we find that

Veff increases rapidly with g [see Figs. 3(a2) and (b2)].
A coupling g ∼ 200meV (i.e. λ ∼ 0.95) can produce
Veff ∼ −0.5t. More encouragingly, the addition of next-
nearest-neighbor coupling g′′ = g/

√
17 further increases

Veff ∼ −t for the same local coupling strength [see
Figs. 3(a3) and (b3)]. To address the full impact of
long-range e-ph coupling on the effective electrostatic
interaction, we include also g′′′ and g′′′′, finding that Veff
saturates asymptotically [see Figs. 3(a4-a5) and (b4-b5)].
Although these couplings still increase Veff , their impact
is not as evident, as it is g′ that connects neighboring
electrons and phonons and has an outsized impact on
the nearest-neighbor interaction.

To better visualize the influence of e-ph coupling with
different ranges and strengths, we extract the Veff from
Fig. 3 and plot the dependence on g in Fig. 4. With
the asymptotically converged Veff , involving long-range
coupling effects, we conclude that realistic e-ph coupling
corresponding to experimental observations, and falling
within the scenario presented here, should be g .

185meV. Such a value is consistent with estimates from
Madelung potential calculations and Franck-Condon fit-
ting in another quasi-1D cuprate compound [41], sug-
gesting that long-range e-ph can account adequately for
the anomalously strong near-neighbor attraction derived
from recent experiments [40]. If one further consider
the extended Coulomb interaction arising from electronic
repulsion, the total Veff may be corrected slightly by
∼0.2t [62], within the errorbar of experiments. Taking
the parameters t = 600meV and ω = 70meV extracted
from experiments, this e-ph coupling corresponds to λ =
0.81, which is of moderate strength in correlated materi-
als. This phonon-mediated Veff is an order of magnitude
stronger than that originated from the Schrieffer-Wolff
transformation of the Hubbard model. Note that the
minimal model adopted in the photoemission experiment
[40] included only nearest-neighbor V (r = 1). If one
were to consider even longer-range neighboring attraction
V (r > 1), the corresponding g to provide a good fit would
be even smaller.

To summarize, we conducted a systematic study of the
Hubbard-extended-Holstein model and investigated the
impact of phonon frequency and long-range e-ph coupling
on the effective electronic attraction V (r). Taking the e-
ph coupling parameters extracted from existing studies
of 1D cuprate materials, our simulation gives rise to an
anomalously strong near-neighbor attractive interaction
(V ∼ −t), consistent with recent in situ ARPES ex-
periments [40]. Our work has uncovered a significant
missing ingredient in the microscopic description of 1D
cuprate chains; and we have developed a minimal model
that captures the essential experimental features. More
generally, the similarities between 1D and 2D cuprates
may be exploited to extend our conclusions to high-Tc

cuprate materials and the d-wave pairing, with limited
corrections to model parameters. Future systematic
DMRG and QMC studies are promising to extend the
conclusion towards superconductivity.
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