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The Nielsen-Ninomiya theorem is a fundamental theorem on the realization of chiral fermions in
static lattice systems in high-energy and condensed matter physics. Here we extend the theorem
in dynamical systems, which include the original Nielsen-Ninomiya theorem in the static limit.
In contrast to the original theorem, which is a no-go theorem for bulk chiral fermions, the new
theorem permits them due to bulk topology intrinsic to dynamical systems. The theorem is based
on duality enabling a unified treatment of periodically driven systems and non-Hermitian ones. We
also present the extended theorem for non-chiral gapless fermions protected by symmetry. Finally,
as an application of our theorem and duality, we predict a new type of chiral magnetic effect — the
non-Hermitian chiral magnetic skin effect.

The Nielsen-Ninomiya (NN) theorem is a fundamental
constraint in realizing chiral fermions in lattice systems
[1–3]. It initially was a no-go theorem for the lattice
realization of the Standard Model in particle physics, but
it also applies to condensed matter physics. For instance,
the Nielsen-Ninomiya theorem requires that bulk Weyl
points in Weyl semimetals always appear in a pair so
that the total chiral charge of Weyl points vanishes [4–
6]. The NN theorem severely restricts bulk low energy
modes in topological materials [7–14].

However, recent studies have revealed that the NN the-
orem does not hold when considering topological states in
dynamical systems [15–71]: Periodically driven systems
may support unpaired chiral fermions both in one-[72–76]
and three-dimensions[77, 78]. Furthermore, systems with
non-Hermitian Hamiltonians also retain unpaired chiral
fermions after the long-time dynamics [79]. These exam-
ples have suggested a reformulation of the NN theorem
in dynamical systems.

In this Letter, we extend the NN theorem in dynam-
ical systems. As a particular case of the static limit,
the extended theorem includes the original one. A key
of our extension is a duality between periodically driven
systems and non-Hermitian ones. A one-cycle time evolu-
tion operator UF generally describes a periodically driven
system. By identifying iUF as a non-Hermitian Hamilto-
nian H, we treat a periodically driven system and a non-
Hermitian one in a unified manner. Another key is mul-
tiple gap structures intrinsic to non-Hermitian systems.
The complex energy spectrum of non-Hermitian systems
may introduce two different gap structures: point and
line gaps [80, 81]. A non-Hermitian system can be gapped
in the sense of point gap even if it supports gapless
fermions in the sense of line gap. Because the point gap
enables a novel bulk topological number, this means that
bulk chiral (so gapless) fermions in dynamical systems
may coexist with non-trivial bulk topology. This situ-
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ation never happens in conventional static systems and
makes it possible to reformulate the NN theorem.

The extended NN theorem provides an exact relation
between the total chiral charge of chiral fermions and
the bulk topological number. This theorem infers that
if the bulk topological number is nonzero, so is the total
chiral charge, and thus the system realizes unpaired chiral
fermions. The extended theorem also applies to systems
with symmetry. Symmetry protects non-chiral gapless
fermions, giving them a topological charge other than
chirality. In this case, the bulk topological number is
equal to the total topological charge from our theorem.

As an application of our theorem, we consider a non-
Hermitian version of the chiral magnetic effect (CME).
The CME is an electric current generation along an ap-
plied magnetic field due to unpaired Weyl fermions in
three dimensions [82]. While the chiral magnetic effect
does not occur in static systems because of the NN the-
orem [9], the extended theorem allows it in dynamical
systems. Periodically driven systems may exhibit the
CME [77, 78], and thus our duality relation suggests that
so do non-Hermitian systems. We demonstrate that a
wave packet in a non-Hermitian Weyl semimetal moves
in the direction of an applied magnetic field, manifesting
the CME. Furthermore, the extended theorem implies a
nonzero spectral winding number of non-Hermitian Weyl
semimetals under a magnetic field. This result leads to
predicting a new type of CME—the chiral magnetic skin
effect.

We assume without loss of generality that the Fermi
energy EF, i.e. the reference energy of a gap, is zero un-
less otherwise mentioned. One can recover EF by replac-
ing the Hamiltonian H(k) with H(k)− EF if necessary.

1D chiral fermions in dynamical systems.— Let us
start with a simple 1D non-Hermitian system hosting a
chiral mode. The Hamiltonian of the model is

H(k) = sin k + i cos k, (1)

where k is the crystal momentum and H(k) is periodic
in k [79]. The energy E(k) of the system is H(k) itself,
and the group velocity v(k) is v(k) = Re(∂E(k)/∂k).
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At the Fermi energy ReE(k) = 0, there are two gapless
modes with k = 0, π: A right-moving mode (v(k) > 0)
with k = 0 and a left-moving mode (v(k) < 0) with k =
π. While the right-moving mode has a positive ImE(k),
the left-moving mode has a negative one; thus, the left-
moving mode decays, and only the right-moving mode
survives after the long-time dynamics. Therefore, the
system realizes a chiral fermion, i.e. a right-moving chiral
mode.

Another simple 1D model with a chiral mode is a pe-
riodically driven system evolved by the one-component
unitary operator [77],

UF(k) = e−ik. (2)

The Floqet Hamiltonian HF(k) defined by e−iHF(k)τ =
UF(k) with a driving period τ describes the strobo-
scopic time-evolution of the system, |t+ τ〉 = UF(t)|t〉 =
e−iHF(k)τ |t〉. The eigenvalue of HF(k), called the quasi-
energy, is εF(k) = k/τ up to an integer multiple of 2π/τ .
Because the group velocity vF(k) = ∂εF(k)/∂k is posi-
tive, the system has a right-moving chiral mode.

These chiral modes have a common topological origin.
The equation

H(k) = iUF(k), (3)

relates the above models, then the 1D (spectral) winding
number

w1 = −
∫ 2π

0

dk

2πi
tr[H−1(k)∂kH(k)]. (4)

gives w1 = 1 for both models. (The trace is trivial in the
above models.) For the non-Hermitian model in Eq.(1),
the non-zero spectral winding number results in so-called
the non-Hermitian skin effect [40]: For w1 = 1, all bulk
states localize to the right end [83, 84]. This effect sug-
gests a right-moving chiral mode because a uni-directed
movement of the mode forces all bulk states to move
to the right end. For the periodically driven model in
Eq.(2), on the other hand, the non-zero spectral winding
number implies a non-zero average of the group velocity,

w1 = −
∫ 2π

0

dk

2πi
∂k ln detH(k) =

∫ 2π

0

dk

2π
vF(k)τ, (5)

which also indicates a right-moving chiral mode.
The above examples suggest a general relation between

the spectral winding number and the chirality sgn vF(k)
of gapless modes. For 1D non-Hermitian systems, the
exact link is as follows [85]:

Theorem 1: Let H(k) be a 1D non-Hermitian Hamil-
tonian and Ep(k) be the complex eigen-energy of band
p. Then, we have

w1 =
∑

ImEp(kpα)>0

sgn vpα = −
∑

ImEp(kpα)<0

sgn vpα, (6)

where kpα is the α-th Fermi point of band p defined by
ReEp(kpα) = 0, and vpα = Re(∂Ep(k)/∂k)k=kpα is the
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FIG. 1. Duality between a periodically driven system and a
non-Hermitian one. We illustrate the 1D case here. w1 is the
winding number of the spectral in the complex energy plane
in (b). Theorem 1’ is evident in the relation between (a) and
(b). The duality holds in any dimensions.

group velocity at kpα. The summation in Eq.(6) is over
all p and α.

For a Hermitian Hamiltonian H(k), the above theorem
reproduces the NN theorem. The spectral winding num-
ber w1 is zero for any Hermitian Hamiltonian, and by
adding a small imaginary term iη to H(k), all the Fermi
points can have a positive imaginary part of the energy.
Thus, from Eq. (6), we have

∑
kpα

sgn vpα = 0, which is

the NN theorem in one-dimension [1].
Using the relation in Eq.(3), we can also derive a

counterpart theorem for 1D periodically driven systems:
Equation (3) maps the quasi-energy εp(k) of UF(k) to
the complex energy Ep(k) of H(k), Ep(k) = sin[εp(k)τ ]+
i cos[εp(k)τ ]. Thus, a Fermi point defined by εp(k) = 0
(π/τ) gives a Fermi point of Ep(k) with a positive (neg-
ative) ImEp(k). Comparing the group velocities at the
Fermi points, we obtain the theorem:

Theorem 1’: Let HF(k) be a 1D Floquet Hamiltonian
and εp(k) be the quasi-energy of band p. Then, gapless
modes of the quasi energy obey

w1 =
∑

εp(kpα)=µ

sgn vpα, (7)

where kpα is the Fermi point of band p defined by
ε(kpα) = µ, and vpα = (∂εp(k)/∂k)k=kpα is the group
velocity at kpα [86].

Here we have shifted the origin of the quasi-energy by
UF → eiµτUF and omitted the term corresponding to the
last term in Eq.(6) since it is just a particular case of
Eq.(7).

Non-Hermitian Weyl semimetals— Weyl fermions are
3D massless (or gapless) fermions with a definite chirality.
They are realized as band crossing points (Weyl points)
and behave like magnetic monopoles in the momentum
space, of which the magnetic charge provides the chirality
charge. They have finite lifetimes –the imaginary part
of the energies– in the presence of non-Hermiticity. For
Weyl fermions, we have the following theorem [87]:

Theorem 2: Let H(k) be a 3D non-Hermitian Hamil-
tonian and Ep(k) be the complex eigen-energy of band
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p. Then, Weyl fermions in the complex energy spectrum
obey

w3 =
∑

ImEp(Spα)>0

Chpα = −
∑

ImEp(Spα)<0

Chpα. (8)

Here w3 is the 3D winding number,

w3 = − 1

24π2

∫
BZ

tr[H−1dH]3, (9)

Spα is the α-th Fermi surface of band p defined by Spα =
{k ∈ BZ|ReEp(k) = 0}, and Chpα is the Chern number
on the Fermi surface Spα,

Chpα =
1

2πi

∫
Spα

(∇×A(k)) · dS, (10)

where A(k) = 〈〈ψp(k)|∇ψp(k)〉 with H(k)|ψp(k)〉 =
Ep(k)|ψp(k)〉, H†(k)|ψp(k)〉〉 = E∗p(k)|ψp(k)〉〉, and the
orientation of Spα is along the direction of the Fermi ve-
locity Re(∂Ep(k)/∂k)k∈Spα . Chpα counts the total chi-
rality of Weyl points inside Spα.

Theorem 2 reproduces the NN theorem again when
H(k) is Hermitian: By adding a tiny positive imaginary
term to H(k), we have

∑
pα Chpα = 0, which is one of

the variants of the NN theorem in three dimensions [88].
Indeed, this equation forbids an unpaired Weyl point in
Hermitian systems: If an unpaired Weyl point were to
exist, we would have a Fermi surface surrounding it by
choosing the Fermi energy near the Weyl point. This con-
figuration would give a nonzero

∑
pα Chpα, which contra-

dicts
∑
pα Chpα = 0.

When w3 is nonzero, Theorem 2 predicts chiral
fermions. For instance, consider the following model,

H(k) = (d0 + d(k) · σ) τ1 +m(k)τ3 + iγ(τ3 − τ0), (11)

with di(k) = sin ki, m(k) = m0 +
∑3
i=1 cos ki. This

model has a point gap at EF = −iγ and hosts Weyl
points in the complex energy plane as shown in Fig. 2(a),
satisfying Theorem 2 [89].

Duality.— The relation (3), which enables a unified
treatment of a periodically driven system and a non-
Hermitian one, is not accidental. This duality relation
holds in arbitrary dimensions. Evidently, one can im-
mediately identify any one-cycle time evolution operator
UF(k) with a non-Hermitian Hamiltonian H(k) by

H(k) = iUF(k). (12)

However, the opposite is also true for a class of non-
Hermitian systems. We say that a non-Hermitian Hamil-
tonian H(k) has a point gap if detH(k) 6= 0. Then, one
can regard any point-gapped Hamiltonian as a one-cycle
time evolution operator because a point gapped H(k) can
smoothly deform into a unitary matrix without closing
the point gap [80, 81].

The duality relation (12) brings out common proper-
ties of periodically driven systems and non-Hermitian

ones: In terms of the Floquet Hamiltonian HF(k) =
(i/τ) lnUF(k), the above relation reads H(k) =
sin[HF(k)τ ] + i cos[HF(k)τ ]. Thus, eigenstates of H(k)
are identical to those of HF(k). Also, a gapless state in
HF(k) ∼ k ·Γ results in a gapless state in H(k), and vice
versa. (Γ are some matrices.) Furthermore, these sys-
tems share a topological number; the topological number
is given by that of the Hermitian Hamiltonian [78, 80, 81],

H(k) =

(
0 H(k)

H†(k) 0

)
. (13)

From Eq.(12), H(k) satisfies H2(k) = 1 and thus has
eigenvalues ±1. Therefore, H(k) defines an insulator,
giving a well-defined topological number.

Note that the above identification links a periodi-
cally driven system and a non-Hermitian one in different
symmetry classes. To see this, consider time-reversal,
particle-hole, and chiral symmetries for the Floquet
Hamiltonian HF(k), given by THF(k)T−1 = HF(−k),
CHF(k)C−1 = −HF(−k), and ΓHF(k)Γ−1 = −HF(k),
respectively. Here T and C are antiunitary operators
with T 2 = ±1, C2 = ±1, and Γ is a unitary operator
with Γ2 = 1. The presence or absence of these symme-
tries define Altland-Zirnbauer (AZ) ten symmetry classes
[90]. The relation (12) maps these symmetries as fol-
lows: TH†(k)T−1 = H(−k), CH(k)C−1 = −H(−k),
and ΓH†(k)Γ−1 = −H(k). The latter symmetries define
another ten symmetry classes, called AZ† classes [81],
which are intrinsic to non-Hermitian systems.

Extended NN theorem. — Symmetry protects gapless
fermions other than chiral fermions. We now present the
extended NN theorem, including such non-chiral (Dirac)
fermions.

First, consider non-Hermitian systems. Depending on
symmetry classes, two different situations may happen:
(i) gapless fermions in classes A, AI†, AII† appear as
band crossing points at general positions in the complex
energy plane, and (ii) those in other AZ† classes appear
on the ReE = 0 axis. To define the topological charge of
gapless fermions, we use the Fermi surface at ReE = 0 in
the former case, and a small sphere encircling a gapless
fermion in the latter [91]. We have the following theorem:

Theorem 3: Let H(k) be a point-gapped non-
Hermitian Hamiltonian in an AZ† class. Then, bulk gap-
less fermions of H(k) obeys

n =
∑

ImEα>0

να = −
∑

ImEα<0

να, (14)

As we mentioned above, the point gap topological num-
ber n is given by the conventional topological number
of the topological insulator described by the Hermitian
Hamiltonian in Eq.(13). The explicit form of n is sum-
marized in Ref. [81]. In case (i) in the above, α labels the
Fermi surfaces at ReE = 0, να is the topological charge
of gapless fermions inside the α-th Fermi surface, and Eα
is the complex energy of the Fermi surface. In case (ii),
α labels gapless fermions, να is the topological charge of
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the α-th gapless fermion defined on the small sphere, and
Eα is the complex energy of the gapless fermion [92].

Using the duality relation (12), we also have an ac-
companying theorem for gapless fermions in periodically
driven systems. We find that (i’) gapless fermions in
classes A, AI, AII appear as band crossing points with
arbitrary energies in the quasi-energy spectra, and (ii’)
those in other AZ classes appear with ε = 0 or π/τ . Then,
the accompanying theorem is as follows.

Theorem 3’: For gapless fermions in a periodically
driven system in an AZ class, we have

n =
∑
εα=µ

νµα, in case (i’), (15)

n =
∑
εα=0

ν0α = −(−1)d
∑

εα=π/τ

νπα , in case (ii’). (16)

Here n is the topological number of iUF(k) given byH(k)
in Eq.(13), and d is the dimension of the system. In case
(i’), α labels the Fermi surfaces defined by ε = µ, and νµα
is the topological charge of gapless fermions inside the α-
th Fermi surface. In case (ii), α labels gapless fermions at
ε = 0, π, and ν0,πα is the topological charge of the gapless
fermion with the quasi-energy εα = 0, π [93] .

Note that Eq.(16) have a sign depending on d in the
second equality: A gapless fermion at π/τ , HF(k) = k ·
Γ + π/τ , in a periodically driven system corresponds to
H(k) = −k·Γ−i, in a non-Hermitian system. Since these
Hamiltonians have an opposite topological charge in odd
dimensions, we have the additional sign (−1)d. Equation
(7) is the 1D case of Eq.(15) in class A (no symmetry).
We have also confirmed Eq.(16) using a 2D periodically
driven model with chiral symmetry (class AIII) [94].

Chiral magnetic effect.— Weyl fermions in a peri-
odically driven system may exhibit the CME [77, 78].
As a counterpart of this effect, we investigate the non-
Hermitian CME. Figure 2(b) shows the energy spectrum
of the model in Eq. (11) under a magnetic field Bz in the
z-direction. The magnetic field opens the Landau gap at
the Weyl point at k = (0, 0, 0) in Fig. 2(a), and a right-
moving chiral mode with a positive Im(E−EF) appears.
The chiral mode has a longer lifetime and produces a cur-
rent along the magnetic field, leading to the CME. We
confirm the CME by examining the wave packet dynam-
ics. Figures 2(c) and 2(d) show the wave packet dynamics
without and with a magnetic field. While wave packets
without a magnetic field tend to move along the spin di-
rection because of the spin-momentum locking of Weyl
fermions, we observe different uni-directed motions with
a magnetic field consistent with the CME.

Using the extended NN theorem, we can predict
a general effect intrinsic to the non-Hermitian CME:
From Theorem 2, a system with nonzero w3 hosts Weyl
fermions with the total chiral charge of w3. As in Fig.2
(b), a magnetic field Bz opens the Landau gap at Weyl
fermions, leaving a 1D chiral mode for each Weyl point,
with the Landau degeneracy (eBz/2π)LxLy [95], where
e is the electric charge of the Weyl fermion and Li=x,y

FIG. 2. (a, b) Energy spectrum of the non-Hermitian Weyl
semimetal in Eq. (11) (a) without and (b) with a magnetic
field Bz in the z direction. (a) Colors distinguish different
bands, and dotted circles enclose Weyl points. (b) Right
(Left) moving mode has positive (negative) Im(E−EF) with
EF = −i. The right and left moving modes originate from
Weyl points with k = (0, 0, 0). The inset is the same figure
viewed from a different angle. (c,d) Wave packet dynam-
ics in the non-Hermitian Weyl semimetal of Eq. (11) (top)
without and (bottom) with Bz. We draw snapshots of the
probability densities |ψ(z)|2 at each unit cycle, where the
red arrows indicate the time evolution. We use the fourth-
order Runge-Kutta method. The initial wave packets are
|ψ0〉 = ψ0 |σz〉σ |τz〉τ , where ψ0 is a 3D Gaussian wave packet
with the width 2σ̄2 = 5 and |σz〉σ |τz〉τ is specified in each fig-
ure. With Bz = π/5, all the wave packets tend to move in the
+ẑ direction. The parameters in Eq. (11) are d0 = γ = γ0 = 1
and m0 = −2. The system size is (b) Lx = Ly = Lz = 30
and (c,d) Lx = Ly = Lz = 40 with the periodic boundary
conditions.

is the system length in the i-direction. Therefore, the
system supports 1D chiral modes with the total chiral
charge w3(eBz/2π)LxLy. From Theorem 1, this result
implies that the system also hosts the 1D spectral wind-
ing number w1 given by

w1 =
eBz
2π

LxLyw3. (17)

Here w1 is defined by Eq.(4), where H(k) with k = kz
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is the Hamiltonian under the magnetic field Bz, and the
trace includes the summation of kx and ky in the mag-
netic Brillouin zone. Note that eBzLxLy/2π is an in-
teger under the periodic boundary conditions in x- and
y-directions.

The relation (17) gives a profound implication. As
mentioned above, a nonzero w1 induces the non-
Hermitian skin effect [83, 84], where extended bulk modes
in the periodic boundary condition become localized
boundary modes in the open boundary condition. There-
fore, Eq. (17) predicts that the system with a nonzero w3

inevitably shows the skin effect under a magnetic field.
This prediction is consistent with the CME because bulk

modes stack to a boundary in the direction parallel to the
magnetic field due to uni-directed currents of the CME.
We have confirmed the chiral magnetic skin effect in the
model of Eq.(11) [96]. Photonic systems [97, 98] and cold
atoms [99, 100] may provide the spin-selective (or sublat-
tice selective) loss term in Eq.(11), and thus the exper-
imental realization of the chiral magnetic skin effect is
feasible.
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