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Near a magic twist angle, the lowest energy conduction and valence bands of bilayer graphene
moiré superlattices become extremely narrow. The band dispersion that remains is sensitive to the
moiré’s strain pattern, nonlocal tunneling between layers, and filling-factor dependent Hartree and
exchange band renormalizations. In this article we analyze the influence of these band-structure
details on the pattern of flavor-symmetry-breaking observed in this narrow band system, and on the
associated pattern of Fermi surface reconstructions revealed by weak-field-Hall and Schubnikov-de
Haas magneto-transport measurements.

Introduction.—When twisted close to a magic [1] ori-
entation angle, the ground state of bilayer graphene ex-
hibits [2–5] a rich series of strongly correlated electronic
ground states. The magic-angle twisted-bilayer graphene
(MAtBG) phase diagram is most strongly dependent on
twist angle θ and on moiré band filling factor ν = nAM ,
where n is the carrier density and AM is the area of the
moiré pattern unit cell, but is also responsive to other
external parameters including the orientation angles of
the encapsulating hexagonal boron nitride layers, and the
vertical separation between the bilayer and the electrical
gate or gates used to manipulate the carrier density.

Experimental work over the past couple of years [5–15]
has established that the spin/valley flavor symmetries re-
sponsible for the four-fold degeneracy of the moiré bands
are often broken when the flat conduction band is par-
tially occupied or the flat valence band is partially emp-
tied. The flavor symmetry breaking is reminiscent of the
behavior of Bernal-stacked bilayer graphene in a strong
magnetic field when its flat N = 0 Landau levels are par-
tially filled [17–24]. The pattern of symmetry breaking is
however quite distinct in the two cases. Instead of filling
up the eight bands one at a time to minimize the ex-
change energy, as observed in the quantum Hall case, the
flavor symmetry breaking in MAtBG has a different guid-
ing principle, which is illustrated schematically in Fig. 1.
The broken symmetry states in MAtBG almost always
conspire to keep the partial filling factors νFS of all fla-
vors with a valence band Fermi surface above a critical
value νcrv typically ∼ 0.55, and those of all flavors with a
conduction band Fermi surface below νcrc ∼ 0.2. The ob-
servations from which this general rule is abstracted are
briefly surveyed in the supplemental material. Because
the maximum conduction band electron Fermi surface
areas are smaller than the maximum valence band hole
Fermi surfaces areas, flavor symmetry breakings are more
abundant on the conduction band side than on the va-
lence band side. In this Letter we provide an explanation
for this behavior that is based on the influence of strain,
nonlocal tunneling between layers, and filling-factor de-
pendent Hartree and exchange interactions on the band
structure. Our analysis is informed by Schubnikov-de
Haas and weak-field Hall magneto-transport data [2, 4–
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FIG. 1. The flat bands of MAtBG are partially occupied for
filling factor ν ∈ (−4, 4) and exhibit flavor symmetry break-
ing over much of this range. While not entirely universal,
flavor symmetry breaking tends to follow the following rules.
For negative carrier density flavor symmetry breaking depop-
ulates flat valence bands so as to keep the partial filling factors
νFS of the remaining partially occupied flavors, which have a
Fermi surface, above νcrv ∼ 0.55 as indicated by the red ar-
rows. For positive carrier densities flavor symmetry breaking
favors complete occupation of one, two, or three conduction
bands so as to keep νFS of the remaining partially occupied
flavors below νcrc ∼ 0.2. The solid lines plot the band filling
factor per partially occupied flavor in 1, 2, 3, and 4 Fermi
surface states. This pattern of flavor symmetry breaking al-
lows for insulating states at all non-zero ν between -4 and 4,
and for Chen insulators (CI) at odd integer ν. The strongest
superconductivity (SC) seems to emerge from states with two
valence band Fermi surfaces, and the strongest anomalous
Hall effects seem to occur in states with one conduction band
Fermi surface.

7, 14, 25–31].

MAtBG Bandstructure.—Magic-angle strong correla-
tion physics persists over a small range of twist angles,
covering perhaps ∼ 0.2◦, within which the typical ve-
locity within the flat bands is reduced by an order of
magnitude or more relative to the band velocity in an
isolated graphene layer. We argue here, however, that
the band dispersion that survives near the magic twist
angle plays a crucial role in establishing the ground state
phase diagram.

We specify the single-particle MAtBG flat bands us-
ing four phenomenological parameters, wAB - the inter-
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FIG. 2. Band-structures in the full and empty moiré band
limits for band parameters ~vkθ = 1.69wAB , corresponding to
a twist angle of about θ ∼ 1.1◦. wAA/wAB = 0.6, wNL = 20
meV and ε−1 = 0.03. Interaction effects strongly weaken
dispersion when the Fermi level moves toward γ on either
electron or hole sides.

layer intersublattice tunneling strength, wAA - the in-
terlayer intrasublattice tunneling strength, a tunneling
non-locality parameter wNL, and ε−1, a parameter that
characterizes how strongly the moiré band Hamiltonian
is modified by interactions. The spinless single-particle
Hamiltonian projected onto valley K takes the form:

ĤK
sp =

(
hθ/2(k) T (r, r′)
T †(r, r′) h−θ/2(k′)

)
(1)

where ĥ±θ/2 are the Dirac Hamiltonians for isolated ro-
tated graphene top (+) and bottom (-) layers and T (r, r′)
is the inter-layer tunneling term. The ratio wAA/wAB
has the value 1 for simplified models [1] in which the
graphene layers are rotated rigidly, but is known [33, 34]
to be reduced relative to 1 when strain and corrugation
are taken into account. The non-locality of the interlayer
tunneling is known [34–36] to be principally responsible
for particle-hole asymmetry in MAtBG, which we model
by setting

T (r, r′) =
2∑
j=0

∑
p

Tj(p)e−iqj ·(r+r′)/2eip·(r−r
′) (2)

where Tj(p) = t(p)TBMj and the momentum dependent
tunneling amplitude t(p) = tkD + (dt/dp)p=kD (kD − p).
We parametrize the slope of the momentum depen-
dence in t(p) by wNL ≡ (dt/dp)p=kD |b|. We note
that T (r, r′) = T (r)δ(r, r′) is local in the Bistritzer-
MacDonald (BM) model where the tunneling matrix
TBMj = ωAA/ωAB + cos(jφ)σx + sin(jφ)σy is indepen-
dent of momentum (see Supplemental Material). Below
we explain what magneto-transport measurements tell us
about the typical values of these band parameters.

The flat bands of MAtBG have a simple and system-
atic dependence on band filling, one that we argue plays
an important role in the flat-band phase diagram. In

Fig. 2 we plot the flat bands when they are completely
full and when they are empty. These calculations ne-
glect mixing between flat and remote bands, an approx-
imation that is justified by flat-band spectral isolation.
In this approximation the many-electron ground state is
fully determined by the Pauli exclusion principle in both
limits, and is a single Slater determinant in which single-
particle-state occupations numbers are either 0 or 1. It
follows that the electron self-energy is given exactly by
the Hartree-Fock operator:

Σ̂HF = Σ̂H(δρ) + Σ̂F (δρ), (3)

where δρ =
∑′
α,n,k |α, n,k〉〈α, n,k| − ρiso is the ground

state density matrix defined relative to neutral isolated
graphene states, α is a composite label for valley and
spin, n is a single-particle band label, the prime restricts
the summation to filled bands, and Σ̂H and Σ̂F are the
usual Hartree and Fock self-energies (See Supplemen-
tal Material for further detail.) In Fig. 2 we have used
ε = 0.03 to account [37] for screening by the surrounding
dielectric, by the two-dimensional material itself, and by
the gates.

The bands plotted in Fig. 2 are eigenvalues of the band
Hamiltonian ĤB = Ĥsp + Σ̂HF , where Ĥsp is the single-
particle moiré band Hamiltonian. The difference between
the quasiparticle dispersions in the empty and full band
limits is due to the differences between the self-energy
operator when the flat bands are full, Σ̂HFf , and when

the flat bands are empty, Σ̂HFe . We see in Fig. 2 that the
effect of the self-energy is to lower (raise) the energy near
the center of the moiré Brillouin zone (k = γ), relative to
those near the corners of the Brillouin zone (k = κ,κ′) as
the flat conduction (valence) bands are filled (emptied).
This behavior has been explained [38, 39] in terms of
Hartree interactions and the concentration of flat band
states at AA positions in the bilayer moiré pattern, where
the wavefunctions of flat band states near γ have lower
weight [40, 41]. Exchange interactions also play a role in
reshaping the bands, and a more critical role in breaking
flavor symmetries (see [38] and Supplemental Material).
These interaction effects have a smooth dependence on
filling factor which justifies the approximation

ĤB = Ĥsp +
1

2

[
Σ̂HFf + Σ̂HFe +

ν

4
(Σ̂HFf − Σ̂HFe )

]
. (4)

The end result is that Fermi velocities are extremely
small when the bands are nearly empty and nearly full,
in contrast to the case of single-particle band models for
which Fermi velocities are maximized for nearly full and
nearly empty bands. This property is captured only when
self-energies from frozen remote bands are included in the
theory. We argue below that it also plays a crucial role
in determining the pattern of flavor symmetry breaking.

Schubnikov-de Haas oscillations.—Oscillations in
physical properties associated with periodic filling and
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emptying of nascent Landau levels in weak magnetic
fields have long [42] been used to measure the Fermi sur-
faces of metals. In two-dimensional materials the most
accessible oscillations are normally those of longitudinal
resistance referred to as Schubnikov-de Haas (SdH) os-
cillations. SdH oscillations in MAtBG [2, 4–7, 14, 25–31]
are generally speaking observable only near neutrality
for ν ∈ (−1.6, 0.8) and for |ν| ∈ (2, 3). We attribute this
property to the interaction induced reductions in Fermi
velocity when the bands are nearly empty or nearly full
as explained above. Comparison of Fermi surface area
to carrier density suggests that all four flavors have
equivalent Fermi surfaces near neutrality. For |ν| ∈ (2, 3)
the same comparison suggests that only two of the four
flavors have Fermi surfaces, the other two flat bands
having apparently been depopulated on the valence band
side and completely filled on the conduction band side.
These observations are consistent with the interpretation
of weak-field Hall observations discussed below, which
are able to provide valuable information over the full
range of flat-band filling factors because they do not rely
on an adequate Landau level spacing.

Weak-field Hall resistivity.—When mean-free-paths
exceed Fermi wavelengths, the transport properties of
two-dimensional Fermi liquids can be described using
Boltzmann transport theory. Employing a relaxation
time approximation, a practical necessity when the
source of scattering is unknown, the conductivity ten-
sor of a system with C6 symmetry is given [43] to leading
order in magnetic field B by

σxx = e2τ
∑
k

(
−∂fk
∂E

)
v2x,

σyx =
2e3τ2B

~
∑
k

(
−∂fk
∂E

)
vx(v × z) ·∇vy,

σxx = σyy, σyx = −σxy (5)

It follows that to first order in B the Hall resistivity

ρxy =
σyx
σ2
xx

≡ B

nHec
. (6)

In Eq. 6 the coefficient of the B-linear term in ρxy is a
pure bandstructure property because the scattering time
τ cancels between numerator and denominator. As sug-
gested by the final form on the right-hand-side, it is con-
venient to characterize this quantity by the Hall density,
nH , which is defined by this equation. |nH | equals the
carrier density for isotropic Fermi surfaces [43].

In Fig. 3 we plot Hall filling factor νH = nHAM
vs. filling factor ν for partially occupied MAtBG bands
at wAB/~vK = 1.69 for four different bandstructure
models: (I)wAA = wAB , wNL = 0, (II)wAA/wAB =
0.6, wNL = 0, (III)wAA/wAB = 0.6, wNL = 20 meV,
and (IV)wAA/wAB = 0.6, wNL = 20 meV with ε−1 =
0.03. The first model is the BM model specified in [1],
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FIG. 3. Hall filling factor νH = nHAM vs. band filling
factor ν of a single flavor for the band models (I-IV) defined
in the main text. In numerical order the four models improve
the BM model (I) by sequentially adding corrections for strain
(II), nonlocal tunneling (III), and interactions (IV). The black
dashed curves plot the band DOSs, whose peaks are located at
the VHS energies. The blue dashed lines are the Hall densities
νH = ν + 1, ν, ν − 1 for isotropic Fermi surfaces near v =
−1, 0, 1 respectively.

which is improved in models (II), (III), and (IV) by
sequentially adding corrections for strain and corruga-
tion, nonlocal tunneling, and interactions. In all cases
νH ∼ ν close to neutrality, expected for isotropic Fermi
surfaces. Away from neutrality, Fermi surfaces are more
anisotropic for larger ωAA/ωAB and this leads to larger
deviations [43] of the Hall density from the corresponding
Fermi surface area curves marked in blue. (The sensitiv-
ity of the Hall density to band parameters is discussed in
detail in the Supplemental Material.)

The most prominent features in Fig. 3 are the switches
between large νHs of opposite signs that occur once for
positive and once for negative filling factors. The fill-
ing factors at which these sign changes occur are close
to the filling factors at which the topology of the Fermi
surfaces changes from electron-like to hole-like. As ex-
plained in the Supplemental Material, the sign changes
do not precisely match the van Hove singularities (VHS)
at which the flat band density of states (DOS) diverges
logarithmically yielding a feature that is prominent in
tunneling spectroscopy measurements [8–12]. We see in
Fig. 3 that the positions of these sign changes are sensi-
tive to the bandstructure model details. They move very
close to neutrality when the strain/corrugation correc-
tions are added. Including nonlocal tunneling shifts the
position closer to (further from) neutrality on the conduc-
tion (valence) band side, strongly violating particle-hole
symmetry. Interaction renormalizations move the sign
change positions on both sides away from neutrality by
an amount determined by the strength of interaction.

Hall Density, Fermi Surface Reconstruction, and Lift-
shitz Transitions.—The Hall densities in Fig. 3 differ
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FIG. 4. Hall filling factor as a function of band filling factor
allowing spin/valley flavor symmetry breaking, calculated us-
ing interaction renormalized bands and the pattern of flavor
symmetry explained in the main text. The shading specifies
the number of partially occupied bands, i.e. the number of
Fermi surfaces in each region of filling factor. The solid lines
mark the Hall density that would be calculated if the Fermi
surfaces were approximated as isotropic.

qualitatively from experimental data, which typically ex-
hibit five or more jumps in value for ν ∈ (−4, 4) com-
pared to the two jumps present in Fig. 3 assuming no
flavor symmetry breaking. Some of these jumps are evi-
dently due to spin/valley flavor symmetry breaking phase
transitions, which reconstruct the Fermi surfaces. These
transitions sequentially maximize hole densities for one,
two, or three flavors on the hole side, and electron densi-
ties of one, two, or three flavors on the conduction band
side. The guiding principle for these phase transitions
seems to be to place the Fermi levels of the partially oc-
cupied bands, whenever possible, on the side of the van
Hove singularity closer to the Dirac point of that fla-
vor. We can understand this behavior [44] qualitatively
as a combined consequence of the exchange energy gained
by flavor polarization and the favorable band energy per
particle when the Fermi level is placed in the low-density-
of-states region near the Dirac point.

The number of additional Hall density jumps and their
precise filling-factor positions are somewhat sample de-
pendent. Fig. 4 shows calculated Hall density that ac-
counts for flavor symmetry breaking transitions. The
second Hall density jump on the valence band side is
consistent with traversal of VHSs in doubly degenerate
Fermi surfaces. On the conduction band side the first
Hall density jump occurs already near ν ≈ 4νcrc . We at-
tribute the difference between electrons and holes to the
difference in the position at which the VHS occurs. Two
additional jumps in Hall density typically occur on the
conduction band side, and each seems to be associated
with a flavor depopulation event. One important conse-
quence is that states with an odd number of Fermi sur-
faces are more common on the conduction band side. We
have constructed the theory curve in Fig. 4 from Fig. 3
by summing Hall conductivity contributions over flavors.
As shown there, we are able to explain the experimen-

tal results by infering that there is one flavor symmetry
breaking transition on the hole side at νFS ≈ νcrv (or
equivalently ν ≈ −4(1− νcrv )) from a four-Fermi surface
state to a two-Fermi surface state, and that there are
three flavor-symmetry-breaking transitions on the elec-
tron side, at ν ≈ 4νcrc , 1+3νcrc , 2+2νcrc , to three, two, and
one Fermi surface states. Because the Hall density curves
are qualitatively dependent on the pattern of flavor sym-
metry breaking, as illustrated in the Supplementary ma-
terial, this interpretation can be made with considerable
confidence.

The flavor symmetry breaking behavior evident in the
weak-field Hall and SdH data is understandable in terms
of mean-field considerations. States that have a Fermi
level on the neutrality side of the VHS are favored by
a low DOS close to the Fermi level [45]. Particle-hole
asymmetry can be explained by the closer proximity of
VHS to neutrality on the conduction band side, which
forces flavor symmetry breaking earlier in the conduction
band filling process than in the valence band emptying
process, and therefore favors states with an odd number
of Fermi surfaces that can host topologically non-trivial
states [6, 7, 46].

Discussion.—This Letter addresses the implications
of weak-field magneto-transport data for the correlation
physics of MAtBG. The moiré filling factor ranges over
which SdH oscillations are visible identify where Fermi
level quasiparticles have the largest velocities. The fact
that SdH is most visible near neutrality is at first sight
surprising since the independent electron flat bands are
most dispersive in precisely the opposite limit, namely for
nearly full or nearly empty bands. We have interpreted
this behavior as a consequence of interaction-induced
band renormalizations that flatten the conduction band
top and the valence band bottom when the Fermi level
is near these band edges.

Weak-field Hall effect measurements provide additional
information since this quantity is observable at larger
quasiparticle masses and stronger disorder. We have
concluded that the many jumps in Hall density that
typically occur as a function of band filling cannot be
explained on the basis of single-particle physics, since
these allow for only one jump each side of the neutral-
ity point. We attribute the additional jumps to a series
of flavor-symmetry breaking phase transitions that re-
construct Fermi surfaces by redistributing the occupancy
among flavors. These reconstructions favor partially oc-
cupied bands whose Fermi surfaces are on the neutrality
side of the VHS present in each band. A similar con-
clusion was reached on the basis of thermodynamic com-
pressibility measurements in Ref [13]. Our analysis ar-
gues that filling-factor dependent band renormalizations
play an essential role in the robustness of this effect, and
that nonlocal interlayer tunneling controls its particle-
hole asymmetry which is substantial in most cases.

Unlike a ferromagnetic metal, in which the spin-
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dependence of electron-electron interactions is normally
ignored, the valley and orbital dependence of interactions
in MAtBG could [47, 48] play as important a role as
the band Hamiltonian in the anisotropy energy scales,
and could play a role in the superconducting state that
emerges at the lowest temperatures. Surveying the ex-
perimental literature and assigning Fermi surface degen-
eracies via considerations like those discussed in this MS,
it seems that superconductivity occurs with similar tran-
sition temperatures in states with two and four Fermi sur-
faces, but has much lower transition temperatures when
seen in states with an odd number of Fermi surfaces.
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