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Whether the doped t-J model on the Kagome lattice supports exotic superconductivity has not
been decisively answered. In this paper, we propose a new class of variational states for this model
and perform large-scale variational Monte Carlo simulation on it. The proposed variational states
are parameterized by the SU(2)-gauge-rotation angles, as the SU(2)-gauge structure hidden in the
Gutzwiller-projected mean-field ansatz for the undoped model is broken upon doping. These vari-
ational doped states smoothly connect to the previously studied U(1) π-flux or 0-flux states, and
energy minimization among them yields a chiral noncentrosymmetric nematic superconducting state
with 2 × 2-enlarged unit cell. Moreover, this pair density wave state possesses a finite Fermi sur-
face for the Bogoliubov quasi particles. We further study experimentally relevant properties of this
intriguing pairing state.

Introduction: Quantum spin liquids (QSL) have at-
tracted increasing interest in condensed matter physics in
the past decades [1–6]. They represent an exotic class of
insulating states which cannot be adiabatically connected
into a trivial band insulator. Moreover, a QSL state can
support fractionalized excitations with fractional braid-
ing statistics. One of the most intriguing aspects of QSL
lies in that doping a QSL might naturally lead to high
temperature superconductivity[7–16] or a topologically
ordered Fermi liquid state (FL∗)[17–19].

One promising model exhibiting a QSL ground state
is the spin-1/2 Heisenberg model on the Kagome lat-
tice, which is probably realized by the spin-liquid candi-
date material Herbertsmithite[3]. Numerous efforts have
been devoted to study properties of this model for several
decades. Except for a few early results pointing toward
the valence bond solid (VBS) state[20–22], dominating
numerical results suggest a QSL ground state for this
model[23–35]. Particularly, while a number of density-
matrix renormalization group (DMRG) simulations on
wide cylinders have exhibited evidences of a Z2 QSL with
exponentially decaying spin-spin correlation[23–28], re-
cent iDMRG simulation on infinite cylinders[29], tensor-
network simulation on infinite system[30], and varia-
tional Monte Carlo (VMC) studies[31–33] suggest that
the ground state is a gapless U(1) Dirac QSL with alge-
braic correlation. While further studies are still needed
to reveal the precise nature of the ground state at half fill-
ing, it is also desired to study what quantum state would
be obtained when mobile charge carriers are introduced
into it by doping. Especially, can exotic superconductiv-
ity emerge upon doping the Kagome QSL state?

The nature of the lightly doped Kagome system de-

scribed by the t-J model is not decisively known so far.
Nonetheless, recent DMRG study on the model with
moderate doping on the 4-leg cylinder provided convinc-
ing evidences of an insulating holon Wigner crystal[36].
On the wider system, previous VMC investigation of this
model on up to 82 × 9 lattice in certain doping range
suggests that the π-flux Dirac U(1) spin liquid[31] is un-
stable against a 0-flux state with a VBC ordering[37, 38].
As the π-flux state has lower energy than the 0-flux state
at half filling, it is obvious that the 0-flux state obtained
by VMC at certain doping range cannot be continuously
connected to the undoped π-flux QSL state[31]. It is
natural to ask what is the ground state for the lightly
doped t-J model on the Kagome lattice assuming that
the ground state of the undoped system is a U(1) Dirac
QSL.

In this paper, we study the t-J model on the Kagome
lattice in the very low doping regime which is expected to
smoothly connect with U(1) spin liquid at half-filling[31]
by performing VMC simulations. Our study is in-
spired by a crucial SU(2)-gauge structure[39–41] hidden
in the projective construction at half-filling: two dif-
ferent mean-field (MF) ansatzs related by an arbitrary
local SU(2)-gauge rotation actually correspond to the
same physical spin state after the Gutzwiller-projection.
Such gauge-redundancy leads to a many-to-one labeling
between the mean-field ansatzs and the projected wave
function at half-filling[42]. At finite doping, the breaking
of this gauge structure differentiates the many states re-
lated by the gauge-rotation, which form our variational
groups. We choose the doped 0-flux or π-flux states as
our un-rotated starting points. Energy minimizations
within both groups of variational states yield chiral non-
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centrosymmetric nematic superconducting states with
2 × 2-enlarged unit cell in the very low doping regime,
with the gauge-rotated π-flux state smoothly connect-
ing to the undoped π-flux QSL[31]. Remarkably, as the
SU(2)-gauge rotation maintains the quasi-particle spec-
trum, the obtained superconducting states possess finite
Fermi surface (FS) for the Bogoliubov quasi-particles.
The physical properties of these pairing states are in-
triguing: although they are superconducting states, they
resemble those of the normal FL in many aspects.

Variational states: We study the standard t-J model
on the Kagome lattice illustrated in Fig. 1(a):

H = −t
∑
〈ij〉σ

PG(c†iσcjσ+h.c.)PG+J
∑
〈ij〉

(Si ·Sj−
1

4
ninj),

(1)
where ciσ annihilates an electron on site i with spin σ,
Si = 1

2c
†
iασαβciβ denotes the spin operator and ni =∑

σ c
†
iσciσ is the density operator. PG =

∏
i(1−ni↑ni↓) is

the Gutzwiller-projection operator enforcing no-double-
occupancy constraint. 〈ij〉 represents nearest-neighbor
(NN) bonding. Here we set J = 1 as the energy scale.
The parameter t and the doping concentration δ are set
as tuning parameters spanning the phase diagram.

To smoothly connect with the previously studied π-
flux state at half-filling[31] and to compare energy with
the zero-flux state at finite doping[37, 38], we investigate
the Gutzwiller-projected MF states generated by the fol-
lowing MF Hamiltonian,

H0
MF =

∑
〈ij〉σ

χijc
†
iσcjσ + h.c., (2)

where χij = ±1. These states can be characterized by
the fluxes eiφ =

∏
plaquette sgn(χij) through triangle and

hexagon plaquettes of the Kagome lattice. In this work,
we primarily focus on two types of fluxes: (1) the 0-
flux states having zero flux through all the triangles and
hexagons shown in Fig. 1(b); (2) the π-flux state having
π flux through the hexagons and zero flux through the
triangles as shown in Fig. 1(c). At half filling, both flux
states after the projection are QSL. While the former
has a large spinon FS, the latter is a U(1) Dirac QSL.
Previous VMC studies[31] showed that the π-flux state
has the lowest energy among all studied states.

The key point lying behind the present work is the
following SU(2)-gauge structure hidden in the projective
construction at half-filling[40, 41]. Let’s perform the fol-
lowing local SU(2)-gauge transformation Wi on the two

component spinor ψi = (ci↑, c
†
i↓)

T ,[
ci↑
c†i↓

]
→Wi

[
ci↑
c†i↓

]
. (3)

At half-filling, any two MF ansatzs connected by this
local SU(2)-gauge rotation label the same physical spin
state after projected into the single-occupance subspace,

FIG. 1. (a) A schematic representation of the Kagome lattice.
(b) The 0-flux state with χij = 1 on each bond. (c) The π-
flux state with zero flux through triangles and π-flux through
hexagonals. Dashed lines indicate the χ = −1 bonds.

as the spin operator Si keeps invariant under this gauge
transformation[40, 41]. However, this many-to-one label-
ing is absent once the system is doped away from half fill-
ing. Consequently, the many states related by the gauge
rotation before projection can represent physical states
with distinct physical properties at finite doping. One
may naturally raise the following question: what is the
lowest-energy state among all those gauge-rotated π- or
0-flux states for the system with very low doping? To
answer this question, we choose the local SU(2)-gauge
rotation angles as variational parameters, from which we
construct MF Hamiltonian to generate the variational
physical states by projection, for energy minimization in
both flux sectors.

Our trial wave functions are generated by the following
local SU(2)-gauge-rotated Bogoliubov-de Genes (BdG)
MF Hamiltonian,

HMF =
∑
ij

[
c†i↑ ci↓

]
Wi

[
χij 0
0 −χji

]
W †j

[
cj↑
c†j↓

]
. (4)

Here the unrotated MF parameter χij on the NN-bond
〈ij〉 for the π- and 0-flux states have been introduced
above. We set the on-site term χii to a uniform value
χii = χ0 as the chemical potential term. The local SU(2)
rotation matrix Wi can be parameterized by the following
three rotation angles αi, βi and γi as

Wi =

[
eiβi cosαi eiγi sinαi
−e−iγi sinαi e

−iβi cosαi

]
. (5)

Our trial wave function PG |ΨMF{χ0, α, β, γ}〉 now
depends on the set of variational parameters
{αi, βi, γi}i=1,··· ,N and χ0. Here |ΨMF{χ0, α, β, γ}〉
is the MF ground state of Eq. (4).

VMC results: We adopt standard Monte
Carlo approach to simulate the variational states
PG |ΨMF{χ0, α, β, γ}〉 on the Kagome lattice with size
3×L×L and periodic boundary condition, where the
two adopted lattice sizes L = 8 and L = 12 lead to con-
sistent results. The numerical complexity arising from
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FIG. 2. (a) phase diagram of the slightly doped t-J model on a
8×8×3 lattice. The black circles in the π-flux sector represent
metallic phase without pairing. (b) Nearly doubly degenerate
small FSs of the slightly doped π-flux state located around
the two folded Dirac points of undoped state. (c) Folded FSs
of the doped 0-flux state.

optimizing a large number of variational parameters is
overcome by the stochastic reconfiguration (SR) method
[43]. We further reduce the number of SU(2) rotation
angles by restricting the parameters in the super-cell
with size 3×2×2. We have checked that increasing the
size of the super-cell does not lead to a lower optimized
energy (See Supplemental material (SM) for detail).

Our main results are summarized in the phase diagram
shown in Fig. 2(a), where we consider several t ranging
from 1/3 to 3 and several doping levels below 7% on
the Kagome lattice with L = 8. Starting from the un-
doped π-flux state, the lowest-energy state stays in the
π-flux sector until beat by the optimized states in 0-flux
sector at a finite doping concentration δc depending on
t. For small t ∼ 1/3, the gauge-rotated π-flux state is
stable until the doping concentration reaches δc ∼ 5%.
While for large t, a smaller doping is enough to drive the
system away from the π-flux sector, consistent with pre-
vious VMC studies at J = 0.4t [37, 38]. To explore the
possible finite size effect, we also studied the models on
L = 12 lattice with 4 to 12 doped holes and find that the
gauge-rotated π-flux state is still the lowest-energy state
for most of the cases at small doping region.

The physical properties of the gauge-rotated π-flux
phase are mainly determined by the optimized SU(2) ro-
tation angles, which are provided in the SM[44]. Ex-
cept for the two parameter points in the small J and
δ region of the π-flux sector (black circles in Fig. 2),
we find that the optimized angle αi for both flux sec-
tors are neither 0 nor π. Consequently, the non-zero
off-diagonal terms in the gauge-rotation matrices Wi de-
fined in Eq. (5) bring about a singlet pairing term H∆ =

−
∑
ij c
†
i↑c
†
j↓
[
χije

i(βi+γj) cosαi sinαj + (i� j)
]
+h.c. in

HMF . Note that the gauge rotation (3) as a unitary

δ = 0.92% δ = 1.85% δ = 2.78%

t=2

0-flux -0.96037(2) -1.00873(3) -1.05669(3)
π-flux -0.97105(5) -1.01197(2) -1.05238(3)
Z2 QSL -0.97106(2) -1.01196(4) -1.05231(4)
VBC-D -0.96066(3) -1.00921(2) -1.05710(3)
CDW -0.9112(3) / /

t=1

0-flux -0.92894(3) -0.94680(1) -0.96408(2)
π-flux -0.94347(2) -0.95691(2) -0.97010(4)
Z2 QSL -0.94348(3) -0.95686(4) -0.97010(3)
VBC-D -0.92933(2) -0.94698(2) -0.96442(2)
CDW -0.9104(4) / /

t=0.5

0-flux -0.91336(4) -0.91565(3) -0.91772(3)
π-flux -0.92967(3) -0.92939(2) -0.92828(2)
Z2 QSL -0.92965(2) -0.92936(3) -0.92827(3)
VBC-D -0.91367(2) -0.91588(3) -0.91808(2)
CDW -0.9154(2) / /

TABLE I. Optimized energy of part of the candidates on the
model with t = 0.5 ∼ 2 and δ = 0.92% ∼ 2.78% on a 3×12×12
lattice. A complete table with more candidate ansatz can be
found in SM.

transformation does not change the quasi-particle spectra
[40, 41], but it only leads to enlargement of the unit cell.
As a result, the superconducting states generated here
will have quasi-particle FSs simply folded from those of
the doped 0- or π-flux states before the gauge rotation,
as shown in Fig. 2(b) and (c). Therefore, we have ob-
tained here singlet pairing states with finite Bogoliubov
FS. Such SC states breaking translational symmetry with
finite FS were pair-density-wave states[45–58].

The optimized gauge-rotation angles in the π-flux sec-
tor are complicated because all the {αi, βi, γi} within the
super cell are non-zero and non-uniform, breaking the
TRS, the lattice-rotation, the inversion and the transla-
tional symmetries. The pairing and hopping terms gen-
erated by the gauge rotations are generally complex and
are of the same order of magnitude, which suggests a
typical inter-band pairing state. More details of the op-
timized gauge-rotation angles and the resulting gauge-
rotated MF Hamiltonian are provided in the SM. In spite
of the complicated pairing and hopping terms, the result-
ing MF Hamiltonian exhibits finite Bogoliubov FS shown
in Fig. 2(b), which comprises two nearly doubly degen-
erate small pockets folded from those of the un-rotated
π-flux state.

At infinitesimal doping, the gauge-rotated π-flux state
is reasonably the lowest-energy VMC state due to the fi-
nite energy difference between this state and other states
presented in the previous VMC study of the undoped
case. When the doping concentration becomes larger,
besides the gauge-rotated π- or 0- flux states, other com-
petitive states such as the holon Wigner crystal[36], the
doped Z2 QSL[34], various types of VBC states[37, 38],
and the uniform-pairing states[7, 59, 60] should also be
considered in the VMC calculations. In Table I, we list
the optimized energies for part of the lowest-energy states
we obtained on the L = 12 lattice, which suggests that
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FIG. 3. Experiment-relevant quantities for the optimized
gauge-rotated π-flux state. (a) dI/dV ∼ V curve for the
STM. The inset is the dI/dV curve for the model with uni-
form on-site s-wave (b) the specific heat Cv ∼ T . (c) the
NMR relaxation rate 1/T1T . (d) the NMR Knight-shift K
as function of T , three colors stand for Kxx, Kyy and Kzz

respectively. The optimal gauge-rotation angles are obtained
from parameter setting t = 0.5 and δ = 2.08%.

in the small doping region the gauge-rotated π-flux state
has lower energy than the other VMC candidates. We
can see the doped Z2 QSL [34] provides similar energy
as the gauge-rotated π-flux state because after optimiza-
tion such state actually flows back to the U(1) Dirac spin
liquid (π-flux state) for all the cases we studied. In the
0-flux sector, we find that the D-type VBC state has
slightly lower energy than the gauge-rotated 0-flux state.
Another important candidate, the holon Wigner crystal,
is mimicked by the CDW ansatz in the VMC calculation.
Restricted by the finite lattice size, we only consider the
four-hole doped L = 12 system with 3 × 6 × 6 super-
cell. Though we observe the similar density distribution
as the Wigner crystal, the VMC energy of this CDW
state is higher than the gauge-rotated π-flux state. We
also consider the uniform-pairing states with both the
extended s-wave and d-wave pairing parameters lived on
the nearest and second nearest neighbor bonds, which
also provide higher energies in the small doping region.
A more complete comparison of all the competing states
we considered on the L = 12 lattice and the detailed
VMC realization of them are presented in the SM[44].

Singlet pairing with finite FS: The singlet pair-
ing with Bogoliubov FS obtained here is distinct from
conventional superconductors. To reveal the physical
properties of this intriguing pairing state relevant to ex-
periments, we shall perform MF studies below toward
the zero- and finite-temperature behaviors of the system
represented by the optimized HMF . Consequently, this

pairing state is found to be very exotic.

On one hand, the breaking of U(1)-gauge symmetry
leads to finite superfluid density as expected (see SM[44]
for details), which will result in detectable Meissner ef-
fect. On the other hand, the presence of the full FS
causes finite density of state (DOS) which, in combina-
tion with the singlet-pairing signature, makes this pairing
state look like a normal FL in the aspects of low lying
quasi-particle and spin excitations, as shown in Fig. 3 for
the gauge-rotated π-flux state. In the zero-temperature
dI/dV curve for the STM spectrum shown in Fig. 3(a),
a finite zero-bias conductance appears caused by the fi-
nite DOS, in comparison with the U-shaped curve for the
s-wave SC shown in the inset. Fig. 3(b) shows that the
specific-heat Cv ∝ T at T → 0, resembling the normal
FL. Fig. 3(c) illustrates that the relaxation rate 1/T1T
of the nuclear magnetic resonance (NMR) saturates to
a finite value at T → 0, obeying a Korringa-law-like be-
havior for the FL, different from the 1/T1T → 0 behavior
for conventional fully-gapped (∝ e−∆/T ) or nodal (∝ T 3)
SC. Fig. 3(d) exhibits that the NMR Knight-shift K
saturates to a finite value for T → 0, independent of
the orientation of the exerted magnetic field, similarly to
the Pauli-susceptibility behavior for standard FL. This
behavior is distinct from the K → 0 behavior of con-
ventional singlet SC with full or nodal gap or the obvi-
ous magnetic-field-orientation-dependence of K for the
triplet SC. Although both the gauge-rotated π- or 0- flux
states exhibit BFS, the different doping dependences of
the area enclosed by their FSs can be distinguished by
the ARPES, which can also lead to different behaviors
such as the doping dependence of Cv/T . Details of these
MF studies are provided in the SM[44].

Discussion and Conclusion: Note that, starting
with a U(1) QSL at half-filling, we have only consid-
ered the gauge-rotation angles as variational parameters
and neglect the amplitude fluctuation of χij before the
gauge rotation. Such a treatment is reasonable only at
zero-doping limit. For higher dopings, lower variational
energy is generally expected if we include the variation
of the amplitude of χij . The band structure of such im-
proved state can be strongly modified, i.e. Hastings-type
VBC order can gap out the Dirac points[61]. We have
briefly investigated the fate of Hastings-type VBC in the
unrotated π flux state, and found that it becomes visible
when the doping concentration is larger than δc ∼ 4%.
Therefore, close to the zero-doping limit, the Bogoliubov
FS is more likely to survive.

Previous studies[63–67] have shown the survival of the
FS under the Gutzwiller projection, although some other
MF properties might be modified[68], such as the quasi-
particle weight. Similar phenomenon, namely the sur-
vival of the FS under Gutzwiller projection, is also di-
rectly observed for our projected gauge-rotated states
by numerically detecting the FS-jump in the occupation-
number distribution of Bogoliubov quasiparticles in the



5

momentum space (see the SM for details[44]). Another
concern about the stability of the Bogoliubov FS ob-
tained here under possible remnant interactions among
the Bogoliubov quasi-particles neglected in the VMC
treatment. Indeed the FSs shown in Fig. 2(b) and (c)
satisfy the relation εk = ε−k as the unitary SU(2)-gauge
rotation adopted here maintains the quasi-particle en-
ergy, which will suffer from the Cooper instability under
remnant interactions. However, note that the two super-
conducting states obtained here break both the TRS and
the inversion symmetry[44]. Without the protection of
these two symmetries [62], the relation εk = ε−k can-
not survive such perturbations as the further variations
of {χij ,∆ij} after the gauge rotation, which can always
exist for finite doping. Consequently, the Bogoliubov FSs
obtained here should be stable against weak remnant in-
teractions among the quasi-particles.

Evidences of SC with Bogoliubov FS can also appear
in other contexts such as the FFLO state induced in
the magnetic field[69, 70], the cubic system with j =
3/2 total-angular-momentum degree of freedom[71] and
some iron-based superconductors with spin-orbit cou-
pling and interband pairing[72]. The recently synthe-
sized YPtBi multi-band superconductor with strong spin-
orbit-coupling[73, 74] might also exhibits Bogoliubov FS
if it breaks the TRS[75]. While these systems host similar
normal FL-like quasi-particle excitations as here, their
spin excitations have different properties from those of
the singlet pairing state obtained here. In summary, we
propose a new way to obtain the Bogoliubov FS: doping
a U(1) QSL. The key point lies in that the local SU(2)-
gauge rotation, which brings about SC to the doped QSL,
will not alert the quasi-particle energy, which is different
from doping a QSL with spinon FS [76]. Such mechanism
not only applies to the doped Kagome U(1) QSL, but
also applies to other doped U(1) QSL, which could be a
promising way to obtain the new type of unconventional
gapless SC in strongly-correlated electronic systems.
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Phys. Rev. Lett. 109, 067201 (2012).
[27] S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, Phys.

Rev. B 91, 075112 (2015).
[28] J.-W. Mei, J.-Y. Chen, H. He, and X.-G. Wen, Phys.

Rev. B, 95, 235107 (2017).
[29] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann,

Phys. Rev. X 7, 031020 (2017).
[30] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R.

Z. Huang, B. Normand, and T. Xiang, Phys. Rev. Lett.
118, 137202 (2017).

[31] Y. Ran, M. Hermele, P. A. Lee, and X. G. Wen, Phys.
Rev. Lett. 98, 117205 (2007).

[32] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys.
Rev. B 87, 060405 (2013).

[33] Y. Iqbal, D. Poilblanc, and F. Becca, Phys. Rev. B 89,



6

020407 (2014).
[34] T. Li, arXiv:1807.09463.
[35] H. J. Changlani, D. Kochkov, K. Kumar, B. K. Clark,

and E. Fradkin, Phys. Rev. Lett. 120, 117202 (2018).
[36] H.-C. Jiang, T. Devereaux, and S. A. Kivelson, Phys.

Rev. Lett. 119, 067002 (2017).
[37] S. Guertler and H. Monien, Phys. Rev. B 84, 174409

(2011).
[38] S. Guertler and H. Monien, Phys. Rev. Lett. 111, 097204

(2013).
[39] G. Baskaran and P. W. Anderson, Phys. Rev. B 37,

580(R) (1988).
[40] I. Affleck, Z. Zou, T. Hsu, and P. W. Anderson, Phys.

Rev. B 38, 745 (1988).
[41] E. Dagotto, E. Fradkin, and A. Moreo, Phys. Rev. B 38,

2926 (1988).
[42] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
[43] S. Sorella, Phys. Rev. B 71, 241103(R) (2005).
[44] See the Supplementary Material at http:.̇..... for the for-

mula of the SU(2)-gauge rotated mean-field Hamiltonian;
the realization and optimized energy of the holon Wigner
crystal, the doped Z2 QSL, various types of VBC states,
and the uniform-pairing states; the optimized results of
the SU(2)-gauge-rotation angles for the doped π- or 0-
flux states; the formula for the calculations of the STM,
the specific heat, the Knight-shift, the NMR relaxation
rate, the zero- and finite-temperature superfluid density.

[45] E. Berg, E. Fradkin, E.-A. Kim, S. A. Kivelson, V.
Oganesyan, J. M. Tranquada, and S. C. Zhang, Phys.
Rev. Lett. 99, 127003 (2007).

[46] D. F. Agterberg and H. Tsunetsugu, Nature Physics 4,
639 (2008).

[47] E. Berg, E. Fradkin and S. A. Kivelson, Nature Physics
5, 830 (2009).

[48] E. Berg, E. Fradkin, S. A. Kivelson, and J. M. Tran-
quada, New J. Phys. 11, 115004 (2009).

[49] E. Berg, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett.
105, 146403 (2010).

[50] A. Jaefari and E. Fradkin, Phys. Rev. B 85, 035104
(2012).

[51] P. A. Lee, Phys. Rev. X 4, 031017 (2014).
[52] M. H. Hamidian, S. D. Edkins, S. H. Joo, A. Kostin,

H. Eisaki, S. Uchida, M. J. Lawler, E.-A. Kim, A. P.
Mackenzie, K. Fujita, J. Lee and J. C. Seamus Davis,
Nature 532, 343 (2016).

[53] W. Ruan, X. Li, C. Hu, Z. Hao, H. Li, P. Cai, X. Zhou,
D.-H. Lee and Y. Wang, Nature Physics 14, 1178 (2018).

[54] S. D. Edkins, A. Kostin, K. Fujita, A. P. Mackenzie, H.

Eisaki, S. Uchida, S. Sachdev, M. J. Lawler, E.-A. Kim,
J. C. Seamus Davis, and M. H. Hamidian, Science 364,
976 (2019).

[55] S.-K. Jian, M. M. Scherer, and H. Yao, Phys. Rev. Re-
search 2, 013034 (2020).

[56] Z. Han, S. A. Kivelson, and H. Yao, Phys. Rev. Lett. 125,
167001 (2020).

[57] K. S. Huang, Z. Han, S. A. Kivelson, and H. Yao,
arXiv:2103.04984.

[58] D. F. Agterberg, J. S. Davis, S. D. Edkins, E. Fradkin,
D. J. Van Harlingen, S. A. Kivelson, P. A. Lee, L. Radz-
ihovsky, J. M. Tranquada, and Y. Wang, Annu. Rev.
Condens. Matter Phys. 11, 231 (2020).

[59] C. Gros, Phys. Rev. B 38, 931(1988).
[60] P. W. Anderson, M. Randeria, T. Rice, N. Trivedi, and

F. Zhang, J. Phys. Cond. Matter 16, R755 (2004).

[61] M. B. Hastings, Phys. Rev. B 63, 014413 (2000).
[62] M. Barkeshli, H. Yao, and S. A. Kivelson, Phys. Rev. B

87, 140402(R) (2013).
[63] A. Paramekanti, M. Randeria and N. Trivedi, Phys. Rev.

Lett. 87, 217002 (2001).
[64] A. Paramekanti, M. Randeria and N. Trivedi, Phys. Rev.

B 70, 054504 (2004).
[65] S. Yunoki, Phys. Rev. B 72, 092505 (2005).
[66] C. P. Nave, D. A. Ivanov, and P. A. Lee, Phys. Rev. B

73, 104502 (2006).
[67] H.-Y. Yang, F. Yang, Y.-J. Jiang, and T. Li, Journal of

Physics: Condensed Matter, 19 (2007).
[68] F. Ferrari and F. Becca, Phys. Rev. X 9, 031026 (2019).
[69] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[70] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz.

47, 1136 (1964).
[71] D. F. Agterberg, P. M. R. Brydon and C. Timm, Phys.

Rev. Lett. 118, 127001 (2017).
[72] C. Setty, S. Bhattacharyya, Y. Cao, A. Kreisel and P. J.

Hirschfeld, Nat. Comm. 11, 523 (2020).
[73] P. M. R. Brydon, L. M. Wang, M. Weinert, and D. F.

Agterberg, Phys. Rev. Lett. 116, 177001 (2016).
[74] H. Kim, K. Wang, Y. Nakajima, R Hu, S. Ziemak, P.

Syers, L Wang, H. Hodovanets, J. D. Denlinger, P. M.
R. Brydon, D. F. Agterberg, M. A. Tanatar, R. Prozorov
and J. Paglione, Science Advances 4, 4 (2018).

[75] C. Timm, A. P. Schnyder, D. F. Agterberg and P. M. R.
Brydon, Phys. Rev. B 96, 094526 (2017).

[76] X. Y. Xu, K. T. Law, and Patrick A. Lee, Phys. Rev.
Lett. 122, 167001 (2019).


