

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Charge Radius of Neutron-Deficient math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">mrow>mmultiscripts>mrow>mi>Ni/mi>/ mrow>mprescripts>/mprescripts>none>/none>mrow>mn >54/mn>/mrow>/mmultiscripts>/mrow>/math> and Symmetry Energy Constraints Using the Difference in Mirror Pair Charge Radii

Skyy V. Pineda, Kristian König, Dominic M. Rossi, B. Alex Brown, Anthony Incorvati, Jeremy Lantis, Kei Minamisono, Wilfried Nörtershäuser, Jorge Piekarewicz, Robert Powel, and Felix

> Sommer Phys. Rev. Lett. **127**, 182503 — Published 29 October 2021 DOI: 10.1103/PhysRevLett.127.182503

¹ Charge Radius of Neutron-deficient ⁵⁴Ni and Symmetry Energy Constraints Using the Difference in Mirror Pair Charge Radii 2

Skyy V. Pineda,^{1, 2, *} Kristian König,¹ Dominic M. Rossi,^{3, 4} B. Alex Brown,^{1, 5} Anthony Incorvati,^{1, 5} Jeremy 3

Lantis,^{1,2} Kei Minamisono,^{1,5,†} Wilfried Nörtershäuser,³ Jorge Piekarewicz,⁶ Robert Powel,^{1,5} and Felix Sommer³

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

²Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

³Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

⁴GSI Helmholtzzentrum für Schwerionenforschung mbH, Planckstr. 1, 64291 Darmstadt, Germany

⁵Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

⁶Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Dated: September 27, 2021)

The nuclear root-mean-square charge radius of 54 Ni was determined with collinear laser spectroscopy to be $R(^{54}\text{Ni}) = 3.737(3)$ fm. In conjunction with the known radius of the mirror nucleus 54 Fe, the difference of the charge radii was extracted as $\Delta R_{\rm ch} = 0.049(4)$ fm. Based on the correlation between $\Delta R_{\rm ch}$ and the slope of the symmetry energy at nuclear saturation density (L), we deduced $21 \le L \le 88 \,\mathrm{MeV}$. The present result is consistent with the L from the binary neutron star merger GW170817, favoring a soft neutron matter EOS, and barely consistent with the PREX-2 result within 1σ error bands. Our result indicates the neutron-skin thickness of 48 Ca as 0.15 - 0.21 fm.

Introduction — Knowledge of the slope of the sym-20 ²¹ metry energy L in the nuclear equation of state (EOS) is critical for the extrapolation to the higher densities 22 [1] that are required to predict the properties of both 23 super-heavy nuclei and neutron stars [2–4]. In the case 24 of neutron stars, the "softness" or "stiffness" of the EOS 25 as a direct link to the neutron star radius [5]. Note that 26 stiff EOS indicates that the pressure increases rapidly 27 with increasing density. Conceptually, the symmetry en-28 ergy is closely related to the difference between the en-29 ergy per nucleon of pure neutron matter and symmetric 30 nuclear matter. Given that symmetric nuclear matter 31 saturates, L is proportional to the pressure of pure neu-32 tron matter at nuclear saturation density ρ_0 [6]. Different 33 parameterizations of Skyrme energy density functionals 34 show dramatic variations in the stiffness of the EOS[1], 35 therefore making the extrapolations to higher densities 36 uncertain. The stiffness of the EOS in the vicinity of ρ_0 37 is controlled by L, and although L cannot be directly 38 determined through experiment, the neutron skin thick-39 40 ness $\Delta R_{\rm np}$, defined as the difference between root-meansquare charge radii of neutrons and protons, of neutron 41 ⁴² rich nuclei is strongly correlated to L [7, 8], which may then be used to set boundaries on its value [6]. 43

4

5

6

8

g

10

12

13

14

15

16

17

18

19

The lead radius experiments PREX-1 [9] and PREX-2 44 [10] provide a direct probe of neutron densities via parity 45 46 violating electron scattering. Given that the weak charge of the neutron is much larger than that of the proton, it 47 paves an electroweak avenue to constrain the density de-48 pendence of the symmetry energy. Other electromagnetic 49 50 51 52 sa radioactive ⁶⁸Ni [16]. Besides terrestrial experiments, the as mirror pair [30], the precise determination of the charge ⁵⁴ binary neutron star merger GW170817 has placed im- 89 radius of 54 Ni provides a meaningful constraint on L,

 $_{\rm 55}$ portant constraints on the EOS through the analysis of ⁵⁶ the tidal polarizability (or deformability) [17]. Various 57 studies have aimed to translate the measurements on the ⁵⁸ neutron star merger into constraints on the EOS of dense ⁵⁹ neutron matter. However, whether the EOS is soft or 60 stiff—which in turn translates into smaller or larger neu-⁶¹ tron star radii, respectively—is still under debate [17–26].

Another purely electromagnetic method to constrain L⁶³ has been introduced in [6, 27], where the $\Delta R_{\rm np}$ is deduced ⁶⁴ from the difference in charge radii between a mirror pair. 65 Assuming perfect charge symmetry, the neutron radius ⁶⁶ of a given nucleus should be equal to the proton radius of the corresponding mirror nucleus. The $\Delta R_{\rm np}$ can then 68 be obtained from the difference $\Delta R_{\rm ch}$ of the root-mean-⁶⁹ square (rms) charge radii $R_{\rm ch}$ of mirror nuclei [6, 28] as ⁷⁰ $\Delta R_{\rm np} = R_{\rm ch} \left({}^{A}_{Z} X_{N} \right) - R_{\rm ch} \left({}^{A}_{N} Y_{Z} \right) = \Delta R_{\rm ch}$, where A = $_{71}$ N + Z is the mass number, and N and Z are the neutron ⁷² and proton number, respectively. In reality, however, the ⁷³ charge symmetry is broken by the Coulomb interaction ⁷⁴ that pushes protons out relative to neutrons, leading to ⁷⁵ a weaker correlation between $\Delta R_{\rm np}$ and $\Delta R_{\rm ch}$. It was $_{76}$ shown that $\Delta R_{
m ch}$ is strongly correlated with |N-Z| imes77 L even when |N - Z| is small [6]. On the other hand, ⁷⁸ $\Delta R_{\rm np}$ depends on both $|N-Z| \times L$ and the symmetry ⁷⁹ energy with the L dependence dominating at large |N - $_{80} Z$ [6]. Such experiments provide a clean and largely ⁸¹ model independent complement to the parity violating ⁸² asymmetry experiments. In the present study, the mirror $_{\rm 83}$ charge radii formalism is applied to the ${\rm ^{54}Ni-^{54}Fe}$ pair. ⁸⁴ The rms charge radius of ⁵⁴Ni was determined for the methods involve a correlation between the electric dipole ⁸⁵ first time and then combined with the known radius of polarizability and the $\Delta R_{\rm np}$ [11, 12]. Such measurements stable ⁵⁴Fe [29]. Although this pair has a smaller |N-Z|have been performed in 208 Pb [13, 14], 48 Ca [15], and in ${}_{87} = 2$ relative to our previous measurement on the 36 Ca- 36 S

FIG. 1. Resonance spectra for 54 Ni (left) and 60 Ni (right) relative to the rest-frame transition frequency of 60 Ni. The solid line is the fit to the data.

⁹⁰ with input from modern nuclear models.

Experiment — This experiment took place at the Na-91 tional Superconducting Cyclotron Laboratory at Michi- $_{93}$ gan State University. A 58 Ni primary beam was impinged upon a beryllium target and the produced ${}^{54}\text{Ni}(I^{\pi} = 0^+)$. $T_{1/2} = 114$ ms) beam was filtered out using the A1900 fragment separator. The isolated ⁵⁴Ni beam was then thermalized in a gas cell [31], extracted at an energy of 97 30 keV and transported to the BECOLA facility [32, 33]. 98 A typical rate of Ni⁺ ions at the entrance of the BECOLA 99 was 400/s. At BECOLA the Ni beam was captured, 100 cooled and bunched in a radio frequency quadrupole 101 (RFQ) ion trap [34]. The ion beam was extracted from 102 the RFQ at an approximate energy of 29850 eV. Then the beam was neutralized in-flight in a charge-exchange 104 cell (CEC) [35]. The typical neutralization efficiency was 105 $_{106}$ 50%, and the metastable $3d^94s$ 3D_3 state was populated, which was estimated by a simulation to be 15% [36] of ¹⁰⁸ the total population. A small scanning potential (typi-109 cally 50 V) was applied to the CEC to change the ve-110 locity of the incident ion beam and thus of the atom ¹¹¹ beam. This in turn Doppler-shifted the laser frequency ¹¹² in the rest frame of the atoms, and effectively scanned 113 the laser frequency to measure the hyperfine spectrum. Ions in the metastable state were excited with 352-nm 114 laser light to the $3d^94p$ 3P_2 state, and fluorescence light 115 was recorded as a function of the scanning voltage with 116 mirror-based fluorescence detection system[32, 37]. A 117 background suppression factor of 2×10^5 was achieved by performing time-resolved fluorescence measurements 119 with the bunched beam [33, 38, 39]. 120

¹²¹ A Penning Ionization Gauge (PIG) ion source [36] was ¹²² used to generate beams of stable ^{58,60}Ni isotopes, and ¹²³ spectroscopy was performed every 4-6 hours throughout ¹²⁴ the data taking time for ⁵⁴Ni. The resonance frequen-¹²⁵ cies of ^{58,60}Ni were used as the reference for the extrac-

¹²⁶ tion of the ⁵⁴Ni isotope shift as well as to determine
³⁰⁰⁰₁₂₇ the kinetic beam energy with 10⁻⁵ relative accuracy [40].
¹²⁸ When changing between the isotopes, the laser frequency
²⁵⁰⁰¹²⁹ was adjusted to perform spectroscopy at the same beam
¹³⁰ energy. The applied laser frequencies were referenced
¹³¹ against molecular iodine transition lines [41].

2000₁₃₂ Experimental Results — The observed resonance line
133 of ⁵⁴Ni is shown in Fig. 1 (left). A Voigt function with
1500₁₃₄ an exponential low-energy tail to describe the asymmetry
135 caused by inelastic collisions with the sodium vapor [35]
1000¹³⁶ was used to fit the ⁵⁴Ni spectrum, and the fit result is
137 shown as a solid line. The asymmetry parameter and the
138 Lorentz width of the Voigt function were fixed to those
139 obtained from the reference measurements on ⁵⁸Ni and
140 ⁶⁰Ni. A typical spectrum of ⁶⁰Ni is shown in Fig. 1 (right)
141 as an example of a stable isotope measurement.

The isotope shifts defined as $\delta \nu^{A,A'} = \nu^A - \nu^{A'}$ 142 143 were extracted and summarized in Table I. The un-144 certainty is dominated by the statistical uncertainty of $_{145}$ the $^{54}\mathrm{Ni}$ resonance centroid (7.5 MHz). A discussion 146 of the systematic uncertainty contributions is detailed ¹⁴⁷ in [42]. From the obtained isotope shifts, the differen-¹⁴⁸ tial mean square (ms) charge radius was extracted as ¹⁴⁹ $\delta \langle r^2 \rangle^{A,A'} = (\delta \nu^{A,A'} - \mu^{A,A'} K_{\alpha})/F + \mu^{A,A'} \alpha$ [43] with ¹⁵⁰ the offset parameter α , the field-shift factor F, the offset-¹⁵¹ dependent mass-shift factor K_{α} , and $\mu^{A,A'} = (m_A - m_A)^{A'}$ $(m_{A'} + m_e)/\{(m_A + m_e)(m_{A'} + m_e)\}$, where m_A and $m_{A'}$ are $_{153}$ the nuclear masses, and m_e is the electron mass. The F ¹⁵⁴ and K_{α} were separately determined [42] by the King-fit 155 analysis [44] using re-measured isotope-shifts of the sta- $_{156}$ ble isotopes, and are listed in Tab. I for $^{58}\mathrm{Ni}$ and $^{60}\mathrm{Ni}$ 157 as reference isotopes. Here, the offset parameter α was 158 chosen to remove the correlation between the field- and ¹⁵⁹ mass-shift parameters in the linear regression. The ob-160 tained differential ms and the rms charge radii are also 162 listed in Tab. I. The differential ms charge radii were 163 used together with the known rms charge radii for ref-164 erence isotopes to determine the rms charge radius of ¹⁶⁵ ⁵⁴Ni as $R({}^{54}Ni) = \{(R({}^{A'}Ni))^2 + \delta \langle r^2 \rangle {}^{54,A'}\}^{1/2}$. The ¹⁶⁶ rms charge radii of ⁵⁸Ni, ⁶⁰Ni and ⁵⁴Fe were evaluated ¹⁶⁷ by combining tabulated values [29] for the Barrett radii $_{168}~R_{k\alpha}$ from muonic spectroscopy and for the ratio of the ¹⁶⁹ radial moments V_2 from electron scattering, which yields

TABLE I. Isotope shift, atomic parameters, differential ms and rms charge radii of 54 Ni for A' = 58 and A' = 60 as the reference isotope are summarized.

A' = 58	A' = 60
-1410.4 (8.2)	-1919.7(7.9)
417	388
929.8(2.2)	954.0(3.5)
-767 (70)	-804 (66)
-0.235(29)	-0.522(20)
3.738(4)	3.737(3)
	$\begin{array}{r} A' = 58 \\ \hline & -1410.4 \ (8.2) \\ 417 \\ 929.8 \ (2.2) \\ -767 \ (70) \\ \hline & -0.235 \ (29) \\ 3.738 \ (4) \end{array}$

170 the model-independent rms charge radii $R_{\rm ch} = R_{k\alpha}/V_2$ $_{171}$ as 3.7698(16) fm, 3.8059(17) fm and 3.6880(17) fm, re- $_{172}$ spectively. With the rms charge radii of 54 Fe the dif-173 ference in mirror charge radii was determined to be $_{174} \Delta R_{\rm ch} = R(^{54}{\rm Ni}) - R(^{54}{\rm Fe}) = 0.049(4) \,{\rm fm}.$

Theoretical radii — Predictions were made for the 175 ¹⁷⁶ difference in charge radii of ⁵⁴Ni and ⁵⁴Fe using the 48 177 Skryme energy-density functionals (EDF) [6] and the covariant density-functional (CODF) theory where a correlation between $\Delta R_{\rm ch}$ and L was also observed [28]. 179

For the A = 36 mirror pair [30], it was found that 180 the Skyrme results are sensitive to the isoscalar (IS) or 181 the isoscalar plus isovector (IS+IV) forms of the spin-182 183 orbit potential. However, the present A = 54 pair turns out to be insensitive to the forms. The IS results is about 184 $_{185}$ 0.003 fm larger in $\Delta R_{\rm ch}$, which is negligible, and therefore we adapted the standard IS+IV form in this paper. 186

The Skyrme [6] and CODF [45] calculations include 187 the relativistic spin-obit (RSO) correction to the charge 188 189 radius [46], and were performed for spherical nuclei. It is ¹⁹⁰ known that the quadrupole correlations increase the rms ¹⁹¹ radii when the saturation condition of isoscalar nuclear matter is taken into account [47]. In the present work, the 192 quadrupole deformation effects were taken into account as a correction, which is discussed in the following. 194

The Bohr Hamiltonian starts with an expansion of the 195 ¹⁹⁶ nuclear surface in terms of of its multipole degrees of 197 freedom

$$R(\theta,\phi) = R_0 \left[1 + \sum_{\lambda,\mu} \alpha_{\lambda,\mu} Y_{\lambda,\mu}(\theta,\phi) \right], \qquad (1)$$

¹⁹⁹ spherical equilibrium shape, and $Y_{\lambda,\mu}$ is the spherical har-²³⁷ [14.8, 6.0, 10.4, 4.4] fm² for GPFX1A and KB3G, re-²⁰⁰ monic. The integrals of Eq. (1) involve $\beta^2 = \sum_{\lambda \ge 2} \sum_{\mu} |_{238}$ spectively. For ⁵⁴Fe, $M_p > M_n$ since the wavefunctions $_{201} \alpha_{\lambda,\mu} \mid^2$. To order β^2 , the volume integral of Eq. (1) is $_{239}$ for the 0⁺ and 2⁺ states are dominated (about 50%) by $_{202} I_0 = \{R_0^3(4\pi + 3\alpha_0\sqrt{4\pi} + 3\beta^2)\}/3$. Proton (q = p), $_{240}$ the configuration with two proton $0f_{7/2}$ holes in a 56 Ni $_{203}$ neutron (q = n) and matter (q = m) distributions are $_{241}$ closed-shell configuration. $_{204}$ distinguished by using R_{0q} , α_{0q} and β_q . For the matter $_{242}$ The main contribution to the radius shift is from the $_{205}$ density, if we impose the condition of saturation (that the $_{243}$ M_1 term. The isoscalar effective charge e_1 has been de-206 average interior density remains constant), then the vol- 244 termined by comparing E2 transition in the mirror nu-²⁰⁷ ume must be conserved, $I_0 = 4\pi R_{0m}^3/3$. This condition ²⁴⁵ clei ⁵¹Fe and ⁵¹Mn [52]. The result obtained in [52] with ²⁰⁸ can be imposed by having

$$\alpha_{0m} = -\frac{\beta_m^2}{\sqrt{4\pi}}.$$
(2)

 $_{210}$ 10 β^2)}/5. With the condition of volume conservation $_{251}$ and $e_1 = 0.44$. The e_1 is reduced from its free-nucleon $_{211}$ from Eq. (2), the matter ms radius is

$$\left\langle r^2 \right\rangle_m = \frac{I_2}{I_0} = \left\langle r^2 \right\rangle_{0m} \left[1 + \frac{5}{4\pi} \beta_m^2 \right], \qquad (3)$$

protons. But if $\beta_p \neq \beta_n$, one must make some assumptions about the α_0 term. If we take $\alpha_{0p} = \alpha_{0n} = \alpha_{0m}$ for the volume correction, then

$$\left\langle r^2 \right\rangle_p = \left\langle r^2 \right\rangle_{0p} \left[1 + \frac{2\alpha_{0p}}{\sqrt{4\pi}} + \frac{7}{4\pi} \beta_p^2 \right]$$
$$= \left\langle r^2 \right\rangle_{0p} \left[1 - \frac{2}{4\pi} \beta_m^2 + \frac{7}{4\pi} \beta_p^2 \right].$$
(4)

For $\lambda = 2$, the β_p are related to the $B(E2,\uparrow)_p$ for 0^+ to 212 ²¹³ 2⁺ (in units of e^2) by $\beta_p = 4\pi \sqrt{B(E2,\uparrow)_p}/(5a_q \langle r^2 \rangle_{0p})$, ²¹⁴ where $a_q = Z$ for protons. For β_n and β_m we have 215 equivalent expressions with $a_q = N$ and A. The calcu-²¹⁶ lated $B(E2,\uparrow)_p$ can be compared to experimental results, ²¹⁷ whereas $B(E2,\uparrow)_n$ and $B(E2,\uparrow)_m$ are much less known. 218 We calculate the matrix elements $M_q = \sqrt{B(E2,\uparrow)_q}$ ²¹⁹ from full-basis configuration interaction calculations in $_{220}$ the fp shell model space with the GFPX1A [48] and 221 KB3G [49] Hamiltonians. The E2 matrix elements cal-²²² culated in the fp model space are denoted by A_q . The 223 radial matrix elements were calculated with harmonic-²²⁴ oscillator radial wavefunctions with $\hbar\omega = 45A^{\frac{-1}{3}} - 25A^{\frac{-2}{3}}$ 225 [50]. The full matrix element is obtained with "effec-226 tive charges" e_q that arise from the coupling of the $_{227}$ fp nucleons to the $2\hbar\omega$ giant quadrupole resonances as ²²⁸ $M_p = A_p e_p + A_n e_n$. From mirror symmetry we have ²²⁹ $A_p^{(54}\text{Ni}) = A_n^{(54}\text{Fe})$ and $A_n^{(54}\text{Ni}) = A_p^{(54}\text{Fe})$. We $_{230}$ can write M_p in terms of its isoscalar (0) and isovector ²³¹ (1) contributions $M_p = M_0 + M_1 = A_0 e_0 + A_1 e_1$ where $A_{0}^{232} A_{0}^{232} = (A_{p} + A_{n})/2, A_{1} = (A_{p} - A_{n})/2, e_{0} = e_{p} + e_{n}$ ²³³ and $e_1 = e_p - e_n$. E2 transitions are dominated by A_0 ²³⁴ and thus the isoscalar effective charge is well established, $_{235} e_0 = 2.0(1)$ by systematic comparison to data [51]. The ¹⁹⁸ where R_0 is the radius of the nucleus when it has the ²³⁶ $[A_p, A_n, A_0, A_1]$ for ⁵⁴Fe are [16.5, 7.9, 12.2, 4.3] and

246 KB3G is $A_1 = 5.86 \text{ fm}^2$, and $e_1 = 1 - 2e_{\text{pol}}^{(1)} = 0.37$ $_{247}$ $(e_{pol}^{(1)}$ is the parameter used in [52]). We have reanalyzed ²⁴⁸ those data with GPFX1A and obtain $A_1 = 4.56 \text{ fm}^2$ and $_{249} e_1 = 0.47$ with the harmonic-oscillator parameter used ²⁰⁹ To order β^2 , the r^2 integral is $I_2 = \{R_0^5(4\pi + 5\alpha_0\sqrt{4\pi} + 250 \text{ in } [52], \text{ and with our parameter we obtain } A_1 = 4.85 \text{ fm}\}$ $_{252}$ value of one, due to coupling of the fp nucleons to the ²⁵³ isovector giant-quadrupole resonance. Based on these re-²⁵⁴ sults we adopt a value and uncertainty of $e_1 = 0.44(10)$, $_{255}$ resulting in $e_n = 1.22$ and $e_n = 0.78$.

The results for 54 Fe are B(E2) = 690(90) and 630(80)256 where $\langle r^2 \rangle_{0m} = 3R_{0m}^2/5$ is the ms radius with no defor- $_{257} e^2 \text{ fm}^4$ for GPFX1A and KB3G, respectively, to be commation. If $\beta_p = \beta_n = \beta_m$, then we can use Eq. (3) for $_{258}$ pared to the experimental value of 640(23) $e^2 \text{ fm}^4$ [53].

FIG. 3. "Data-to-data" relation between $\Delta R_{\rm ch}$ and $\Delta R_{\rm pn}(^{48}{\rm Ca})$. The same marks and color coding are used as Fig. 2.

FIG. 2. $\Delta R_{\rm ch}$ as a function of L at ρ_0 . The experimental result is shown as a horizontal gray band. The solid circles are results of Skyrme EDF and the crosses are for the CODF calculations. The dashed lines indicate theoretical error bounds. The upper figure shows comparison with the GW170817 and the PREX-2.

 $_{260}$ e_0 . For a given value of M_1 , we can use the experi- $_{292}$ of L in the range of 21-88 MeV. In the top panel of Fig. 2 ₂₆₁ mental $M_p(\exp) = 25.3(5) \ e \ \text{fm}^2$ [53] to constrain M_0 ²⁹³ we compare the present result with the range for L of $_{262}$ by $M_0 = M_p(\exp) - M_1$. The results for the ⁵⁴Fe β $_{294}$ 11-65 MeV deduced from GW170817 [56], to which our values are $[\beta_p, \beta_n, \beta_m] = [0.186(4), 0.147(7), 0.166(5)]$. ²⁹⁵ result is consistent, suggesting a relatively soft neutron ²⁶⁴ The results for ⁵⁴Ni are 460(40) e² fm⁴ and [0.147(7), ²⁹⁶ matter EOS. The present result is also compared against $_{265}$ 0.186(4), 0.166(5)]. The difference in these results be- $_{297}$ the recent PREX-2 result of $\Delta R_{np} = 0.283$ (71) fm [10] 266 267 268 269 dominated by the error e_1 . 270

271 272 the CHFB+5DCH calculations using the D1S Hamilto- 304 quadrupole correlation and has an ambiguity in the form 273 274 275 276 277 too soft compared to experiment and the shell model. 278

Discussion — The resulting quadrupole correction 311 279 for $\Delta R_{\rm ch}$ is added to the Skyrme and CODF calculations 312 is shown in Fig. 3. Our $\Delta R_{\rm ch}$ restricts the $\Delta R_{\rm np}$ (⁴⁸Ca) 282 in Fig. 2 by the colored points. The color indicates the 314 is timely given that the Calcium Radius EXperiment ²⁸³ neutron skin of ²⁰⁸Pb: 0.12 fm (red), 0.16 fm (orange), ³¹⁵ (CREX) has been completed [58], where experimental $_{284}$ 0.20 fm (green), and 0.24 fm (blue) for Skyrme calcula- $_{316}$ error of about ± 0.02 fm is expected, which is compara-

²⁸⁵ tions. The results of the CODF calculations are shown 286 in crosses. The theoretical uncertainties in the correction ²⁸⁷ for $\Delta R_{\rm ch}$ are shown using dashed lines.

The Skyrme and CODF calculations show consistent 288 ²⁸⁹ agreement in the correlation between $\Delta R_{\rm ch}$ and L. In ²⁹⁰ comparison to these calculations, the experimental one-259 The theoretical errors are dominated by the error in 291 sigma error band shown in Fig. 2 in gray implies a value tween GPFX1A and KB3G is very small since the A_1 val- 298 that implies L = 106 (37) MeV [57]. Our result is barely ues are almost the same. The predicted B(E2) for ⁵⁴Ni ₂₉₉ consistent within 1 σ error bands with the PREX-2, which should be verified experimentally. The resulting contri- 300 indicates rather stiff EOS. It is noted that our previous bution to $\Delta R_{\rm ch}$ is -0.0131(17) fm. The error in $\Delta R_{\rm ch}$ is 301 results on the mirror pair ³⁶Ca-³⁶S indicates the range of $_{302}$ L = 5-70 MeV [30], which is consistent with the present The quadrupole correlations are explicitly contained in $_{303}$ results. However, the A = 36 result does not include the nian given in [54, 55]. They obtain $\Delta R_{\rm ch}({\rm def}) = 0.058$ fm 305 of spin orbit force. The correction for the quadrupole that goes with L = 22.3 MeV [45] for D1S. Their B(E2) 306 correlation is expected to be small, and once the experivalues are 1310 and 1580 e² fm² for ⁵⁴Fe and ⁵⁴Ni, respec- 307 mental B(E2) for the A = 36 pair become available, the tively. This does not agree with experiment or the shell- 300 range from the A = 36 will be updated. In order to make model calculations, presumably because the 56 Ni core is 309 the comparison on the same footing, the A = 36 result is ³¹⁰ not shown in Fig. 2.

Finally the correlation between $\Delta R_{\rm ch}$ and $\Delta R_{\rm np}({}^{48}{\rm Ca})$ performed in the spherical basis. The results are shown $_{313}$ to the interval of 0.15-0.21 fm. The connection to 48 Ca 317 ble to the error obtained here. It is of particular interest 373 whether CREX will confirm the soft EOS or reveal a 374 318 ³¹⁹ larger $\Delta R_{\rm np}$ as the PREX-2.

Summary — The $\Delta R_{\rm ch}$ between mirror nuclei ⁵⁴Ni- $^{54}\mathrm{Fe}$ was evaluated, and compared with the Skyrme $_{_{378}}$ 321 EDFs and the CODF theories. The $\Delta R_{\rm ch}$ and L correla-322 tion implies a range of L = 21-88 MeV, and is consistent $_{380}$ 323 with the L from GW170817 and our previous result in 381 the ³⁶Ca-³⁶S pair, suggesting a soft neutron matter EOS. 325 Our result is barely consistent within 1σ error bands with 326 $_{\rm 327}$ the PREX-2 that indicates a stiff EOS. The present $\Delta R_{\rm ch}$ $_{\rm _{385}}^{\rm _{364}}$ also predicts the $\Delta R_{\rm np}$ (⁴⁸Ca) as 0.15–0.21 fm. More data $\frac{385}{386}$ [13] 328 on the mirror charge radii in different mass regions as well 387 329 330 as theoretical studies for the quadrupole correlations are 388 ³³¹ required to properly assess the model dependence and to set tighter limits on the L. 332

Acknowledgements This work is support in part by 333 the National Science Foundation grant No. PHY-15-334 65546 and by the U.S. Department of Energy Office 394 335 of Science, Office of Nuclear Physics under Award DE- 395 336 FG02-92ER40750, and by the Deutsche Forschungs-337 gemeinschaft (DFG, German Research Foundation) -³³⁹ Project-ID 279384907 - SFB 1245. We thank Nathalie ³⁴⁰ Pillet for providing the CHFB+5DCH calculation results $_{\rm 341}$ for $^{54}\rm Ni$ and $^{54}\rm Fe.$

pineda@frib.msu.edu 342

- minamiso@nscl.msu.edu 343
- [1] B. Alex Brown, Neutron radii in nuclei and the neu-344 408 tron equation of state, Physical Review Letters 85, 5296 345 (2000).346
- [2]C. J. Horowitz and J. Piekarewicz, Neutron star structure 411 347 and the neutron radius of ²⁰⁸Pb, Phys. Rev. Lett. 86, 412 348 5647 (2001). 413 349
- A. W. Steiner, J. M. Lattimer, and E. F. Brown, The neu- 414 [3] 350 tron star mass-radius relation and the equation of state 415 351 of dense matter, Astrophysics 765, L5 (2013). 352
- [4]D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, 417 353 M. Matsushita, H. Wang, H. Baba, N. Fukuda, S. Go, 418 354 M. Honma, J. Lee, K. Matsui, S. Michimasa, T. Moto- 419 355
- bayashi, D. Nishimura, T. Otsuka, H. Sakurai, Y. Shiga, 420 356
- P.-A. Söderström, T. Sumikama, H. Suzuki, R. Taniuchi, 421 357 Y. Utsuno, J. J. Valiente-Dobón, and K. Yoneda, Nature 358 **502**, 207 (2013). 359
- J. M. Lattimer and M. Prakash, Neutron Star Observa-[5]360 tions: Prognosis for Equation of State Constraints, Phys. 361 Rept. 442, 109 (2007). 362
- 363 [6]B. A. Brown, Mirror charge radii and the neutron 427 equation of state, Physical Review Letters 119, 122502 364 (2017).365
- X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda, 430 [7]366 Neutron skin of ²⁰⁸Pb, nuclear symmetry energy, and the ⁴³¹ 367 parity radius experiment, Phys. Rev. Lett. 106, 252501 368 (2011).369
- P.-G. Reinhard and W. Nazarewicz, Nuclear charge and 434 [8] 370 neutron radii and nuclear matter: Trend analysis in 435 371 skyrme density-functional-theory approach, Physical Re-372

view C 93, 051303(R) (2016).

375

376

377

382

401

404

407

416

- S. Abrahamyan et al. (PREX Collaboration), Measure-[9] ment of the neutron radius of ²⁰⁸Pb through parity violation in electron scattering, Physical Review Letters 108, 112502 (2012).
- [10]D. Adhikari et al., Accurate determination of the neutron skin thickness of ²⁰⁸Pb through parity-violation in electron scattering, Phys. Rev. Lett. 126, 172502 (2021).
- P.-G. Reinhard and W. Nazarewicz, Information content 11 of a new observable: The case of the nuclear neutron skin, Phys. Rev. C 81, 051303(R) (2010). 383
- 384 [12]J. Piekarewicz, Pygmy resonances and neutron skins, Physical Review C 83, 034319 (2011).
- A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C. A. Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita, et al., Complete electric dipole response and the neutron skin in ²⁰⁸Pb, Phys. Rev. Lett. 389 **107**, 062502 (2011). 390
- X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, 391 [14]X. Viñas, B. K. Agrawal, N. Paar, D. Vretenar, and 392 J. Piekarewicz, Electric dipole polarizability in ²⁰⁸pb: In-393 sights from the droplet model, Physical Review C 88, 024316 (2013).
- [15] J. Birkhan *et al.*, Electric dipole polarizability of 48 Ca 396 and implications for the neutron skin, Phys. Rev. Lett. 118, 252501 (2017).
- D. M. Rossi, P. Adrich, F. Aksouh, H. Alvarez-Pol, [16]399 T. Aumann, J. Benlliure, M. Böhmer, K. Boretzky, 400 E. Casarejos, M. Chartier, A. Chatillon, D. Cortina-Gil, U. Datta Pramanik, H. Emling, O. Ershova, 402 B. Fernandez-Dominguez, H. Geissel, M. Gorska, 403 M. Heil, H. T. Johansson, A. Junghans, A. Kelic-Heil, O. Kiselev, A. Klimkiewicz, J. V. Kratz, R. Krücken, 405 N. Kurz, M. Labiche, T. Le Bleis, R. Lemmon, 406 Y. A. Litvinov, K. Mahata, P. Maierbeck, A. Movsesvan, T. Nilsson, C. Nociforo, R. Palit, S. Paschalis, R. Plag, R. Reifarth, D. Savran, H. Scheit, H. Simon, 409 K. Sümmerer, A. Wagner, W. Waluś, H. Weick, and 410 M. Winkler, Measurment of the dipole polarizability of the unstable neutron-rich nucleus ⁶⁸Ni, Physical Review Letters 111, 242503 (2013).
 - B. P. Abbott et al. (The LIGO Scientific Collabora-[17]tion and the Virgo Collaboration), GW170817: Measurements of neutron star radii and equation of state, Physical Review Letters **121**, 161101 (2018).
 - [18]B. P. Abbott et al. (the LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of gravitational waves from a binary neutron star inspiral, Physical Review Letters 119, 161101 (2017).
- [19]F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz, Neu-422 tron skins and neutron stars in the multi-messenger era, 423 Phys. Rev. Lett. 120, 172702 (2018). 424
- 425 [20] I. Tews, J. Margueron, and S. Reddy, Critical examina-426 tion of constraints on the equation of state of dense matter obtained from GW170817, Phys. Rev. C98, 045804 (2018).428
- [21] M. Tsang, W. Lynch, P. Danielewicz, and C. Tsang, Svm-429 metry energy constraints from GW170817 and laboratory experiments, Physics Letters B 795, 533 (2019).
- [22]Y. Zhang, M. Liu, C.-J. Xia, Z. Li, and S. K. Biswal, 432 Constraints on the symmetry energy and its associated 433 parameters from nuclei to neutron stars, Physical Review C 101, 034303 (2020).

- [23] H. Shen, F. Ji, J. Hu, and K. Sumiyoshi, Effects of sym- 500 436
- 437 metry energy on the equation of state for simulations of 501
- core-collapse supernovae and neutron-star mergers, The 502 438 Astrophysical Journal 891 (2020). 439 503
- J. Hu, S. Bao, Y. Zhang, K. Nakazato, K. Sumiyoshi, and 504 24440 H. Shen, . 441 505
- Y. Li, H. Chen, D. Wen, and J. Zhang, Constraining the [25]442 506
- nuclear symmetry energy and properties of the neutron 443 507 star from GW170817 by bayesian analysis, The European 444 Physical Journal A 57, 1 (2021). 445
- J. Estee *et al.* (S π RIT Collaboration), Probing the sym-[26]446 metry energy with the spectral pion ratio, Phys. Rev. 447 Lett. 126, 162701 (2021). 448
- N. Wang and T. Li, Shell and isospin effects in nuclear [27]513 449 charge radii, Phys. Rev. C 88, 011301(R) (2013). 450 514
- [28]J. Yang and J. Piekarewicz, Difference in proton radii of 451 452 mirror nuclei as a possible surrogate for the neutron skin, Phys. Rev. C 97, 014314 (2018). 453
- G. Fricke and K. Heilig, Nuclear Charge Radii (Springer, [29]454 Berlin Heidelberg, 2004). 455
- B. A. Brown, K. Minamisono, J. Piekarewicz, H. Herg-456 [30]520 ert, D. Garand, A. Klose, K. König, J. D. Lantis, 457 521 Y. Liu, B. Maaß, A. J. Miller, W. Nörtershäuser, S. V. 458 522 523
- Pineda, R. C. Powel, D. M. Rossi, F. Sommer, C. Sum-459 ithrarachchi, A. Teigelhöfer, J. Watkins, and R. Wirth, 524 460
- Implications of the ³⁶Ca-³⁶S and ³⁸Ca-³⁸Ar difference in 525 461
- mirror charge radii on the neutron matter equation of 462 state, Physical Review Research 2, 022035(R) (2020). 463
- C. Sumithrarachchi, D. Morrissey, S. Schwarz, K. Lund, 528 [31] 464 G. Bollen, R. Ringle, G. Savard, and A. Villari, Beam 529 [44] 465 thermalization in a large gas catcher, Nuclear Instru- 530 466 ments and Methods in Physics Research Section B: Beam 531 [45] 467 Interactions with Materials and Atoms 463, 305 (2020). 532
- 468 [32]K. Minamisono, P. F. Mantica, A. Klose, S. Vinnikova, 533 469
- A. Schneider, B. Johnson, and B. R. Barquest, Commis- 534 470 sioning of the collinear laser spectroscopy system in the 535 471 becola facility at nscl, Nuclear Instruments and Methods 472 in Physics Research A 709, 85 (2013). 537 473
- [33] D. M. Rossi, K. Minamisono, B. R. Barquest, G. Bollen, 538 474 K. Cooper, M. Davis, K. Hammerton, M. Hughes, P. F. 539 475
- Mantica, D. J. Morrissey, R. Ringle, J. A. Rodriguez, 540 476
- C. A. Ryder, S. Schwarz, R. Strum, C. Sumithrarachchi, 541 477
- D. Tarazona, and S. Zhao, A field programmable gate 542 478
- array-based time-resolved scaler for collinear laser spec- 543 479
- troscopy with bunched radioactive potassium beams, Re-480
- view of Scientific Instruments 85, 093503 (2014). 481
- [34]B. R. Barquest, G. Bollen, P. F. Mantica, K. Mi-546 482 namisono, R. Ringle, and S. Schwarz, Rfq beam cooler 547 483 and buncher for collinear laser spectroscopy of rare iso-548 484 topes, Nucl. Instrum. Methods Phys. Res. A 866, 18 549 485 (2017).486
- [35]A. Klose, Tests of atomic charge-exchange cells for 551 487 collinear laser spectroscopy, Nuclear Instruments and 552 488 Methods in Physics Research Section A: Accelerators, 553 489 Spectrometers, Detectors and Associated Equipment 554 490 **678**, 114 (2012). 491
- C. Ryder, K. Minamisono, H. Asberry, B. Isherwood, 556 [36]492 P. Mantica, A. Miller, D. Rossi, and R. Strum, Popula-493 557 tion distribution subsequent to charge exchange of 29.85 558 494 kev ni⁺ on sodium vapor, Spectrochimica Acta Part B: 495 559
- Atomic Spectroscopy 113, 16 (2015). 496
- [37]B. Maaß, K. König, J. Krämer, A. J. Miller, K. Mi-561 497 namisono, W. Nörtershäuser, and F. Sommer, A 4π fluo-562 498 rescence detection region for collinear laser spectroscopy, 563 499

arXiv:2007.02658 [physics.ins-det].

508

509

510

511

526

527

545

- [38] P. Campbell, H. L. Thayer, J. Billowes, P. Dendooven, K. T. Flanagan, D. H. Forest, J. A. R. Griffith, J. Huikari, A. Jokinen, R. Moore, A. Nieminen, G. Tungate, S. Zemlyanoi, and J.Äystö, Laser spectroscopy of cooled zirconium fission fragments, Phys. Rev. Lett. 89, 082501 (2002).
- [39]A. Nieminen, P. Campbell, J. Billowes, D. H. Forest, J. A. R. Griffith, J. Huikari, A. Jokinen, I. D. Moore, R. Moore, G. Tungate, and J. Äystö, On-line ion cooling and bunhing for collinear laser spectroscopy, Physical Review Letters 88, 094801 (2002).
- K. König, K. Minamisono, J. Lantis, S. Pineda, and 512 [40]R. Powel, Beam energy determination via collinear laser spectroscopy, Physical Review A 103, 032806 (2021).
- 515 [41]R. Powel, Appl. Phys. B in press (2021).
- K. König, F. Sommer, J. Lantis, K. Minamisono, 516 [42]W. Nörtershäuser, S. Pineda, and R. Powel, Isotope-shift 517 measurements and king-fit analysis in nickel isotopes, 518 Physical Review C 103, 054305 (2021). 519
 - [43]M. Hammen, W. Nörtershäuser, D. L. Balabanski, M. L. Bissell, K. Blaum, I. Budinčević, B. Cheal, K. T. Flanagan, N. Frömmgen, G. Georgiev, C. Geppert, M. Kowalska, K. Kreim, A. Krieger, W. Nazarewicz, R. Neugart, G. Neyens, J. Papuga, P.-G. Reinhard, M. M. Rajabali, S. Schmidt, and D. T. Yordanov, From calcium to cadmium: Testing the pairing functional through charge radii measurements of $^{100-130}{\rm cd},$ Physical Review Letters 121, 102501 (2018).
 - W. H. King, Isotope Shifts in Atomic Spectra, 1st edn. (Springer Science+Business Media, New York, 1984).
 - J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Peru, N. Pillet, and G. F. Bertsch. Structure of even-even nuclei using a mapped collective hamiltonian and the d1s gognv interaction, Phys. Rev. C 81, 014303 (2010).
- C. J. Horowitz and J. Piekarewicz, Impact of spin-orbit 536 [46] currents on the electroweak skin of neutron-rich nuclei, Phys. Rev. C 86, 045503 (2012).
 - G. F. Bertsch, 55, 248 (2019). [47]
 - [48]M. Honma, T. Otsuka, B. Brown, and T. Mizusaki, Shellmodel description of neutron-rich pf-shell nuclei with a new effective interaction gxpf1, Euro. Phys. J. A 25, s01, 499 (2005).
- 544 [49]A. Poves, J. Sanchez-Solano, E. Caurier, and F. Nowacki, Shell model study of the isobaric chains a = 50, a = 51and a = 52, Nucl. Phys. A **694**, 157 (2001).
 - [50]J. Blomqvist and A. Molinari, Collective 0⁻ vibrations in even spherical nuclei with tensor forces, Nucl. Phys. A **106**, 545 (1968).
- M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, 550 [51] New effective interaction for pf-shell nuclei and its implications for the stability of the N = Z = 28 closed core, Phys. Rev. C 69, 034335 (2004).
- R. du Rietz, J. Ekman, D. Rudolph, C. Fahlander, A. De-[52]wald, O. Möller, B. Saha, M. Axiotis, M. A. Bentley, 555 C. Chandler, G. de Angelis, F. DellaVedova, A. Gadea, G. Hammond, S. M. Lenzi, N. Marginean, D. R. Napoli, M. Nespolo, C. Rusu, and D. Tonev, Effective charges in the fp shell, Phys. Rev. Lett. **93**, 222501 (2004).
- [53]K. L. Yurkewicz, D. Bazin, B. A. Brown, C. M. Camp-560 bell, J. A. Church, D. C. Dinca, A. Gade, T. Glasmacher, M. Honma, T. Mizusaki, W. F. Mueller, H. Olliver, T. Otsuka, L. A. Riley, and J. R. Terry, Nuclear

- 564 C 70, 054319 (2004). 565
- [54] J. Decharge and D. Gogny, Hartree-fock-bogolyubov cal-566 culations with the d1 effective interaction on spherical 575 [57] B. T. Reed, F. J. Fattoyev, C. J. Horowitz, and 567 nuclei, Phys. Rev. C 21, 1568 (1980). 568
- [55] J.-F. Berger, M. Girod, and D. Gogny, Time-dependent 577 569
- quantum collective dynamics applied to nuclear fission, 578 570 Comput. Phys. Commun. 63, 365 (1991). 571
- structure in the vicinity of $N = Z = 28^{56}$ Ni, Phys. Rev. 572 [56] C. A. Raithel and F. Özel, Measurement of the nuclear symmetry energy parameters from gravitational-573 wave events, Astrophys. J. 885, 121 (2019). 574
 - J. Piekarewicz, Implications of PREX-II on the equation 576 of state of neutron-rich matter, Phys. Rev. Lett. 126, 172503 (2021).
 - 579 [58] CREX: Parity violating measurement of the weak charge distribution of ⁴⁸Ca, hallaweb.jlab.org/parity/prex/c-581 rex2013_v7.pdf.