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We develop for the first time a microscopic global nucleon-nucleus optical potential with quanti-
fied uncertainties suitable for analyzing nuclear reaction experiments at next-generation rare-isotope
beam facilities. Within the improved local density approximation and without any adjustable pa-
rameters, we begin by computing proton-nucleus and neutron-nucleus optical potentials from a set
of five nuclear forces from chiral effective field theory for 1800 target nuclei in the mass range
12 ≤ A ≤ 242 for energies between 0 MeV < E . 150 MeV. We then parameterize a global optical
potential for each chiral force that depends smoothly on the projectile energy as well as the target
nucleus mass number and isospin asymmetry. Uncertainty bands for elastic scattering observables
are generated from a full covariance analysis of the parameters entering in the description of our
global optical potential and benchmarked against existing experimental data for stable target nuclei.
Since our approach is purely microscopic, we anticipate a similar quality of the model for nucleon
scattering on unstable isotopes.

Introduction - Nuclear physics is approaching an ex-
citing new era in which rare isotope beam facilities, such
as FRIB, RIBF, FAIR, and Spiral2, will explore previ-
ously inaccessible regions of the nuclear chart that are
important for understanding the origin of the elements
[1–4] and the properties of neutron stars [5–7]. Rare iso-
tope beam experiments will produce a flood of new data
whose interpretation and connection to nuclear structure
will be guided by theoretical modeling. Of particular
importance in the context of nuclear reaction studies is
the nuclear optical model [8–11], where the complicated
(and in most cases intractable) problem of solving the N -
body Schrödinger equation for nucleon-nucleus scatter-
ing in terms of fundamental two- and three-body forces
is simplified by assuming the projectile nucleon interacts
with an average single-particle potential generated by the
target nucleus. Global phenomenological optical poten-
tials [12–14] are the workhorse for theoretical modeling
of nuclear reactions but are currently tuned to limited
experimental data near nuclear stability. The worldwide
radioactive ion beam program requires next-generation
global optical potentials informed by microscopic nuclear
theory based on high-precision nuclear forces [15–20] that
are able to reach into unexplored regions of the nuclear
chart and provide quantified uncertainty estimates for
reaction observables [21, 22].

In the late 1960s the first phenomenological nucleon-
nucleus optical potentials were limited to isotopes with
mass numbers A > 40 and low scattering energies of
E . 50 MeV. Phenomenological and semi-microscopic
optical potentials [11–14, 23–31] have improved dramat-
ically since then, and today the most widely used op-
tical potential of Koning and Delaroche [12] is suitable
to describe scattering phenomena for stable nuclei with

24 < A < 209 up to projectile energies of E ' 200 MeV.
However, the reliability of such phenomenological optical
potentials in the description of reactions involving exotic
isotopes remains an open question. Dependable reaction
models for rare isotopes are crucial for simulating the
late-time freeze-out phase of r-process nucleosynthesis,
where photodissociation and radiative capture processes
are out of equilibrium and neutron-capture rates play an
enhanced role in determining the final abundance pat-
tern of r-process elements [32]. Neutron capture cross
sections on neutron-rich isotopes cannot be directly mea-
sured with existing experimental techniques, but consid-
erable efforts [33, 34] are being made toward measuring
gamma strength functions and nuclear level densities that
enter into the Hauser-Feshbach theory for radiative neu-
tron capture in stellar plasmas [35]. Such calculations
also require as input the neutron-nucleus optical poten-
tial, and especially its imaginary part at low scattering
energies [36].

In the present work we construct the first microscopic
global nucleon-nucleus optical potential based on an anal-
ysis of 1800 isotopes in the framework of many-body
perturbation theory with state-of-the-art nuclear interac-
tions from chiral effective field theory (EFT). Compared
to phenomenological [12, 14, 25, 27] or semi-microscopic
optical potentials [13, 29, 30] that are directly fitted to
nuclear reaction data, purely microscopic calculations
may have greater predictive power for reactions involv-
ing exotic isotopes. Constructing optical potentials via
the nucleon self-energy in finite nuclei or nuclear matter
from chiral EFT [17–20, 37–43] is a promising route of
inquiry since chiral EFT features realistic nuclear inter-
actions based on the symmetries of low-energy QCD and
a systematic expansion of nuclear forces [15, 16, 44, 45]
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FIG. 1. The left and right top plots show the depth of the real
volume term at E = 0 MeV and E = 150 MeV for neutron and
proton potentials as functions of the isospin asymmetry. The
left and right bottom plots show the imaginary volume and
surface depths respectively at E =0 MeV for neutron and
proton potentials functions of the isospin asymmetry. The
dots are values from the N3LO, Λ = 450 interaction for each
of the target nuclei considered in this work.

that provides a method of quantifying theoretical uncer-
tainties. In the present work, we consider microscopic nu-
clear forces at next-to-next-to-leading order (N2LO) and
N3LO in the chiral expansion and with different choices
for the cutoff (Λ) of the regulator function that sup-
presses high momentum states [46–51]. The low-energy
constants of the potentials are fitted to nucleon-nucleon
scattering phase shifts, deuteron properties, and the tri-
ton binding energy and lifetime [46]. From a covariance
analysis of the five global optical potential parameteriza-
tions, we build a statistical ensemble of optical potentials
from which we estimate scattering observable uncertain-
ties. In future works we plan to include effective field the-
ory truncation errors [52], which may result in reduced
error bands compared to the present analysis.

Formalism - We begin by calculating the nucleon self-
energy Σ(k,E(k)) for E > 0, which is equivalent [8] to
the optical potential, up to second order in many-body
perturbation theory. Although no complete third-order
calculation of the nucleon self energy in nuclear mat-
ter has been carried out to date, the sum of all third-
order contributions to the equation of state have been
shown [53] to be relatively small. Moreover, contribu-
tions to the nucleon self energy from resummed (particle-
particle and hole-hole) ladder diagrams are on par with
variations in the choice of nuclear potential [37, 54] and
may be reduced through the inclusion of higher-order
particle-hole diagrams [53]. The background medium
is taken to be homogeneous nuclear matter with fixed
density and isospin asymmetry in the thermodynamic
limit. The calculation of the second-order diagrams

involves intermediate-state propagators whose energies
E(k) = k2/(2M) + Σ(k,E(k)) are computed self con-
sistently with the on-shell self-energy. In general the
resulting self-energy is complex and energy dependent.
In order to construct a nucleon-nucleus optical poten-
tial, we compute the nucleon self-energy over the range of
densities and isospin asymmetries found in finite nuclei.
Since the spin-orbit interaction vanishes in homogeneous
nuclear matter, we employ the improved density matrix
expansion [55–58] at the Hartree-Fock level to calculate
the spin-orbit contribution to the nuclear energy density
functional. In this formulation, the spin-orbit interac-
tion is calculated at the Fermi energy and consequently
does not have an explicit energy dependence. Density
distributions for the target nuclei are calculated in mean
field theory with Skyrme effective interactions [59] con-
strained by the same chiral interactions used to calculate
the optical potential. In the present work, we neglect
both nuclear deformation as well as time-odd mean fields
when solving for the density distributions of odd-proton
and odd-neutron nuclei. In particular, the inclusion of
nuclear deformation (see e.g., Ref [29]) has been shown
to improve the description of nucleon-nucleus scattering
compared to experiment.

The improved local density approximation (ILDA)
is utilized to transition from a nuclear matter op-
tical potential to that of a finite nucleus by fold-
ing the density- and isospin-asymmetry-dependent self-
energy with the target nucleus density distribution
ULDA(E; r) = UNM (E; ρ(r), δ(r)) where ρ = ρn +ρp and
δ = (ρn − ρp)/ρ . The ILDA is applied by integrating
over the radial direction with a Gaussian form factor to
account for the nonzero range of nuclear forces [10, 31]:

UILDA(E; r) =
1

(t
√
π)3

∫
ULDA(E; r′)e

−|~r−~r′|2

t2 d3r′, (1)

where the range parameter t represents the characteristic
length scale of the interaction. The range parameter is
derived in this work by calculating the root mean square
radii of the local chiral NN interactions presented in Ref.
[69]. We use the average value of tC = 1.22 fm for the
central terms of the optical potential and tSO = 0.98 fm
for the spin-orbit term. In Refs. [17, 43] the effect of
varying these range parameters was shown to be small.
Results - Within the framework outlined above, we

have developed in previous works [17, 37, 38, 43] pro-
ton and neutron optical potentials for stable calcium iso-
topes. In the present work we develop the first micro-
scopic global optical potential that includes quantified
theoretical uncertainties from nuclear forces, referred to
as the Whitehead-Lim-Holt (WLH) global optical poten-
tial. The WLH global optical potential is built upon
specific optical potentials for 1800 target nuclei with
mass numbers 12 < A < 242 and projectile energies
0 MeV < E < 150 MeV. The characteristic energy scale
associated with nucleon-nucleus scattering is a combina-
tion of the projectile energy E and the kinetic energies of
the target’s constituent nucleons. Our maximum value
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FIG. 2. Neutron elastic scattering cross sections for a selection of target isotopes and varied energies. Results of the microscopic
global optical potential constructed in this work are shown in shades of blue that represent cross sections calculated from 5000
random samples of the WLH optical potential. For a given scattering angle, the likelihood of a cross section value to be
predicted by the WLH optical is represented by the color gradient where darker shades are more likely. Experimental data are
shown as red dots [60–68].

of Emax = 150 MeV is heuristically estimated by iden-
tifying the projectile energy above which the theoreti-
cal uncertainties become uncontrolled. The set of tar-
get nuclei considered includes all stable and long lived
isotopes, light and medium-mass bound isotopes out to
the predicted neutron drip line of iron [70], and heavier
neutron-rich isotopes relevant to the r-process [71].

We fit the position- and energy-dependent optical po-
tentials

U(r, E) = UV (r, E) + iUW (r, E) + iUS(r, E) (2)

+USO(r, E)~̀ · ~σ,

to the commonly used Woods-Saxon form f(r; ri, ai) =
1

1+e(r−A1/3ri)/ai
(for UV and UW ) and its derivative (for

US and USO). Functional forms for the A, E, and δ de-
pendence of the Woods-Saxon geometry parameters and
overall strengths were chosen in order to minimize the
least squares fit while using as few parameters as possi-
ble. We used the following functional forms to define the
global optical potential parameterization:

UV = uV 0 − uV 1E + uV 2E
2 + uV 3E

3 (3)

±(uV 4 − uV 5E + uV 6E
2)δ

rV = rV 0 − rV 1E + rV 2E
2 − rV 3A

−1/3

aV = aV 0 ∓ aV 1E − aV 2E
2 − (aV 3 − aV 4δ)δ

UW = uW0 + uW1E − uW2E
2 + (±uW3 − uW4E)δ (4)

rW = rW0 +
rW1 + rW2A

rW3 +A+ rW4E
+ rW5E

2

aW = aW0 −
aW1E

−aW2 − E
+ (aW3 − aW4E)δ

US = uS0 − uS1E − (uS3 − uS4E)δ (5)

rS = rS0 − rS1E − rS2A
−1/3

aS = aS0

USO = uSO0 − uSO1A (6)

rSO = rSO0 − rSO1A
−1/3

aSO = aSO0 − aSO1A,

where the top signs in (±,∓) refer to the value for proton
projectiles and the bottom for neutron projectiles. The
parameterization of the imaginary surface term is only
valid for neutron projectile energies of E . 40 MeV and
proton projectile energies of E . 20 MeV. We find no
imaginary surface peak beyond these energies.

To quantify the uncertainty coming from the choice
of chiral potential, which we expect to be the dominant
source of theoretical uncertainty, we begin by construct-
ing global optical potentials based on each of the five
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FIG. 3. The same as Fig. 1, but for proton projectiles. Experimental data are shown as red dots [72–80].

chiral interactions used in the current work. The covari-
ance matrix for all of the global optical potential param-
eters along with their mean values are used to generate a
multivariate distribution which is sampled from to pro-
duce random parameter sets for the global optical poten-
tial. This enables one to estimate the uncertainty in a
given reaction observable through many samples of the
global optical potential. In particular, all results in the
manuscript are generated from sets of 5000 samples.

Next generation optical potentials for reactions involv-
ing exotic isotopes require realistic isovector terms that
govern the behavior of the optical potential for asymmet-
ric matter. In Fig. 1 we show the isospin asymmetry de-
pendence of the real volume UV , imaginary volume UW ,
and imaginary surface US depths using self-energies from
the N3LO, Λ = 450 chiral interaction as a representative
example. The top plots of Fig. 1 show that the real vol-
ume depth preserves the Lane form, U = U0 + τzUIδ, at
both high and low energy. The real depth undergoes
an isospin inversion where the isovector term changes
sign near E = 115 MeV, this can be seen by compar-
ing the slopes for neutron and proton potentials in the
top plots. The bottom plots show the imaginary vol-
ume and surface depths at E = 0 MeV. For both terms
there is an approximate linear dependence on the isospin
asymmetry. The neutron imaginary terms shown in blue
both decrease towards zero for large values of the isospin
asymmetry. This is reasonable since the imaginary term
vanishes at the Fermi energy, which approaches En

F = 0

near the neutron drip line. The imaginary isovector term
is of significant importance to the neutron capture rates
on exotic isotopes involved in the astrophysical r-process
[36].

To benchmark the WLH microscopic global optical po-
tential, we calculate elastic scattering observables and
compare to a wide range of experimental data for sta-
ble target isotopes. In Figs. 2 and 3 we show neutron
and proton differential elastic scattering cross sections
for targets ranging from mass number A = 14 - 208 and
projectile energies ranging from E = 3 - 135 MeV to
demonstrate the performance of the WLH optical poten-
tial. In almost all cases, the experimental data lie within
the probability contours associated with the cross sec-
tions predicted by the WLH global optical potential for
both closed- and open-shell nuclei. In future works, we
also plan to implement N3LO three-body forces [81–86].

Summary - In the present work we have constructed
the first microscopic global optical potential with quan-
tified uncertainties. We suggest that the model may pro-
vide a foundation for analyzing and predicting nuclear
reaction cross sections on target isotopes far from sta-
bility and for projectile energies up to E = 150 MeV.
The global optical potential is expressed as a function
composed of Woods-Saxon terms with parameters that
vary smoothly in E, A, and δ, which can be easily im-
plemented into modern reaction theory codes. A Python
script for sampling parameters of the WLH global opti-
cal potential may be found at [87]. We show that exper-
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imental differential elastic scattering cross sections are
largely consistent within the uncertainties predicted by
the WLH global optical potential, despite the fact that
none of its parameters are fitted to nucleon-nucleus scat-
tering data. Furthermore, we suggest that the WLH
global optical potential can provide a prior distribu-
tion for Bayesian uncertainty quantification that incor-
porates empirical nucleon-nucleus data through appro-
priate likelihood functions thereby further reducing the
model errors. Such an approach may provide a pow-
erful framework for constructing next-generation semi-
phenomenological optical potentials for the theoretical
modeling of nuclear reactions involving rare isotopes that
are of interest to the nuclear reaction community moving
into the rare isotope beam era in addition to topics that
are central to nuclear astrophysics.
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W. Nazarewicz, I. U. Roederer, H. Schatz, A. Apra-
hamian, D. Atanasov, A. Bauswein, T. C. Beers, J. Bliss,
M. Brodeur, J. A. Clark, A. Frebel, F. Foucart, C. J.
Hansen, O. Just, A. Kankainen, G. C. McLaughlin, J. M.
Kelly, S. N. Liddick, D. M. Lee, J. Lippuner, D. Martin,
J. Mendoza-Temis, B. D. Metzger, M. R. Mumpower,
G. Perdikakis, J. Pereira, B. W. O’Shea, R. Reifarth,
A. M. Rogers, D. M. Siegel, A. Spyrou, R. Surman,
X. Tang, T. Uesaka, and M. Wang, J. Phys. G: Nucl.
Part. Phys. 46, 083001 (2019).

[3] B. Cote, C. L. Fryer, K. Belczynski, O. Korobkin,
M. Chruslnska, N. Vassh, M. R. Mumpower, J. Lippuner,
T. M. Sprouse, R. Surman, and R. Wollaeger, Astrophys.
J. 855, 99 (2018).

[4] D. Kasen, B. Metzger, J. Barnes, E. Quataert, and
E. Ramirez-Ruiz, Nature 551, 80 (2017).

[5] F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz, Phys.
Rev. Lett. 120, 172702 (2018).

[6] B. A. Brown, Phys. Rev. Lett. 119, 122502 (2017).
[7] C. Drischler, J. Holt, and C. Wellenhofer, Annu. Rev.

Nucl. Part. Sci 71, 10.1146/annurev-nucl-102419-041903
(2021).

[8] J. S. Bell and E. J. Squires, Phys. Rev. Lett. 3, 96 (1959).
[9] F. G. Perey, Phys. Rev. 131, 745 (1963).

[10] J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev.
C 16, 80 (1977).

[11] J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep.
25, 83 (1976).

[12] A. J. Koning and J. P. Delaroche, Nucl. Phys. A713, 231
(2003).

[13] E. Bauge, J. P. Delaroche, and M. Girod, Phys. Rev. C
63, 024607 (2001).

[14] R. L. Varner, W. J. Thompson, T. L. McAbee, E. J.
Ludwig, and T. B. Clegg, Phys. Rep. 201, 57 (1991).

[15] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev.

Mod. Phys. 81, 1773 (2009).
[16] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[17] T. R. Whitehead, Y. Lim, and J. W. Holt, Phys. Rev. C

101, 064613 (2020).
[18] A. Idini, C. Barbieri, and P. Navrátil, Phys. Rev. Lett.
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