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The statistical character of electron beams used in current technologies, as described by a stream of 

particles, is random in nature. Using coincidence measurements of femtosecond pulsed electron pairs, 

we report the observation of sub-Poissonian electron statistics that are non-random due to two-

electron Coulomb interactions, and that exhibit an anti-bunching signal of 1 part in 4. This 

advancement is a fundamental step towards observing a strongly quantum degenerate electron beam 

needed for many applications, and in particular electron correlation spectroscopy. 

 

Particle correlation spectroscopy, developed towards the end of the last century, is being used in an ever-

lengthening list of applications. Photon correlations can be used, e.g., for sizing particles such as biological 

molecules and in aeronautical velocimetry [1]. In heavy-ion collisions, two-particle correlation 

measurements reveal the femtometer-size geometry of the ion source [2], while identical-atom correlation 

techniques demonstrate the quantum statistical nature of atomic isotope distributions [3]. The famous work 

of Hanbury Brown and Twiss (HBT) [4,5] and its elucidation by Glauber [6] led to this use of identical 

particle quantum correlations.  A key underlying idea in all these experiments is that without particle 

correlation it becomes harder to resolve structural detail as the particles get closer together, while with 

particle correlations, proximity of the interacting particles makes such details easier to resolve.  Examples 

of this include the resolution of stellar radii using light [7] and the femtometer sizing of nuclear structure 

using pions [2].  

For electron sources, we have not yet seen the development of correlation spectroscopy, although 

the recent studies of Kiesel et al. [8] and Kuwahara et al. [9] show the way forward. In these experiments, 

a reduction in the number of coincidences at a pair of detectors was observed for free electrons emanating 
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from small sources. The nano- and micron-scale size of the sources ensured that electrons were close 

together in the direction transverse to the electron beam axis. Nonetheless, the continuous cold-field 

emission [8] or nanosecond pulsed photoemission [9] of electrons in these investigations made it unlikely 

that the electrons were close together in time, so that the (expectedly) small detected deviation from random 

statistical behavior was found not to exceed 1 part in 1000, limited by the finite detection-time resolution.   

Introducing new classes of electron beams has led [10-12] and should continue to lead [13,14] to 

new applications. As non-random correlation signals are strongly dependent on electron-electron proximity, 

and thus on the source size and the pulse duration, we expect that correlation spectroscopy can be used as 

a complement to streak imaging [15, 16] in the accumulation mode. Additionally, just as “femtoscopy” 

using the HBT effect probes the femtometer scale for high-energy collisions [2], using pulsed, correlated 

electrons provides a novel route to exploring small-scale surface phenomena at ultrafast time scales.  

Electron-electron correlation can be caused by Coulomb interaction and this has been studied in 

relation to the spatial resolution of electron lithography and scanning electron microscopy [17] and recently 

in relation to the temporal resolution of ultrafast electron diffraction [18]. Charged particle interactions are 

not only of interest with respect to the improvement of energy and spatial resolution, but can lead to self-

organizing structures as observed in ion beams [19]. To our knowledge, no observation of a deviation from 

random, Poissonian statistics has been reported for electron beams.  

A strong deviation from Poissonian statistics can herald quantum-optical effects [6,20,21]. The 

bosonic quantum nature of photon HBT-bunching, leading to super-Poissonian statistics, can be compared 

to the fermionic nature of electron HBT-like anti-bunching, leading to sub-Poissonian statistics. These 

experimental signatures of spin-statistical dual quantum effects can also be caused by classically 

describable causes. For light such a cause can be thermal intensity fluctuations [22], while for electrons the 

cause can be Coulomb repulsion. For the purpose of observing the quantum statistical regime for electron 

beams, it is thus necessary to distinguish Coulomb pressure from Pauli blockade. Indeed, even though the 

anti-bunching signal in earlier work [8] was attributed to quantum degeneracy, later analyses indicated that 

Coulomb pressure may explain the observation [23-26]. The very recent observation of electron anti-
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bunching [9] is the next important step as it combines polarized electron sources in an electron microscope 

with coincidence detection. The claim in that work is that the electron polarization dependence of the anti-

bunching observation is due to the HBT effect and not to polarization-dependent trajectories of the 

photoemitted electrons.  The recent advent of sub-micron femtosecond laser driven electron sources of spin-

polarized electrons [27] can further assist coincidence techniques to help unravel the classical and quantum 

contributions; unlike Pauli “forces”, Coulomb forces are not spin dependent.  

In the experiments reported here, we used a Ti:Sapphire femtosecond laser oscillator to photoemit 

ultrashort electron pulses from the apex of a tungsten nanotip (Fig. 1a). This ensured that the electrons in 

each pulse were close together both transversely and temporally. Such a source was introduced by 

Hommelhoff et al. [28] and exists today in several laboratories [29-32]. However, the non-random nature 

of the pulsed electrons, the key finding of this work, has not been demonstrated until now. The time-

coincidence technique we have used to characterize the pulsed electron beam has made its non-statistical 

nature manifest; we observe departures from the expected Poissonian distribution of one part in four for the 

two-electron coincidence rate associated with a single pulse. 

The output beam of the laser had a pulse duration of approximately 100 fs with 13.2 ns between laser 

pulses.  An incident laser pulse can give rise to two-electron pulse emission. Their coincidence detection 

rate can be reduced by a repulsive Coulomb force between the electrons (Fig.1b) or by Pauli blockade of 

symmetric spin states (Fig.1c). Our estimated emission rate of 107 s-1 and a repetition rate of 108 s-1 imply 

that most laser pulses produce no electrons. In this case, the probability of producing a larger number of 

electrons per pulse is correspondingly smaller for a random distribution. 
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FIG. 1.  Apparatus schematic. (a) Laser pulses (red) with a repetition time of 0 , tightly focused on 

an electrochemically etched tungsten nanotip (gray cone) [33] using an off-axis parabolic mirror 

(OAPM),  induced emission of, e.g., single electrons or electron pairs (blue circular dots). The 

electrons were detected by two independent detectors (A, B) and the time delay τ between their 

arrivals was measured in coincidence (see text). The coincidence detection rate characterizes the 

presence of electron-electron interactions and a deviation from random electron arrival times. The 

coincidence spectra were obtained using NIM electronics [34]. Two examples of possible 

interactions are: (b) a repulsive Coulomb force that may reduce the coincidence rate or (c) a Pauli 

blockade that only allows a singlet state to populate a symmetrical orbital which may reduce the 

coincidence rate. 

 

For our detection probability, about one detected electron is produced for every 105 laser pulses, and a two-

electron pulse occurs once for every ~107 laser pulses. Two electrons that arrive nearly simultaneously can 

be due to two electrons produced at the same time with nearly the same energy, but can also be due to two 

electrons produced at different times where the second electron has more energy 
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FIG. 2.  Time delay coincidence spectrum. The experimental number of coincidence counts (circles) 

shows that the zero-time delay peak is smaller than its neighboring peaks. The zero-time delay peak 

contains two-electron pulses, while the neighboring peaks at integer multiples of the laser repetition 

time, 0 13.2 ns = , contain single-electron pulses. A simulation of the experiment with a random 

number n of electrons per pulse in the absence of electron-electron interactions predicts identical 

heights for all peaks (dashed blue line). The random character in the simulation is given by a 

Poissonian distribution ( )nP  , where 0r =  and r is the emission rate. A simulation using two-

electron pulses that includes mutual Coulomb interaction (red solid line) predicts a reduced central 

peak consistent with the experiment. The coincidence dip D is caused by the component of the 

mutual Coulomb force that is transverse to the electrons’ motion. A small change in the width W 

and a small shift S of the zero-delay peak can also be attributed to the Coulomb force between the 

two electrons (see Supplemental Material).  

 

and arrives at the same time as the first, lower-energy electron. This effect hampers experiments that are 

not time-resolved, but is significantly reduced for femtosecond pulsed sources when the pulses can be 

resolved in time.   

 The main experimental result is shown in Fig. 2, where the number of coincidences is shown as a 

function of the time delay between two detected electrons. The data acquisition time was 15 minutes. The 
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peak at zero-delay time is due almost exclusively to two electrons generated by the same laser pulse. The 

peak at 
0 =  is due to coincidence events where an electron generated by a laser pulse triggers the “start” 

detector, followed by another electron generated by the next laser pulse that triggers the stop detector. For 

the 
02 =  peak, the next laser pulse does not give rise to a stop trigger but the second-to-next laser pulse 

does, and so forth. An electronic time delay placed in the stop channel ensures that peaks with a negative 

time delay can also be recorded. The main observation of this work is that the zero-delay time peak is 

reduced compared to the surrounding peaks. We refer to this reduction as the “dip,” and its presence is a 

clean signature that the statistical nature of the electron emission process is non-Poissonian [35]. The dip 

does not depend on the details of the detectors’ efficiency or asymmetry.  

    

To explain the presence of the dip in the zero-time delay peak, we performed a simulation with 

Coulomb interaction between the two electrons [36]. The simulation result (red solid line) agrees with the 

observed dip of Fig. 2 (circles). The transverse component of the mutual Coulomb force tends to push some 

electrons outside of the effective detection area (Fig. 3a and 3b), thereby lowering the coincidence counts 

in the zero-time delay peak.  To find the height of the neighboring peaks, the mutual Coulomb interaction 

is turned off. Before continuing to a description of the simulation results, we present a summary of the 

method. In these calculations, pairs of electrons were considered and their motion was found by solving 

Newton’s equations:  

                                                          

2 2

1 ,1 1,2 det,1

2 2

2 ,2 2,1 det,2

,
e tip

e tip

m d r dt F F F

m d r dt F F F

 = + +


= + +
                                                          (1) 

where the leading electron is labeled 1 and the trailing electron is labeled 2, em is the electron mass, 

1,2 2,1 qqF F F= =  is the mutual electron interaction, and det,1F  ( det,2F ) is the Coulomb force exerted on 

electron 1 (2) by the detector entrance biased at 
fV . These equations were solved numerically using the 

Runge-Kutta method. The nanotip apex is modeled as a hemisphere with radius tipR . The electron’s initial 
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positions are chosen randomly according to a uniform distribution on the hemisphere within a cone around 

the z-axis. The opening angle of the cone is chosen to correspond to the physical aperture in front of the 

detectors. The initial angle with respect to the normal of the hemisphere’s surface follows a random cosine 

distribution. The azimuthal angle around the normal is distributed uniformly. These assumptions are 

motivated by the observation of 2-D images on a 2 cm diameter electron imaging system (Colutron BVS-

1) at a distance of 5 cm from the nanotip showing a featureless electron pattern. The initial electron energy 

is uniformly distributed from 0 to 0.5 eV, and most of the acceleration to an approximate energy of 100 eV, 

due to the nanotip’s electric field, occurs in the first few hundreds of nanometers. (Energy widths typically 

associated with multiphoton electron emission from tungsten do not significantly change the results of these 

simulations.)  The accelerating force is indicated with tipF . The second electron launches at a random time 

after the first electron within a time window et (10 fs for the result in Fig. 2). 

By varying the strength of the Coulomb interaction in the simulation and inspecting the electron 

trajectories we find that the dip value D first increases as more electron pairs are pushed into the detectors 

(moving from region 1 to 2 in Fig. 3a and 3b), before it decreases when electrons are pushed outside the 

detection range (region 3 in Fig. 3a and 3b). The value of D increases with a decreasing time interval, et

[36], between the electrons’ emission times. For Gaussian shaped laser pulses, having intensity I(t) with a 

FWHM of 100 fs, the electron pulse duration is 50 fs for an I4(t) (4-photon photoemission) process [37]. 

Such an estimate is valid for single-electron pulses. For the two-electron pulses recorded in the zero-delay 

peak, an intensity dependence 8I  is expected. For Gaussian temporal envelopes, the standard deviation 

of   is 30 fs, that is, about 68% of the electron pairs are emitted with a temporal separation of less than 30 

fs. A simulated uniform pulse duration et  of 10 fs yields a dip size that agrees with the experimental data. 

The tip radius tipR  was taken to be 25 nm. This is about half the value observed by SEM.  The “lightning 

rod” effect [38] and the detector geometry, which selects electrons emitted in the forward direction, likely 

explains emission from a smaller size area and affects the detailed agreement between the expected and 
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simulated pulse duration. The main reported effect, that is, the reduction of the central peak, D, is robust 

and was observed for different tungsten nanotips.  

We now show that Pauli blockade does not contribute to the dip. The Hanbury Brown-Twiss 

relative dip size due to Pauli blockade 
HBTD  (

HBTD = 0 for no dip; 
HBTD = -1 corresponds to a complete 

dip) was studied in detail for 1D propagation [26]. For unpolarized electrons, straightforward generalization 

to 3D propagation yields the estimate  

                                                                 c c c
HBT

e tip tip

1
,

2

X Y
D

t X Y


= −


                                                                 (2) 

in which c et   , c tipX X , and c tipY Y  are the coherence time and lengths and tip tipX Y  are the 

physical sizes of the tip. The minimum energy-time uncertainty relation limits the coherence time to 

c 2 0.66E fs =  =  for 0.5E eV = ; the coherence lengths are estimated from the position-momentum 

uncertainty relation as follows. The angular width of the distribution of the electrons that hit the detectors 

is 1 dettan ,wx X

L
 −  + 
=  

 
 where detX  is the distance between the centers of the front openings of the 

detectors, wx  is the opening size of the detectors and L is the distance from the tip to the detectors [36]. 

 

FIG. 3.  Coulomb model. (a) The strength of the mutual Coulomb interaction k is varied in the model 

with k=1 corresponding to that which occurs in nature. In the absence of Coulomb interaction 

(region (1)), some forward propagating electron pairs miss the detectors. With increasing k, these 

electrons are pushed into the detectors increasing the number of coincidence counts D (region (2)). 

In region (3), the Coulomb interaction is strong enough to push electron pairs out of the detection 
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range so that D becomes negative. (b) The three trajectory regions described in (a) are illustrated 

schematically with three emission cones. (c)  Pauli blockade due to quantum degeneracy is estimated 

to lead to a 0.01 – 0.1% reduction of the normalized coincidence count rate and thus cannot explain 

the observed 24% reduction. This conclusion is not changed when considering a significantly 

smaller tip apex radii, tipR , a factor of two shorter pulse duration, and an extended coherence time 

of 5 c .   

 

The transverse (x) component of the linear momentum uncertainty is xp p = ,                                                                    

where ep m v= . The transverse coherence lengths are given by c x2X p=   and c y2Y p=  , where 

1

y tan
wy

p p
L

−
 

 =  
 

. The emission site lateral widths are estimated by 
tip tip2 sinX R = , and 

tip tipY X= . 

For these parameters the contribution of quantum degeneracy to anti-bunching is less than 1 part in 1000 

(Fig. 3c).  

 An example of electron correlation spectroscopy is the use of the method described here to obtain 

the approximate duration of the electron pulse.  To do this, the simulation model used to calculate the 

temporal spectrum (Fig. 2, red solid line) is simplified by calculating the impulse imparted to the electron 

along straight trajectories. This perturbative approach is motivated both by the result from the full 

simulation that trajectory deflection due to the mutual Coulomb forces is small, and the long computation 

times required for a full simulation.  The result is that at large temporal separations the dip becomes 

negligible for all nanotip radii [39], substantiating the claim that an upper limit to the pulse duration can be 

estimated, and that for the experiment reported here the pulse is shorter than 10 fs.   

Finally, we consider the pathway to observe electron beams with strong degeneracy. In our work,  

the transverse coherence can be increased by a diverging electron lens [8].  For a 100X magnifying lens, 

the detected transverse electron momentum is decreased and c x2X p=  increased to reach full transverse 

coherence. In this case Eq. 2 becomes c
HBT

1

2
D

t


= −


, where t  is either pulset  or detectort , depending on 
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whether the pulses are resolved in time or not. In earlier work [8,9,24] the longitudinal coherence was low 

which explains why the observed dips were limited to about 1 part in 1000, as the dip appears in the second 

order correlation function for unpolarized electrons as 
( )2

c1 2g t t= −  . The addition of temporal 

resolution may thus lead to the observation of strong degeneracy.  Note that the expression is the same as 

that for pulsed X-rays, for which 
( )2

c pulse1 2g t t= −  [40]. This has been used as a method for determining 

X-ray pulse duration [41] and constitutes an example of photon correlation imaging. In our work the ratio 

of tcoherence to tpulse is about 10-1  and can be increased using an energy analyzer to reduce the energy spread 

of the detected electrons. An analyzing power of 1-100 meV corresponds to cohT  of ~100-1 fs. Analyzing 

powers reaching sub-10 meV have been realized [42], indicating that the observation of strong quantum 

degeneracy in an electron beam is, in principle, within reach [43].  The use of a femtosecond source could 

thus help reach the quantum degenerate regime.  This was considered before [23, 44] but it led to a lower 

degeneracy [44] for the beam produced. Nevertheless, when the pulses are temporally resolved (Fig. 2a), 

the degree of degeneracy of the source is not necessarily a deciding factor if the goal is to observe a time-

resolvable coincidence dip. Instead, the capability to compare the number of two-electron-events with 

single electron-events by post-selection becomes important.   

In summary, we demonstrated that a tungsten nanotip electron source driven by femtosecond laser 

pulses exhibits a strong deviation from random Poissonian statistics. Because the pulses are time resolved, 

multi-electron pulses are distinguished from single-electron pulses even when the emission rate is low. 

Coulomb interactions explain our data and are sensitive to the tip apex radius and the electron pulse 

duration. As a result, this technique provides a method to characterize ultrashort electron pulse duration and 

photoemitting nanoscale structure size.  The results also indicate that in HBT-type experiments with free 

electrons [8], the mutual Coulomb repulsion can contribute to the anti-bunching signal, and should not be 

neglected as it was in earlier work, as pointed out in refs. [23, 24, 25]. A larger source size and a longer 

pulse length can suppress the Coulomb interaction [9], while a diverging lens [8] and an energy analyzer 

can enhance the Pauli blockade in the observed signal. A laser-driven spin polarized source [9, 27] can 
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serve as a means to distinguish their relative contribution for femtosecond pulses [25, 26]. Femtosecond 

sources and time-resolved correlation techniques are expected to provide strong signals in the quantum 

regime. This provides access to new ideas in quantum statistics and the Pauli exclusion principle [45, 46, 

47],  leads to techniques that benefit from heralded single-electron on-demand sources such as quantum 

electron microscopy [14] and electron ghost imaging [48], may provide data for the theoretically unsolved 

problem of Coulomb interaction when electrons are mutually coherent, and helps develop entanglement-

assisted [49] electron microscopy [50, 51] as well as ultrafast electron microscopy [52, 53].  

 

 

S. Keramati and H. Batelaan acknowledge support for this work by the National Science Foundation 

(NSF) under the award number PHY-1912504, and the Nebraska Research Initiative. S. Keramati, W. 

Brunner and T. J. Gay acknowledge support by NSF under the award number PHY-1806771. The SEM 

images were taken at the NanoEngineering Research Core Facility (NERCF), which is partially funded by 

the Nebraska Research Initiative. 

 

*sam.keramati@huskers.unl.edu 

†hbatelaan@unl.edu 

 

1. Light Scattering and Photon Correlation Spectroscopy, E.R.Pike and J.B. Abbiss, eds., NATO ASI 

Series 3. High Technology, Vol. 40 (Springer Science+Business Media, B.V., 1997) 

2. Baym, G. The physics of Hanbury Brown–Twiss intensity interferometry: from stars to nuclear 

collisions. Acta. Phys. Pol. B 29, 1839–1884 (1998). 

3. Jeltes, T., et al. Comparison of the Hanbury Brown–Twiss effect for bosons and fermions, Nature 445, 

402–405 (2007). 



12 

 

4. Hanbury Brown, R. & Twiss, R.Q. A new type of interferometer for use in radio astronomy. 

Philosophical Magazine 45, 663–682 (1954). 

5. Hanbury Brown, R. & Twiss, R. Q. Correlation between Photons in two Coherent Beams of Light. 

Nature 177, 27–29 (1956). 

6. Glauber, R. J. Quantum Theory of Optical Coherence. Selected Papers and Lectures (Wiley-VCH, 

Weinheim, 2007). 

7. Hanbury Brown, R. & Twiss, R.Q. A Test Of A New Type Of Stellar Interferometer On Sirius. Nature 

178, 1046–1048 (1956). 

8. Kiesel, H., Renz, A. & Hasselbach, F. Observation of Hanbury Brown-Twiss anticorrelations for free 

electrons. Nature 418, 392-394 (2002).  

9. Kuwahara M., et al. Intensity Interference in a Coherent Spin-Polarized Electron Beam, Phys. Rev. Lett. 

126, 125501 (2021). 

10. Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187-193 (2010). 

11. Miller, R. J. D. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry 

in action. Science 343, 1108-1116 (2014). 

12. Arbouet, A., Caruso, G. M. & Houdellier, F. Ultrafast transmission electron microscopy: historical 

development, instrumentation, and application. Advances in Imaging and Electron Physics Vol. 207, pp 1-

72. (Elsevier, Amsterdam, 2018).  

13. Hassan, M. Th. Attomicroscopy: from femtosecond to attosecond electron microscopy. J. Phys. B: At. 

Mol. Opt. Phys. 51, 032005 (2018). 

14. Kruit, P. Designs for a quantum electron microscope. Ultramicrosocopy 164, 31-45 (2016). 



13 

 

15. Liang, J., Zhu, L. & Wang, L.V. Single-shot real-time femtosecond imaging of temporal focusing. Light 

Sci. Appl. 7, 42 (2018). 

16. Gao, M. et al., Full characterization of RF compressed femtosecond electron pulses using 

ponderomotive scattering, Optics Express 20, 12048-12058 (2012). 

17. Jansen, G. H., Coulomb interactions in particle beams. Nuclear Instruments and Methods in Physics 

Research A 298, 496-504 (1990). 

18. Gordon, M., van der Geer, S. B., Maxson, J. and Kim, Y.-K., Point-to-point Coulomb effects in high 

brightness photoelectron beam lines for ultrafast electron diffraction. Phys. Rev. Accel. Beams 24, 084202 

(2021). 

19. Murphy, D., Speirs, R.W., Sheludko, D.V., Putkunz, C.T., McCulloch, A.J., Sparkes, B.M. and Scholten 

R.E., Detailed observation of space–charge dynamics using ultracold ion bunches, Nat. Comm. 5:4489 

(2014). 

20. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two 

photons by interference. Phys. Rev. Lett. 59 2044–2046 (1987). 

21. Jones, E., Becker, M., Luiten, J. & Batelaan, H. Laser control of electron matter waves, Laser Photonics 

Rev. 10:2 214–229 (2016). 

22. Loudon, R., Photon Bunching and Antibunching. Phys. Bull. 27 21-23 (1976). 

23. Baym, G. & Shen, K., In Memory of Akira Tonomura, Edited By: Kazuo Fujikawa and Yoshimasa A 

Ono. Hanbury Brown–Twiss Interferometry with Electrons: Coulomb vs. Quantum Statistics. 201-210 

(World Scientific, Singapore, 2014). 

 

24. Kodama, T., Osakabe, N. & Tonomura, A. Correlation in a coherent electron beam. Phys. Rev. A 83, 

063616 (2011). 



14 

 

25. Lougovski, P. & Batelaan, H. Quantum description and properties of electrons emitted from pulsed 

nanotip electron sources. Phys. Rev. A. 84, 023417 (2011). 

26. Keramati, S., Jones, E., Armstrong, J. & Batelaan, H. Partially coherent quantum degenerate electron 

matter waves. Advances in Imaging and Electron Physics. 213, 3-26. (Elsevier, Amsterdam, 2020). 

27. Brunkow, E., Jones, E. R., Batelaan, H. & Gay, T. J. Femtosecond-laser-induced spin-polarized electron 

emission from a GaAs tip, Appl. Phys. Lett. 114, 073502 (2019).  

28. Hommelhoff, P., Sortais, Y., Aghajani-Talesh, A. & Kasevich, M. A. Field Emission Tip as a 

Nanometer Source of Free Electron Femtosecond Pulses. Phys. Rev. Lett. 96, 077401 (2006). 

29. Ropers, C., Solli, D. R., Schulz, C. P., Lienau, C. & Elsaesser, T. Localized Multiphoton Emission of 

Femtosecond Electron Pulses from Metal Nanotips. Phys. Rev. Lett. 98, 043907 (2007). 

30. Barwick, B. et al. Laser-induced ultrafast electron emission from a field emission tip. New J. Phys. 9, 

142 (2007). 

31. Yanagisawa, H., Optical Control of Field-Emission Sites by Femtosecond Laser Pulses. Phys. Rev. Lett. 

103, 257603 (2009). 

32 . Vogelsang, J. Ultrafast Electron Emission from a Sharp Metal Nanotaper Driven by Adiabatic 

Nanofocusing of Surface Plasmons. Nano Lett. 15, 4685 (2015). 

33. See Supplemental Material at [URL will be inserted by publisher] for the nanotip manufacture 

procedure. 

34. See Supplemental Material at [URL will be inserted by publisher] for coincidence circuitry. 

35. See Supplemental Material at [URL will be inserted by publisher] for statistical analysis proofs. 

36. See Supplemental Material at [URL will be inserted by publisher] for numerical simulation details. 



15 

 

37. Hilbert, S. A., Barwick, B., Fabrikant, M., Uiterwaal, C. J. G. J. & H. Batelaan. A high repetition rate 

time-of-flight electron energy analyzer. Appl. Phys. Lett. 91, 173506 (2007).  

38. Batelaan H. & Uiterwaal, C. J. G. J. Nature 446, 500 (2007). 

39. See Supplemental Material at [URL will be inserted by publisher] for temporal limits. 

40. Classen, A., Ayyer, K., Chapman, H. N., Röhlsberger, R. & von Zanthier, J. Incoherent Diffractive 

Imaging via Intensity Correlations of Hard X Rays, Phys. Rev. Lett. 119, 053401 (2017). 

41. Yabashi, M., Tamasaku, K. & Ishikawa, T. Measurement of X-Ray Pulse Widths by Intensity 

Interferometry, Phys. Rev. Lett. 88, 244801 (2002). 

42. Allan, M. Threshold Phenomena in Electron-Molecule Scattering. Phys. Scr. T110, 161 (2004). 

43. See Supplemental Material at [URL will be inserted by publisher] for a quantum degeneracy parameter 

map. 

44. Kuwahara, M., The Boersch effect in a picosecond pulsed electron beam emitted from a semiconductor 

photocathode. Appl. Phys. Lett. 109, 013108 (2016). 

45. Silverman, M. P., On the feasibility of observing electron antibunching in a field-emission beam, Phys. 

Lett. A 120, 442 (1987). 

46. Kodama, T. Feasibility of observing two-electron interference, Phys. Rev. A 57, 2781 (1998). 

47. Spin-Statistics connection and the commutation relations., Editors: Robert C. Hilborn, Gugliemo M. 

Tino (American Institute of Physics, Melville NY, 2000). 

48. Li, S. et al. Electron Ghost Imaging, Phys. Rev. Lett. 121, 114801 (2018). 

49. Schattschneider, P. & Löffler, S. Entanglement and decoherence in electron microscopy. 

Ultramicroscopy 190, 39–44 (2018). 

50. Okamoto, H. & Nagatani, Y. Entanglement-assisted electron microscopy based on a flux qubit. Appl. 

Phys. Lett. 104, 062604 (2014). 



16 

 

51. Okamoto, H. Possible use of a cooper-pair box for low-dose electron microscopy. Phys. Rev. A, 85, 

043810 (2012). 

52. Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast 

transmission electron microscopy. Nat. Photonics 11, 793-797 (2017). 

53. Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 

14, 252-256 (2018). 

 

 

 

 

 

 

 


