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Diffusive transport is characterized by a diffusivity tensor which may, in general, contain both
a symmetric and an antisymmetric component. Although the latter is often neglected, we derive
Green-Kubo relations showing it to be a general characteristic of random motion breaking time-
reversal and parity symmetries, as encountered in chiral active matter. In analogy with the odd
viscosity appearing in chiral active fluids, we term this component the odd diffusivity. We show how
odd diffusivity emerges in a chiral random walk model, and demonstrate the applicability of the
Green-Kubo relations through molecular dynamics simulations of a passive tracer particle diffusing
in a chiral active bath.

Introduction. Among the historic successes of nonequi-
librium statistical mechanics is the explanation of macro-
scopic transport phenomena in terms of microscopic fluc-
tuations occurring at equilibrium [1–5]. More recent ef-
forts aim to generalize this framework to include sys-
tems whose steady states are not Boltzmann distributed,
and whose dynamics are not determined by Hamiltonian-
conserving forces. A major impetus for this generaliza-
tion is the study of active matter, i.e. systems com-
posed of particles that are propelled by microscopic driv-
ing forces and thus maintained out of equilibrium.

Chiral active matter is composed of particles driven by
microscopic torques and may be synthetic, as in the case
of active colloids [6–9], or biological, as in the case of
certain bacteria, algae, and spermatozoa [10–12]. Such
systems have been shown to exhibit emergent transport
behavior reminiscent of their equilibrium counterparts,
yet with striking differences. For instance, chiral active
fluids may exhibit Newtonian constitutive behavior, but
with a novel viscosity coefficient termed the odd (or Hall)
viscosity emerging as a consequence of breaking time-
reversal and parity symmetries at the level of stress fluc-
tuations [13–16]. In this Letter we examine an analogous
quantity appearing in the context of diffusive transport.

In dilute solutions, Fick’s law posits the linear consti-
tutive relation

J = −D ·∇C (1)

between the diffusive flux J and the concentration gra-
dient ∇C, with D being a rank-two diffusivity tensor.
In general D may contain both a symmetric and anti-
symmetric part. We term the latter the “odd diffusiv-
ity,” emphasizing its connection to odd viscosity. Just as
odd viscosity generates normal stresses perpendicular to
shear flow, odd diffusivity generates fluxes perpendicular
to concentration gradients. Like odd viscosity [13–18],
we will show odd diffusivity to emerge as a consequence
of breaking time-reversal and parity symmetries at the
level of microscopic fluctuations.

For simplicity, we examine odd diffusivity in isotropic
systems. As there exists no rank-two tensor in three di-

mensions which is both isotropic and antisymmetric [14]
we restrict our attention to two-dimensional diffusion,
where the diffusivity tensor takes the form

Dij = D‖δij −D⊥εij =

[
D‖ −D⊥
D⊥ D‖

]
. (2)

Here, δij = δji is the symmetric Kronecker delta and
εij = −εji is the antisymmetric Levi-Civita permutation
tensor. D‖ is the ordinary isotropic diffusivity coefficient
driving flux from regions of high to low concentration
while D⊥ is the odd diffusivity driving flux in the per-
pendicular direction (as in Figure 1a). Combining (1)
and (2) with the continuity equation ∂tC = −∇·J yields
the diffusion equation

∂tC = D‖∇2C , (3)

which is unaffected by the divergence-free fluxes pro-
duced by D⊥. Thus, while D⊥ may influence C in the
presence of boundary conditions involving fluxes (e.g. im-
permeable obstacles, see Appendix A.1), D⊥ cannot af-
fect C for boundary conditions involving solely the con-
centration.

Past studies of odd diffusivity have generally been lim-
ited to equilibrium systems, most commonly systems of
charged particles in magnetic fields. Such systems ac-
quire an antisymmetric component of both the diffusiv-
ity tensor and the mobility tensor, which describes the
current response to an electric field. This is the basis of
the Hall effect, and has consequences for the transport
of confined plasmas and cosmic rays [19–26]. Odd diffu-
sivity has also been recognized in certain mathematical
models of chiral random walks [27, 28], and in convection-
diffusion processes in chiral porous media [29].

In this Letter we suggest a unifying framework within
which to understand these phenomena, which extends
beyond equilibrium. We begin by asking: given that
the existence of odd diffusivity is compatible with the
macroscopic theory of diffusion, what microscopic condi-
tions are necessary for it to appear? Through deriving
a Green-Kubo relation for the odd diffusivity, we will
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show that it emerges in systems breaking time-reversal
and parity symmetries, as characterized by chiral ran-
dom motion of particle trajectories. Odd diffusivity is
thus characteristic of a broad range of diffusive processes,
and of particular interest for out-of-equilibrium systems
such as chiral active matter, where time-reversal sym-
metry can be broken by microscopic driving forces. We
validate the derived Green-Kubo relations exactly for a
model chiral random walk and numerically in active mat-
ter simulations, demonstrating good agreement with di-
rect measurements of the flux in response to an imposed
concentration gradient.

Green-Kubo relations. We now proceed to ob-
tain Green-Kubo relations for Dij . We follow an ap-
proach similar in spirit to the celebrated work of Ein-
stein, Smoluchowski and others [30, 31], which connected
molecular-scale Brownian motion with the macroscopic
diffusion equation (3), and we will rely on similar ar-
guments about the separation of timescales. However,
because the odd diffusivity D⊥ does not contribute to
equation (3), such an approach can yield no information
about D⊥. The same is true when taking as a starting
point the Onsager regression hypothesis [1, 2, 32], itself
formulated upon equation (3), as in a recent derivation of
Green-Kubo relations for the odd viscosity [14]. Accord-
ingly, rather than considering the time evolution of the
concentration via the diffusion equation (3), we will in-
stead directly examine the microscopic basis of the fluxes
appearing in the constitutive law (1), similar to the route
taken in linear response theory [33]. In doing so, however,
we will not require any linear response relation between
the diffusivity and the mobility.

We begin by considering a dilute solution of particles
undergoing random motion, e.g. due to collisions with
a solvent bath. Let f(r,v, t) indicate the probability
density of finding a particle at position r with velocity
v at time t. The local, instantaneous flux J(r, t) is then
defined as

J(r, t) =

∫
dv f(r,v, t)v . (4)

Let us now consider the subensemble of all single-
particle trajectories compatible with the conditions
rα(t) = r and vα(t) = v, where α is an index over tra-
jectories. As particles cannot be created or destroyed,
continuity requires that

f(r,v, t) =
〈
f
(
rα(t− τ),vα(t− τ), t− τ

)〉
rα(t)=r
vα(t)=v

, (5)

where
〈
·
〉
rα(t)=r
vα(t)=v

denotes an average over all trajecto-

ries leading into point r with velocity v at time t. Sup-
pose there exists a correlation timescale τc, such that for
τ � τc a particle’s velocity vα(t) is uncorrelated with its
earlier value vα(t− τ) and thus becomes distributed ac-
cording to the unconditional probability density function

φ(v), which we assume to be independent of t (station-
ary) and r (translationally invariant). Then, for τ � τc,
equation (5) factorizes to

f(r,v, t) = φ(v)〈C
(
rα(t− τ), t− τ

)
〉rα(t)=r
vα(t)=v

, (6)

where the concentration C(r, t) =
∫
dv f(r,v, t).

Let the timescale over which the system relaxes from
a state of nonuniform concentration be denoted τr, e.g.
τr ≈ L2/D‖, for the macroscopic length L describing the
variation in C(r, t). We now assume that τ may be cho-
sen to satisfy the separation of timescales

τc � τ � τr , (7)

following Einstein, Smoluchowski, Kubo and others [14,
30–32, 34]. With these assumptions, the subensemble-
averaged concentration appearing in equation (6) may
be approximated by expanding about r to first order and
about t to zeroth order〈

C
(
rα(t− τ), t− τ

)〉
rα(t)=r
vα(t)=v

≈ C(r, t) +
〈
rα(t− τ)− rα(t)

〉
rα(t)=r
vα(t)=v

·∇C(r, t) .

(8)

Noting the relationship between a particle’s displace-
ment and its velocity

rα(t− τ)− rα(t) = −
∫ τ

0

dt′ vα(t− t′) (9)

and inserting the results of equations (6)-(9) into equa-
tion (4) yields

J(r, t) =

∫
dv φ(v)v ×[

C(r, t)−
∫ τ

0

dt′
〈
vα(t− t′)

〉
rα(t)=r
vα(t)=v

·∇C(r, t)

]
= −

∫ τ

0

dt′ 〈v(t)⊗ v(t− t′)〉 ·∇C(r, t) , (10)

with ⊗ indicating the dyadic product. The convective
term proportional to C(r, t) vanishes under the assump-
tion that φ(v) is unbiased, i.e.

∫
dv φ(v)v = 0. The

second equality in (10) follows from the definition of the
conditional expectation. The condition rα(t) = r has
been dropped due to the assumption of translational in-
variance; consequently, the average in the final expression
is taken over all trajectories. Comparing with the con-
stitutive relation (1), we conclude

Dij =

∫ τ

0

dt′ 〈vi(t)vj(t− t′)〉 . (11)

Invoking stationarity to set 〈vi(t)vj(t−t′)〉 = 〈vi(t′)vj(0)〉
and carrying out the limit τ →∞ due to the requirement
τ � τc yields the Green-Kubo relations

Dij =

∫ ∞
0

dt 〈vi(t)vj(0)〉 . (12)
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These relations hold independently for each component of
the diffusivity tensor, including any antisymmetric part.
Considering the specific form of Dij in (2), we may con-
tract with δij and εij to obtain

2D‖ =

∫ ∞
0

dt 〈vi(t)vj(0)〉δij

= lim
t→∞
〈∆ri(t)vj(0)〉δij = lim

t→∞

1

2t
〈|∆r(t)|2〉 ,

(13)

2D⊥ = −
∫ ∞
0

dt 〈vi(t)vj(0)〉εij

= − lim
t→∞
〈∆ri(t)vj(0)〉εij .

(14)

The first equality in equations (13) and (14) is of the
usual Green-Kubo form [32, 34]. In the second equality
the integral has been carried out, permitting a geometric
interpretation of the two diffusion coefficients in terms
of the position-velocity correlation functions (as in Fig-
ure 1b). The third equality in (13) is the well-known
relationship between D‖ and the mean squared displace-
ment; note that no such relation exists for D⊥ due to its
absence from the diffusion equation (3).

The antisymmetric tensor εij in equation (14) projects
out the time-reversal-symmetric and even-parity part of
the correlation function, indicating that whereas D‖ is
even under time reversal and parity inversion, D⊥ is
odd under both operations. Onsager’s reciprocal rela-
tions [1, 2] similarly require that transport coefficient ten-
sors be symmetric as a consequence of time-reversal sym-
metry. It should be noted however that D⊥, being non-
dissipative, is not compatible with entropic arguments
pertaining to the reciprocal relations, an issue that was
previously discussed in a Fokker-Planck context [35, 36].
The Green-Kubo relation (14) provides, instead, a direct
statement of how time-reversal symmetry should be bro-
ken for odd diffusivity to appear.

In equilibrium systems, the diffusivity and the mobility
are connected by the Einstein relation. In such systems,
the Green-Kubo relation (14) may be shown from lin-
ear response theory [33]. The derivation above shows
that equation (14) can be applied even to inherently
nonequilibrium systems such as active matter, where ef-
fective Einstein relations may exist under special circum-
stances [37–41], but in general need not. Consequently,
odd diffusivity can arise even in cases where the antisym-
metric mobility vanishes (as demonstrated in Appendix
A.3 for a chiral active Brownian particle), or where mo-
bility has no physical meaning, as in cases of animal nav-
igation with a documented steering bias [42–46].

Chiral random walk. To illustrate the microscopic ori-
gins of D⊥ and D‖, consider a particle which moves at
a constant speed v0 and reorients by turning left, revers-
ing direction, or turning right at random intervals with
frequency Γ1, Γ2 and Γ3, respectively. Between these
changes in direction, the particle moves in a straight line.

FIG. 1. Relationship between odd diffusivity and chiral-
ity of particle trajectories in a left-turning random walk
(Γ1 = 1,Γ2 = Γ3 = 0). (a) A linear concentration gradi-
ent induces a uniform flux field (arrows) with a perpendicular
component due to D⊥. (b) Logarithmic spiral form of the
position-velocity correlation functions from equations (25)-
(26). The Green-Kubo relations (13)-(14) specify that the x-
and y-coordinates converge to the two diffusivity coefficients
as t → ∞, while the angle θ is identical to that in (a), as
annotated. (c) Random sample of 50 time-reversed trajecto-
ries ∆rα(−t) satisfying either vα(0) = v0êx (indicated by→)
or vα(0) = −v0êx (indicated by ←) for t ∈ [0,Γ−1

1 ] together
with the subensemble-averaged trajectories 〈∆rα(−t)〉→ and
〈∆rα(−t)〉← for t ∈ [0,∞).

We may understand the diffusive behavior of this
model by decomposing the probability density P (x, y, t)
of the particle sitting at coordinates (x, y) at time t
into a sum of joint probabilities associated with the four
possible directions of motion: P (x, y, t) = P→(x, y, t) +
P↑(x, y, t) + P←(x, y, t) + P↓(x, y, t). By considering the
continuity of these joint probabilities, we arrive at the
coupled master equations [47]

∂tP→ = Γ1P↓ + Γ2P← + Γ3P↑ − γP→ − v0∂xP→ , (15)

∂tP↑ = Γ1P→ + Γ2P↓ + Γ3P← − γP↑ − v0∂yP↑ , (16)

∂tP← = Γ1P↑ + Γ2P→ + Γ3P↓ − γP← + v0∂xP← , (17)

∂tP↓ = Γ1P← + Γ2P↑ + Γ3P→ − γP↓ + v0∂yP↓ , (18)

where γ = Γ1 + Γ2 + Γ3. Suppose we are interested in
a steady state in which concentration varies only in the
x-direction. Then, from equation (4), we may define

Jx(x) = v0〈P→(x)− P←(x)〉 , (19)

Jy(x) = v0〈P↑(x)− P↓(x)〉 , (20)

and, upon subtracting equation (18) from (16) and aver-
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aging, obtain

∂tJy(x) = 0 = (Γ1 − Γ3)Jx(x)− (γ + Γ2)Jy(x) . (21)

Solving for the ratio Jy(x)/Jx(x), we find

Jy(x)

Jx(x)
=
D⊥
D‖

=
Γ1 − Γ3

γ + Γ2
. (22)

Examining this expression we note that D⊥ 6= 0 when-
ever Γ1 6= Γ3, indicating a preference between left and
right turns, i.e. chirality of random motion.

We now consider the Green-Kubo relation (13) for this
model. Recognizing that only four velocity states are
possible, we expand the correlation functions as

D‖ = lim
t→∞

1

2
〈∆ri(t)vj(0)〉δij

= lim
t→∞

1

8
v0
[
〈x(t)〉→ − 〈x(t)〉← + 〈y(t)〉↑ − 〈y(t)〉↓

]
= lim
t→∞

1

2
v0〈x(t)〉→ , (23)

where 〈·〉→ indicates an average conditioned on the par-
ticle initially moving to the right from the origin. The
other terms 〈·〉↑, 〈·〉← and 〈·〉↓ follow the same notational
convention. The simplification on the final line is due to
isotropy. Likewise, from equation (14),

D⊥ = lim
t→∞

1

2
v0〈y(t)〉→ . (24)

The averages are obtained by solving equations (15)
through (18) with the initial condition P→(x, y, 0) =
δ(x)δ(y) (see Appendix A.1). In doing so, we find that
the mean trajectory is a logarithmic spiral, i.e.

〈x(t)〉→ = v0
ν − e−νt

(
ν cos(ωt) + ω sin(ωt)

)
ν2 + ω2

(25)

〈y(t)〉→ = v0
ω − e−νt

(
ω cos(ωt)− ν sin(ωt)

)
ν2 + ω2

(26)

where for compactness we have defined ω = Γ1 − Γ3 and
ν = Γ1 + 2Γ2 + Γ3. This logarithmic spiral functional
form, shown in Figure 1b, is remarkably common, ap-
pearing in the mean trajectories of charged particles dif-
fusing in a magnetic field [19, 21, 48, 49], as well as those
of chiral active colloids [6, 7] and certain biological sys-
tems [43, 50]. Inserting equations (25)-(26) into (23)-(24)
yields

2D‖ = v20
ν

ν2 + ω2
, (27)

2D⊥ = v20
ω

ν2 + ω2
, (28)

in agreement with equation (22), showing the emergence
of D⊥ when chirality is present (ω 6= 0).

Figure 1 illustrates the origins of odd diffusivity in
a chiral random walk which permits only left turns

FIG. 2. Position-velocity correlation functions computed from
molecular dynamics simulations of a passive tracer in a chiral
active dumbbell bath with density ρbath = 0.4 (a) and ρbath =
0.1 (b). Stars mark converged values as t→∞. Both D⊥ and
D‖ increase with Pe, as does the ratio D⊥/D‖, as indicated
by dashed lines. The inset in (b) depicts the model system.

(Γ1 = 1,Γ2 = Γ3 = 0), for which D‖ = D⊥, from equa-
tions (27)-(28). Figure 1a displays the steady-state solu-
tion to equations (1)-(3) for diffusion between two reser-
voirs with concentrations C(x=0) = C0 and C(x=L) =
0, resulting in a linear concentration profile C(x) =
C0(1−x/L) and uniform flux J = C0

L

[
D‖êx+D⊥êy

]
with

a nonzero y-component due to odd diffusivity. In the
presence of impermeable boundaries this solution must
be modified, with D⊥ affecting not only the flux but also
the concentration, as shown in Appendix A.1. Figure 1b
plots the position-velocity correlation functions entering
into the Green-Kubo relations (13) and (14). Finally,
Figure 1c shows a random sample from the subensembles
of time-reversed trajectories ∆rα(−t) passing through
the origin at time t = 0 with either vα(0) = +v0êx or
vα(0) = −v0êx. Due to chirality, the paths in these two
subensembles lead backwards in time to regions differing
not only in the x- but also the y-coordinate, so that a gra-
dient in the y-direction generates a flux in the x-direction.
This is the microscopic basis of odd diffusivity.

Diffusion in a chiral active bath.

Several recent studies have described novel behavior of
the symmetric diffusivity D‖ [51–54] as well as an an-
tisymmetric mobility [55–58] in active systems. In this
section, we study the odd diffusivity of a passive tracer
particle dissolved in a two-dimensional chiral active fluid
composed of torqued dumbbells, which was found in pre-
vious studies to exhibit odd viscosity and an asymmetric
hydrostatic stress [15, 59]. The positions ri and veloc-
ities vi of particle i evolve according to underdamped
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FIG. 3. Comparison of the diffusion coefficients D⊥ (a)
and D‖ (b) computed from the Green-Kubo relations (solid
lines) with those measured in boundary-driven flux simula-
tions (dashed lines) for several densities of the active dumb-
bell bath ρbath and values of Pe. Error bars are smaller than
the symbols.

Langevin dynamics

ṙi = vi ,

v̇i = − ∂

∂ri
U + fAi − ζvi + ηi ,

(29)

with particle masses set to one. Here, − ∂
∂ri

U is the
conservative force on particle i due to interactions (see
Appendix A.2 for model and simulation details). fAi
is a nonconservative active force inducing rotation of
the dumbbell. ζ is the dissipative bath friction and ηi
are the bath fluctuations, modeled as Gaussian white
noise characterized by 〈ηi〉 = 0 and 〈ηi(t) ⊗ ηj(t′)〉 =
2kBTζδijδ(t − t′)I, where kBT is the bath temperature
and I is the identity matrix. In all simulations the density
of active dumbbells, ρbath, is spatially homogeneous. The
magnitude of fA = |fAi | relative to thermal fluctuations
is quantified by a non-dimensional Péclet number defined

as Pe = 2fAd
kBT

, where d is the equilibrium dumbbell bond
length.

Molecular dynamics simulations [60, 61] with fully
periodic boundaries allow for the measurement of the
position-velocity correlation functions, which are plot-
ted in Figure 2. We have taken the convention that
Pe > 0 corresponds to clockwise rotation of the dumb-
bells, which induces counterclockwise motion of the pas-
sive tracer, as depicted in the inset of Figure 2b. When
Pe 6= 0, an antisymmetric part of the correlation function
appears, with a shape resembling the logarithmic spirals
identified in the chiral random walk model (Figure 1b)
and magnitude depending strongly on the density of the
active dumbbell bath. The resulting Green-Kubo esti-
mates of D⊥ and D‖ are plotted in Figures 3a and 3b for
a range of active bath densities, where D⊥ is seen to be
an odd function of Pe while D‖ is an even function of Pe.

To validate the Green-Kubo relations, we indepen-
dently performed boundary-driven flux simulations in
which passive tracer particles at high dilution were intro-

duced at the left boundary of the simulation box and re-
moved from the right boundary at a constant rate, while
the top and bottom boundaries remained periodic. The
resulting steady state exhibits a uniform concentration
gradient in the x-direction, and uniform flux with a y-
component emerging for Pe 6= 0 (see Appendix A.2). The
diffusion coefficients D⊥ and D‖ were then computed di-
rectly from the constitutive relations (1) and (2). The re-
sulting values are plotted in Figure 3 against the Green-
Kubo predictions, demonstrating good agreement. We
note that this system exhibits an antisymmetric part of
the mobility, but with no apparent Einstein relation con-
necting this quantity to the odd diffusivity (see Appendix
A.3).

Conclusion. Ordinarily, isotropic diffusion involves
fluxes parallel to concentration gradients. In general,
however, there may emerge fluxes in the perpendicular di-
rection. This behavior appears as an antisymmetric part
of the diffusivity tensor, which we have termed odd diffu-
sivity. From a first-principles consideration of the micro-
scopic basis of the constitutive relations describing these
perpendicular fluxes, we have derived a Green-Kubo re-
lation for odd diffusivity, showing it to exist only when
time-reversal and parity symmetries are broken, whether
in or out of equilibrium. This approach may help to
characterize additional odd transport phenomena with
divergence-free fluxes, such as odd heat conduction and
odd couplings between viscous and diffusive transport.
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