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When electrons flow as a viscous fluid in anisotropic metals, the reduced symmetry can lead to
exotic viscosity tensors with many additional, non-standard components. We present a viscometry
technique that can in principle measure the multiple dissipative viscosities allowed in isotropic and
anisotropic fluids alike. By applying representation theory to exploit the intrinsic symmetry of
the fluid, our viscometry is also exceptionally robust to both boundary complications and ballistic
effects. We present the technique via the illustrative example of dihedral symmetry, relevant in
this context as the point symmetry of 2D crystals. Finally, we propose a present-day realizable
experiment for detecting, in a metal, a novel hydrodynamic phenomenon: the presence of rotational
dissipation in an otherwise-isotropic fluid.

Introduction—Hydrodynamics models the transport of
conserved quantities, such as charge or energy, over large
length- and time-scales. In ultra-pure low-temperature
metals, electronic momentum can also be approximately
conserved, if the collisions that conserve momentum are
much faster than those that relax it (e.g. off impuri-
ties or via umklapp) [1]. In these viscous electron fluids,
hydrodynamic effects can give rise to exotic transport
phenomena, such as decreasing resistance with increasing
temperature (Gurzhi effect) [2] and superballistic con-
striction flow [3].

Theorized for many decades, electron hydrodynamics
has in recent years garnered compelling experimental ev-
idence [4–12]. The earliest discoveries of electron hydro-
dynamics took place in GaAs [4], monolayer graphene
[5], and bilayer graphene [6]. At low (but non-zero)
charge density, these are all isotropic Fermi liquids well-
described by Galilean-invariant, textbook hydrodynam-
ics [13]. For the electron fluid in graphene, the shear
viscosity – the sole dominant viscosity in this isotropic
Fermi liquid – has been both calculated [14, 15] and in-
directly measured in experiment [6, 7, 11].

Metals are generically anisotropic, however, as the
presence of a crystalline lattice explicitly breaks rota-
tional symmetry. Indeed, experiments and ab initio cal-
culations have recently suggested hydrodynamics might
apply in less symmetric metals, e.g. WP2 [16], PtSn4 [17],
MoP [18], WTe2 [19]. In such cases, anisotropy leads to
a number of novel phenomena [20], including rotational
viscosity [21] and intrinsic Hall viscosity [22]. Such vis-
cosities are inaccessible to current experiments, however,
as existing methods (non-local resistances [23, 24], con-
striction conductances [3], AC phenomena [25], current
imaging [10–12], channel flows [26], and heat transport
[16, 27–29]) (i) are not robust to boundary and ballis-
tic effects, and (ii) cannot distinguish all the symmetry-
allowed viscosities that will generically appear.

Here, we present a multi-terminal device, robust to
both boundary complications and ballistic effects, that
can measure the multiple dissipative viscosity compo-

nents allowed in isotropic and anisotropic fluids, all on a
single sample. Our viscometry relies on the representa-
tion theory of point groups, from which we devise bound-
ary conditions that isolate viscosities via symmetry-
constrained heating. Our technique is also uniquely capa-
ble detecting a “smoking gun” signal of a novel hydrody-
namic phenomenon: the isolated emergence of rotational
viscosity η◦ in an “otherwise isotropic” fluid [21].

Strikingly, rotational viscosity η◦ gives viscous dissipa-
tion even under rigid rotations of a fluid, which is for-
bidden by angular momentum conservation in isotropic
fluids, but generically allowed in anisotropic fluids. For
hexagonal fluids in particular, η◦ emerges in a novel and
isolated way [21], alongside only the standard, isotropic
shear and bulk viscosities. Hexagonal electron fluids
therefore provide a highly novel setting for finding η◦,
with possible candidate materials including PdCoO2 [30],
NaSn2As2 [31], and ABA-trilayer graphene [32]. Finally,
we argue that our viscometry proposed here is in fact the
only feasible way of discovering η◦ in an electron fluid.

In what follows, we describe our viscometry via the
illustrative example of 2D fluids of dihedral point sym-
metry. However, our approach extends naturally to fluids
of higher dimension and/or differing point symmetry.

Dihedral hydrodynamics—The dihedral group D2M is
the 2M -element group of symmetries of the regular M -
gon. As an abstract group, D2M is generated by its ele-
ments ρ, a (2π/M)-rotation about the M -gon center, and
r, a reflection through a fixed axis containing the M -gon
center, with ρrρ = r. We also take D∞ = O(2) to be the
group of symmetries of the circle, which includes rota-
tions of arbitrary angle. By the crystallographic restric-
tion theorem [33], the paradigmatic 2D electron fluids are
those of M ∈ {2, 3, 4, 6} dihedral point symmetry.

In Newtonian fluids (appropriate for the linear re-
sponse regime [1]), viscous stresses τij = −ηijkl∂kvl arise
linearly in response to velocity gradients ∂kvl, with pro-
portionality given by the viscosity tensor ηijkl. In the
Supplemental Material (SM), we show that any D2M -
invariant viscosity tensor must take the form
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where ε is the Levi-Civita symbol and σa are Pauli ma-
trices. We have excluded in Eq. (1) only the M = 2
viscosity tensor; in such D4 fluids, one has eight allowed
viscosities, not all of which are isolated by our viscom-
etry due to the exceptionally-low symmetry of D4. We
therefore relegate discussion of this singular case to SM.

We emphasize that the presence of rotational viscosity
η◦ in Eq. (1) does not rely on electrons or dihedral sym-
metry: it is universal to anisotropic fluids. The lack of ro-
tational symmetry allows the stress tensor to have a non-
vanishing antisymmetric component εijτij 6= 0, which in
the hydrodynamics must couple to the strain tensor com-
ponent εij∂ivj = ∇ × v of the same symmetry (i.e. the
vorticity); this generic coupling is η◦. Fig. 1 illustrates
the microscopic origin of η◦ in anisotropic electron fluids.

The remaining viscosities appearing in Eq. (1) can be
understood as follows: bulk viscosity ζ [34] couples the
trace of the stress tensor to the fluid expansion ∇ · v,
plus viscosity η+ couples the stress (τxx − τyy) along the
axes of the crystal to the strain (∂xvx − ∂yvy), and cross
viscosity η× couples stress and strain at 45◦ to the crystal
axes. Equating plus and cross viscosities η+, η× → η in
the D8 tensor (M = 4) gives the D12 tensor (M = 6),
and further taking η◦ → 0 in the D12 tensor gives the
isotropic tensor (M =∞). We therefore discuss dihedral
viscosities without further loss of generality by henceforth
assuming the D8 case.

We now turn to the linearized (i.e. assuming Stokes
flow [1, 13]) hydrodynamics. For D8 fluids, the hydro-
dynamic equations are the following pair of approximate
conservation laws:

∂tρ = −∂i (ρ0vi −D∂iρ) , (2a)

ρ0∂tvi = −c2∂iρ− ρ0Γvi + ηjikl∂j∂kvl, (2b)

where ρ (ρ0) is the (equilibrium) fluid density, c the elec-
tronic speed of sound, and Γ is the rate of momentum-
relaxing collisions. Eq. (2a) describes the local conserva-
tion of density ρ, with an associated conserved current
Ji = ρ0vi −D∂iρ. The current Ji has a convective con-
tribution from the fluid momentum ρ0vi and a diffusive
contribution −D∂iρ, with D the incoherent diffusion con-
stant [21, 35]. Eq. (2b) describes the approximate conser-
vation of fluid momentum ρ0vi in the presence of viscous
−∂jτji and ohmic −ρ0Γvi forces.

One may in principle append to Eq. (2) a third con-
servation law for energy. At ρ0 6= 0, this complication
does not qualitatively modify the dynamics of homoge-
neous electron fluids [1]. At ρ0 = 0 (e.g. the Dirac fluid
of charge-neutral graphene), the energy density ε couples

FIG. 1: Illustration of the origin of rotational viscos-
ity in electron fluids. When an anisotropic Fermi surface
(black) is rotated (dark purple), quasiparticle excitations
(red/blue) are generated. In the hydrodynamic limit,
such rigid rotations are opposed by a dissipative rota-
tional viscosity η◦ [21]. Note that this Fermi surface has
D8 symmetry.

to velocity vi in an analogous way to charge density ρ in
Eq. (2). Due to this analogy we focus on the ρ0 6= 0 case,
but our results are generalizable to Dirac fluids.

We now restrict to static flows ∂t = 0, so that the left-
hand-side of Eq. (2) vanishes. We can then automatically
satisfy the resulting divergence-free condition on Ji 2a
by writing the current in terms of a stream function:
Ji ≡ ρ0εij∂jψ =⇒ vi = (D/ρ0)∂iρ + εij∂jψ. Using
this stream function ψ, we eliminate density ρ from the
(static) momentum equation 2b and, neglecting terms of

order ηD∂2ψ ∼ (`ee∂)
2
, we find that the stream function

satisfies the generalized biharmonic equation

∇4
ψ =

(w
λ

)2
∇2
ψ + δ

[(
∂2x − ∂2y

)2 − (2∂x∂y)
2
]
ψ, (3)

where we have introduced the parameters

λ =

√
2η◦ + η+ + η×

2ρ0Γ
, δ =

η+ − η×
2η◦ + η+ + η×

, (4)

and non-dimensionalized all lengths (x, y) ≡ (x, y)/w,
∇ ≡ 〈∂x, ∂y〉, using an assumed measurement lengthscale
w (which will later characterize the size of our viscome-
ter). Using an assumed solution ψ of the generalized
biharmonic (3), we solve for ∂iρ in Eq. (2b), which tells
us that (away from ρ0 = 0) the current Ji ≈ ρ0vi is ap-
proximately coherent at this order [36]. Substituting this
result into the stream function relation, we find that the
fluid is approximately incompressible: vi ≈ εij∂jψ.

The parameter λ (4) is known as the Gurzhi length and
characterizes the length-scale past which momentum-
relaxing effects begin to dominate viscous effects [1]. The
dimensionless parameter δ (4) characterizes the degree of
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TABLE I: First row : The five irreducible representa-
tions of D8. Second row : Current boundary conditions
(blue/red arrows) of matching D8-symmetry, indicated
by colored wedges. Symmetry restricts heat (5) at the
square center to only a single dissipative coefficient (yel-
low disk). Note that the representation U+

0 requires more
than 8 contacts in order to satisfy charge conservation.

square anisotropy in the fluid and must lie in the interval
δ ∈ [−1, 1]. The transformation δ → −δ corresponds to
a rotation of the crystal coordinates by 45◦, and δ = 0
implies η+ = η× (no square anisotropy in the fluid).

Dihedral viscometry—Our dihedral viscometer is a
square (x, y) ∈ [−w/2, w/2]

2
, with current Ji ≈ ρ0vi

boundary conditions consisting of 8 contacts, each of
width a, on its perimeter. Contacts are placed in pairs
symmetrically about the midpoint of each edge, sepa-
rated from each other by a tunable spacing d. A total
current I0 is either injected or drained at each contact,
with the configuration of the viscometer determined by
these choices. For concreteness, we take box function
contacts [37], and no-slip vi = 0 at the boundary away
from contacts, in all numerical calculations (though our
main results are unaffected by such details).

Our viscometry functions by exploiting the spatial
symmetry of the dissipation generated in the fluid. The
viscous dissipation is best understood via the irreducible
symmetries of the D8-invariant viscosity tensor, which we
now outline; see SM for details.

Informally, a group representation [38] allows a group
to act on a vector space, by assigning group elements to
matrices in a way that is consistent with the underlying
group multiplication. For finite groups and complex vec-
tor spaces, any such representation can be decomposed
into a sum of elementary, “building-block” representa-
tions, known as irreducible representations (irreps). The
dihedral group D8 has five irreps: four 1-dimensional rep-
resentations U±0,2 (the superscript denotes reflection par-

ity, U±k (r) = ±1, and the subscript denotes rotation par-
ity, U±k (ρ) = ik) and one 2-dimensional vector represen-
tation R1 [21, 38]. These irreps label the five irreducible
ways a mathematical object can self-consistently trans-
form under reflection and 4-fold rotation. The irreps of
D8 and their realizations as current boundary conditions
on a square are summarized in Table I.

Particularly relevant for viscometry is the 4-
dimensional vector space T2 of rank-2 tensors, as the ve-
locity strain tensor is an element of this space: ∂ivj ∈ T2.

The viscosity tensor ηij,kl ≡ ηijkl then acts linearly on
T2 as a 4 × 4 matrix by index contraction. Since the
viscosity tensor is D8-invariant, Schur’s lemma [38] im-
plies that ηij,kl must act proportionally to the identity
on each D8-invariant subspace of T2. We illustrate this
result by expressing the heat that is generated through
viscous dissipation, Wvisc = (∂ivj)ηij,kl(∂kvl), as

Wvisc = η◦ (εij∂ivj)
2

+ η+(σzij∂ivj)
2

+ η×(σxij∂ivj)
2 + ζ(δij∂ivj)

2,
(5)

where each term in Eq. (5) represents a projection of ∂ivj
into a given 1-dimensional D8-invariant subspace of T2,
corresponding to a 1-dimensional irrep of D8.

Note that the total [39] heat W = Wvisc+Wohm gener-
ated by the fluid flow also contains an ohmic contribution
Wohm = ρ0Γv

2
i . Even though ρ0Γ is not a component

of the viscosity tensor, the fluid velocity vi nevertheless
transforms according to the remaining vector irrep R1,
conveniently completing our correspondence between D8

irreps and dissipative coefficients in Table I.
Importantly, both the center of the square and its

boundary are mapped to themselves under any D8 sym-
metry transformation. Thus the center strain tensor
(∂ivj)|r=0 and center velocity vi(0) must have the same
D8 symmetry as the square boundary. This implies that
we can selectively isolate at the square center each of the
5 terms in the heat decomposition W = Wvisc + Wohm

by choosing boundary conditions corresponding to each
of the 5 irreps of D8.

The above considerations are summarized in Table I.
A numerical demonstration of isolated η◦, η+, and η×
heating is given in Fig. 2 (see SM for additional flow
plots). In SM, we further show that our result does
not fundamentally rely on hydrodynamics; across the en-
tire ballistic-to-hydrodynamic crossover, our symmetry-
based “viscometer” continues to isolate dissipation chan-
nels according to their symmetry.

The isolated center heat W0 = ηα(∂vα)20 generated
solely by the viscosity ηα sources a Poisson equation [5]

W = −κ∇2T (6)

for temperature T , with κ the electronic thermal con-
ductivity. If one is able to measure both the center tem-
perature variation (∇2T )0 (e.g. by local thermometry
[40, 41]) and center strain component (∂vα)0 (e.g. by
flow imaging [10–12]), then ηα = −κ(∇2T )0/(∂vα)20 can
be determined. Alternatively, if one uses only local ther-
mometry, one may still estimate (∂vα)0 – and hence ηα
– by mapping out heating patterns W (x, y) via Eq. (6)
and comparing against numerical simulations.

Another consistency check arises by varying the vis-
cometer geometry. Numerically solving Eq. (3) for
varying contact spacing d, we show in Fig. 3 how the
anisotropy δ can be determined experimentally. The cen-
ter heat W0(d) (as a function of contact spacing d) varies
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FIG. 2: Flows numerically solving Eq. (3) in our vis-
cometer with w = 1 µm, I0 = 100 µA, d/w = 0.41,
a/w = 0.05, δ = 0, and λ/w = ∞. Rows spec-
ify D8-irreducible boundary conditions, and columns the
temperature variation −(∇2T )α sourced solely by ηα-
dissipation. Symmetry restricts center heating to only
the diagonal plots. In giving an order-of-magnitude
estimate for the scale of heating, we have taken rele-
vant physical parameters from hydrodynamic electrons
in monolayer graphene [6, 7]; see SM. Temperature vari-
ations of this magnitude are detectable with existing local
thermometers [40, 41].

uniquely with anisotropy δ, allowing for computation of
the latter. In fact, we show in SM how δ may be deter-
mined from as few as 2 contact spacings and 2 boundary
configurations, for 4 total center heat measurements.

Finally, in SM we discuss how our viscometry com-
pares against more conventional Poiseuille, channel flow
methods, particularly in the D4 case [26] where there is
insufficient symmetry to isolate all viscosities via bound-
ary conditions, as above.

Conclusions—Even if the above procedure cannot be
carried out in full, one may nevertheless detect rota-
tional viscosity η◦ by simply observing center heat in
the U−0 configuration. U−0 -symmetry precludes any cen-
ter heat that might arise from another viscosity compo-
nent, ohmic effects, incoherent currents, or even ballistic
scattering (in addition to being highly suppressed in the
viscous limit, ballistic center heat also has easily distin-
guishable scaling with viscometer size w; see SM). We
therefore anticipate that our viscometry can enable the
discovery of η◦ in the near future.

We further claim that (in contrast to other dihedral

FIG. 3: Viscometer center heat W0, numerically de-
termined from Eq. (3), as a function of boundary con-
dition irrep., contact spacing d, and anisotropy δ, for
a/w = 0.01 and λ/w = ∞. Each curve is normalized by
its max value. The uniqueness of these curves should
allow for experimental determination of δ. Although
momentum-relaxation is neglected in these λ/w = ∞
plots, we find that the shape of these curves, and hence
their utility in determining δ, is extremely insensitive to
decreasing λ (increasing Γ ); see SM.

viscosities) there is no feasible way to detect η◦ beyond
the symmetry-based technique proposed here. Expand-
ing the hexagonal viscosity tensor (1) in Eq. (2b), one
in fact obtains the isotropic momentum equation, but
with replacements {η, ζ} → {η + η◦, ζ − η◦}. This im-
plies that rotational viscosity does not modify bulk flow
patterns. Although exotic no-stress boundary conditions
can in principle generate weakly η◦-dependent flows, the
incomplete understanding of viscous electron boundary
conditions makes it is unclear how such an experiment
could be robustly carried out.

Indeed, there has been much discussion concerning the
proper boundary conditions (e.g. no-slip, no-stress, gen-
eralized Robin) for viscous electron flow [42–44]. Because
our viscometer relies on symmetry, it conveniently side-
steps any such boundary complication, so long as the
boundaries are symmetrically complicated. For example,
although we assumed no-slip vi = 0 boundary conditions
in the preceeding numerics, if no-stress or generalized
Robin boundary conditions are instead required, the nu-
merical values in Figs. 2 and 3 will change but the irrep
decomposition of the rank-2 tensor space T2 will continue
to guarantee isolated center heating.

We emphasize that our viscometry extends to more
general fluids. For fluids of point group symmetry G, one
constructs a device with G-irreducible boundary condi-
tions. Then the viscous heat generated at a G-invariant
point (i.e. mapped to itself under the action of G) can be
selectively restricted to each irreducible comnponent of
the viscosity tensor, as above. Our viscometery therefore
also generalizes to higher dimensions, although measur-
ing local heating at the center of a 3D sample may be
more challenging.
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Finally, for fluids with broken inversion and time-
reversal symmetries, additional non-dissipative tensors
[45–47] may appear in ηijkl (1). We compute these lower-
symmetry tensors in SM, matching those found in recent
work on anisotropic Hall viscosities [45]. We expect our
viscometry to partially extend to such fluids, since tai-
lored boundary conditions will be able to similarly iso-
late in experiment the effects of symmetry-constrained
Hall viscosisties. However, while neither Hall viscosity
nor η◦ modify the form of the Navier-Stokes equations,
the Hall viscosity is, moreover, non-dissipative. Thus, for
our viscometry to prove fully applicable to Hall viscosi-
ties, an experimental signature beyond heating must first
be identified.
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in graphene: shear and Hall viscosities”, Physical Review
B93 (2016).

[16] J. Gooth et al. “Thermal and electrical signatures of a
hydrodynamic electron fluid in tungsten diphosphide”,
Nature Communications 9 1 (2018).

[17] C. Fu et al. “Thermoelectric signatures of the electron-
phonon fluid in PtSn4”, arXiv:1802.09468.

[18] N. Kumar et al. “Extremely high conductivity observed
in the triple point topological metal MoP”, Nature Com-
munications 10 2475 (2019).

[19] U. Vool et al. “Imaging phonon-mediated hydrodynamic
flow in WTe2 with cryogenic quantum magnetometry”,
arXiv:2009.04477.

[20] G. Varnavides, A. Jermyn, P. Anikeeva, C. Felser, and
P. Narang. “Electron hydrodynamics in anisotropic
materials”, Nature Communications 11 1 (2020),
arXiv:2002.08976.

[21] C. Cook and A. Lucas. “Electron hydrodynamics with
a polygonal Fermi surface”, Physical Review B 99 23
(2019), arXiv:1903.05652.

[22] R. Toshio, K .Takasan, and N. Kawakami. “Anomalous
hydrodynamic transport in interacting noncentrosym-
metric metals”, Physical Review Research 2 3 (2020).

[23] I. Torre, A. Tomadin, A. K. Geim, and M. Polini.
“Non-local transport and the hydrodynamic shear viscos-
ity in graphene”, Physical Review B92 165433 (2016),
arXiv:1508.00363.

[24] L. Levitov and G. Falkovich. “Electron viscosity, current
vortices and negative nonlocal resistance in graphene”,
Nature Physics 12 672 (2016), arXiv:1508.00836.

[25] A. Tomadin, G. Vignale, and M. Polini. “Corbino disk
viscometer for 2D quantum electron liquids”, Physical
Review Letters 113 23 (2014), arXiv:1401.0938.

[26] J. M. Link, B. N. Narozhny, E. I. Kiselev, and
J. Schmalian. “Out-of-bounds hydrodynamics in
anisotropic Dirac fluids”, Physical Review Letters 120
196801 (2018), arXiv:1708.02759.

[27] A. Principi and G. Vignale. “Violation of the
Wiedemann-Franz law in hydrodynamic electron liq-
uids”, Physical Review Letters 115 056603 (2015).

[28] A. Jaoui et. al. “Departure from the WiedemannFranz
law in WP2 driven by mismatch in T -square resistivity
prefactors”, npj Quant Mater 3 64 (2018).

[29] A. Jaoui, B. Fauqu, and K. Behnia. “Thermal resistivity
and hydrodynamics of the degenerate electron fluid in
antimony”, Nature Communications 12 195 (2021).

[30] P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt,
and A. P. Mackenzie. “Evidence for hydrodynamic
electron flow in PdCoO2”, Science 351 1061 (2016),

mailto:calebqcook@gmail.com
mailto:andrew.j.lucas@colorado.edu
http://arxiv.org/abs/1710.08425
http://www.jetp.ac.ru/cgi-bin/e/index/e/17/2/p521?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/17/2/p521?a=list
http://www.pnas.org/content/114/12/3068.abstract
http://www.pnas.org/content/114/12/3068.abstract
http://arxiv.org/abs/1607.07269
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.51.13389
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.51.13389
http://arxiv.org/abs/cond-mat/9411067
http://science.sciencemag.org/content/351/6277/1058
http://arxiv.org/abs/1509.04713
http://science.sciencemag.org/content/351/6277/1055
http://science.sciencemag.org/content/351/6277/1055
http://arxiv.org/abs/1509.04165
https://doi.org/10.1038/nphys4240
https://doi.org/10.1038/nphys4240
https://arxiv.org/abs/1703.06672
https://doi.org/10.1038/s41467-018-07004-4
http://arxiv.org/abs/1806.03231
https://doi.org/10.1063/1.5020763
https://doi.org/10.1063/1.5020763
http://arxiv.org/abs/1802.09619
https://doi.org/10.1038/s41586-019-1788-9
http://arxiv.org/abs/1905.11662
https://doi.org/10.1038/s41586-020-2507-2
http://arxiv.org/abs/1905.10791
http://arxiv.org/abs/2002.05065
https://www.amazon.com/Fluid-Mechanics-Second-Theoretical-Physics/dp/0750627670/ref=sr_1_1?ie=UTF8&qid=1478217116&sr=8-1&keywords=fluid+mechanics+landau
https://www.amazon.com/Fluid-Mechanics-Second-Theoretical-Physics/dp/0750627670/ref=sr_1_1?ie=UTF8&qid=1478217116&sr=8-1&keywords=fluid+mechanics+landau
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.125410
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.125410
http://arxiv.org/abs/1506.06030
https://doi.org/10.1103/PhysRevB.100.035125
https://doi.org/10.1103/PhysRevB.100.035125
https://doi.org/10.1038/s41467-018-06688-y
https://arxiv.org/abs/1802.09468
https://doi.org/10.1038/s41467-019-10126-y
https://doi.org/10.1038/s41467-019-10126-y
https://arxiv.org/abs/2009.04477
https://doi.org/10.1038/s41467-020-18553-y
https://arxiv.org/abs/2002.08976
https://link.aps.org/doi/10.1103/PhysRevB.99.235148
https://link.aps.org/doi/10.1103/PhysRevB.99.235148
http://arxiv.org/abs/1903.05652
http://dx.doi.org/10.1103/PhysRevResearch.2.032021
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.165433
http://arxiv.org/abs/1508.00363
http://www.nature.com/nphys/journal/v12/n7/full/nphys3667.html
http://arxiv.org/abs/1508.00836
https://link.aps.org/doi/10.1103/PhysRevLett.113.235901
https://link.aps.org/doi/10.1103/PhysRevLett.113.235901
http://arxiv.org/abs/1401.0938
https://doi.org/10.1103/PhysRevLett.120.196801
https://doi.org/10.1103/PhysRevLett.120.196801
http://arxiv.org/abs/1708.02759
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.056603
https://doi.org/10.1038/s41535-018-0136-x
https://doi.org/10.1038/s41467-020-20420-9
http://science.sciencemag.org/content/351/6277/1061


6

arXiv:1509.05691.
[31] Y. Wang and P. Narang. “Anisotropic scattering in the

goniopolar metal NaSn2As2”, Physical Review B 102 12
(2020).

[32] A. A. Zibrov et al. “Emergent Dirac gullies and gully-
symmetry-breaking quantum Hall states in ABA trilayer
graphene”, Physical Review Letters 121 16 (2018).

[33] N. W. Ashcroft and N. D. Mermin. Solid-State Physics
(Brooks Cole, 1976).

[34] In a viscous Fermi liquid, the bulk viscosity ζ ∼
(T/TF)4 µ is strongly suppressed at low temperature rel-
ative to other viscosity components µ [48] and there-
fore often neglected. Additionally, in this work, we make
approximations which lead to an incompressible fluid
vi ≈ εij∂jψ and therefore remove ζ entirely from the
dynamics of the fluid. However, from symmetry consid-
erations alone, we nevertheless proposed a device which
isolates the dissipative effects of ζ and could potentially
thereby enable its measurement.

[35] S. A. Hartnoll. “Theory of universal incoherent
metallic transport”, Nature Physics 11 54 (2015),
arXiv:1405.3651.

[36] This occurs due to the peculiar mixing of ideal and
dissipative hydrodynamic coefficients in the momentum
equation. For time-dependent phenomena, the incoher-
ent conductivity can qualitatively modify hydrodynamics
[49, 50].

[37] I (s) = ±I0rect [(s± d/2) /a], where rect(x) is defined to
be 1 for |x| ≤ 1/2, and 0 otherwise.

[38] W-K. Tung. Group Theory in Physics, (World Scientific,
1985).

[39] In principle there is also a dissipative contributionWinc =
Dχ−1(∇ρ)2, with χ the charge susceptibility, due to in-
coherent currents in the fluid [1], but this contribution is
negligible due to the hydrodynamic approximations that
lead to Eq. (3). In any case, since the gradient ∇ρ trans-
forms under D8 as a vector, this term (like the ohmic
heating) cannot even in principle generate center heat in
the dihedral viscometer unless it is in the R1 configura-
tion.

[40] J. Zhang et al. “Anomalous thermal diffusivity in un-

derdoped YBa2Cu3O6+x”, Proceedings of the National
Academy of Sciences 114 21 (2017).

[41] P. Neumann et al. “High-Precision Nanoscale Temper-
ature Sensing Using Single Defects in Diamond”, Nano
Letters 13 6 (2013).

[42] G. Wagner. “Boundary conditions for electron
flow in graphene in the hydrodynamic regime”,
arXiv:1509.07113.

[43] E. Kiselev and J. Schmalian. “Boundary conditions of
viscous electron flow”, Physical Review B 99 3 (2019),
arXiv:1806.03933.

[44] R. Moessner, P. Surówka N. Morales-Durán, and
P. Witkowski. “Boundary-condition and geometry en-
gineering in electronic hydrodynamics”, Physical Review
B 100 15 (2019), arXiv:1903.08037.

[45] P. Rao and B. Bradlyn. “Hall viscosity in quantum sys-
tems with discrete symmetry: point group and lattice
anisotropy”, Physical Review X10 (2020).

[46] I. S. Burmistrov et al. “Dissipative and Hall Viscosity of
a Disordered 2D Electron Gas”, Physical Review Letters
123 2 (2019).

[47] J. M. Epstein and K. K. Mandadapu. “Time-reversal
symmetry breaking in two-dimensional nonequilibrium

viscous fluids”, Physical Review E 101 5 (2020).
[48] J. Sykes and G. A. Brooker. “The transport coefficients

of a Fermi liquid”, Annals of Physics 56 1 (1970).
[49] A. Lucas. “Sound waves and resonances in electron-

hole plasma”, Physical Review B93 245153 (2016),
arXiv:1604.03955.

[50] A. Lucas and S. Das Sarma. “Electronic sound modes
and plasmons in hydrodynamic two-dimensional metals”,
Physical Review B97 115449 (2018), arXiv:1801.01495.

[51] A. Lucas and S. A. Hartnoll. “Kinetic theory of transport
for inhomogeneous electron fluids”, arXiv:1706.04621.

[52] A. Lucas. “Stokes paradox in electronic Fermi liquids”,
Physical Review B95 115425 (2017), arXiv:1612.00856.

[53] M. Qi and A. Lucas. “Distinguishing viscous, ballis-
tic, and diffusive current flows in anisotropic metals”,
arXiv:2107.01216 (2021).

http://arxiv.org/abs/1509.05691
https://link.aps.org/doi/10.1103/PhysRevB.102.125122
https://link.aps.org/doi/10.1103/PhysRevB.102.125122
http://dx.doi.org/10.1103/PhysRevLett.121.167601
http://www.amazon.com/Solid-State-Physics-Neil-Ashcroft/dp/0030839939/ref=sr_1_1?ie=UTF8&qid=1439625478&sr=8-1&keywords=ashcroft+and+mermin
http://www.nature.com/nphys/journal/v11/n1/full/nphys3174.html
http://arxiv.org/abs/1405.3651
https://www.amazon.com/Group-Theory-Physics-Wu-Ki-Tung/dp/9971966565/ref=sr_1_fkmrnull_1?keywords=tung+group+theory+in+physics&qid=1551391272&s=gateway&sr=8-1-fkmrnull
https://www.amazon.com/Group-Theory-Physics-Wu-Ki-Tung/dp/9971966565/ref=sr_1_fkmrnull_1?keywords=tung+group+theory+in+physics&qid=1551391272&s=gateway&sr=8-1-fkmrnull
https://www.pnas.org/content/114/21/5378
https://www.pnas.org/content/114/21/5378
https://doi.org/10.1021/nl401216y
https://doi.org/10.1021/nl401216y
http://arxiv.org/abs/1509.07113
https://link.aps.org/doi/10.1103/PhysRevB.99.035430
http://arxiv.org/abs/1806.03933
https://link.aps.org/doi/10.1103/PhysRevB.100.155115
https://link.aps.org/doi/10.1103/PhysRevB.100.155115
http://arxiv.org/abs/1903.08037
https://link.aps.org/doi/10.1103/PhysRevX.10.021005
https://link.aps.org/doi/10.1103/PhysRevLett.123.026804
https://link.aps.org/doi/10.1103/PhysRevLett.123.026804
https://link.aps.org/doi/10.1103/PhysRevE.101.052614
https://doi.org/10.1016/0003-4916(70)90002-3
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.245153
http://arxiv.org/abs/1604.03955
https://doi.org/10.1103/PhysRevB.97.115449
http://arxiv.org/abs/1801.01495
http://arxiv.org/abs/1706.04621
http://link.aps.org/doi/10.1103/PhysRevB.95.115425
http://arxiv.org/abs/1612.00856
http://arxiv.org/abs/2107.01216

	Viscometry of electron fluids from symmetry
	Abstract
	References


