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Hydrodynamic instabilities driven by a direct current are analyzed in 2D and 3D relativisticlike
systems with the Dyakonov-Shur boundary conditions supplemented by a boundary condition for
temperature. Besides the conventional Dyakonov-Shur instability for plasmons, we find an entropy-
wave instability in both 2D and 3D systems. The entropy-wave instability is a manifestation of
the relativisticlike nature of electron quasiparticles and a nontrivial role of the energy current in
such systems. These two instabilities occur for the opposite directions of fluid flow. While the
Dyakonov-Shur instability is characterized by the plasma frequency in 3D and the system size in
2D, the frequency of the entropy-wave instability is tunable by the system size and the flow velocity.

Introduction.— Plasma instabilities attract significant
attention and play an important role in various branches
of science including high-energy and condensed matter
physics, astrophysics, controlled thermonuclear fusion,
etc. A few decades ago Dyakonov and Shur predicted [1]
that an electron plasma in a hydrodynamic regime should
become unstable in a biased two-dimensional (2D) het-
erostructure subject to a background direct current (DC)
flow and rather unconventional asymmetric alternating
current (AC) boundary conditions. This Dyakonov-Shur
instability (DSI) appears due to the amplification of
plasma waves (equivalently, plasmons) caused by mul-
tiple reflections from the device boundaries. Such an en-
hancement is reminiscent of the Fermi acceleration mech-
anism [2, 3], where charged particles are accelerated due
to reflection from shock fronts or moving magnetic mir-
rors. The DSI could provide an effective way to create
sources of terahertz (THz) radiation by using a direct
current. This is particularly important in the modern
industry where compact, efficient, and tunable sources
of THz radiation are needed [4]. Furthermore, the DSI
allows one to detect THz radiation by converting an AC
signal to the DC one [5], which could be used to create
THz detectors.

The recent surge of interest in the DSI is connected
with the experimental observation of the electron hydro-
dynamics in 2D electron gas of (Al,Ga)As heterostruc-
tures [6, 7] and graphene [8–14] (see Refs. [15, 16] for re-
cent reviews on electron hydrodynamics). In addition to
2D systems, evidence of three-dimensional (3D) relativis-
ticlike hydrodynamic electron transport was reported in
the Weyl semimetal tungsten diphosphide WP2 [17]. Be-
cause Dirac and Weyl semimetals provide a suitable plat-
form for investigating electron hydrodynamics in solids,
the DSI in graphene received a lot of attention [18–22].
Despite extensive theoretical studies, the generation of
THz waves by the DSI was not confirmed experimentally
yet. Nevertheless, the inverse effect, namely the rectifi-

cation of AC signals, was reported in Refs. [23–27].

Motivated by the recent experimental progress in Dirac
and Weyl semimetals, we study hydrodynamic instabil-
ities driven by a DC current in relativisticlike 2D and
3D systems with the Dyakonov-Shur boundary condi-
tions amended by a fixed temperature boundary condi-
tion. Since the energy flow can be as important as the
charge flow in a relativisticlike system, we pay special
attention to the energy current in the hydrodynamic de-
scription. One of our main findings is an instability as-
sociated with the entropy waves [28, 29]. We dub it the
entropy-wave instability (EWI). Unlike the conventional
DSI, the frequency of the EWI is determined by the flow
velocity. This makes the corresponding unstable modes
easily tunable. Interestingly, the EWI and DSI occur for
the currents of opposite directions.

Model.— In the hydrodynamic regime, the dynamics
of the electron fluid made of relativisticlike quasiparticles
is described by the Navier-Stokes equation, the charge
and energy continuity relations, and the Gauss law that
relates the electric potential to the charge density. The
corresponding system of equations reads [15, 16]

1

v2F
[∂t + (u ·∇)] (uw) +

1

v2F
wu(∇ · u)

= −∇P + en∇ϕ+ η∆u+
η

d
∇ (∇ · u)− wu

v2F τ
, (1)

−e∂tn+ (∇ · J) = 0, (2)

∂tǫ+ (∇ · Jǫ) = (E · J) , (3)

∆ϕ = 4πe (n− n0) . (4)

Here, w = ǫ + P is the enthalpy, ǫ is the energy density,
P is the pressure, u is the electron fluid velocity, n is
the electron number density, −e is the electron charge,
and vF is the Fermi velocity. Notice that, because of a
relativisticlike dispersion of quasiparticles, the thermody-
namic quantities depend on the fluid velocity in the labo-
ratory (ion lattice) frame. Their explicit expressions are
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given in Supplemental Material (SM) [30]. Unlike other
quantities, the equilibrium charge densities in the labo-
ratory and comoving frames are the same (i.e., n = n0),
since they must be compensated by the charge density
of ions. From general considerations, the hydrodynamic
regime is expected to break down when the fluid velocity
approaches vF . Therefore, we will assume that u ≪ vF .

In Eq. (1), the shear viscosity η is defined as
η = ηkinw/v

2
F , where ηkin is the kinematic shear viscos-

ity [31]. The momentum relaxation is quantified by the
relaxation time τ that describes scattering on impuri-
ties and phonons. In the hydrodynamic regime, we ne-
glect the intrinsic electric and thermal conductivities [15].
Therefore, the electric and energy current densities are
proportional to fluid velocity u, i.e., J = −enu and

J
ǫ = wu.
To study current-driven instabilities, we employ the

conventional linear stability analysis where weak fluctu-
ations are superimposed on top of a steady uniform flow,
quantified by the fluid velocity u0 = u0x̂, e.g.,

ux(t, r) = u0 + u1e
−iωt+ik·r. (5)

Similar expressions are valid also for the other quantities
(n, ϕ, and ǫ). Here, ω and k are the angular frequency
and the wave vector of excitations, respectively. For the
sake of simplicity, we neglect all transverse fluctuations
and focus on the one-dimensional instability assuming
k = kxx̂. Linearizing Eqs. (1) through (4) and using
ansatz (5), we obtain the following set of linear algebraic
equations:

(ω − 2kxu0)u1 +
u0
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(ω − kxu0)w1 − kx

v2F
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u0

τ
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+

w1
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= −kx
en0v

2
F

w0
ϕ1, (6)

(ω − kxu0)n1 = kxn0u1, (7)

ωǫ1 − kxu0w1 − kxw0u1 − i
1
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+
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= −u0kxen0ϕ1, (8)

3D: ϕ1 = −4πe

k2
n1 or 2D: ϕ1 = − e

C
n1. (9)

In the 2D system, we use the “gradual channel” approx-
imation [1, 32], where C = ε/(4πLg) is the capacitance
per unit area, ε is the dielectric constant of the substrate,
and Lg is the distance to the gate. Note that the steady-
state solution of the hydrodynamic equations implies the
presence of electric field E0 = −w0u0/(en0v

2
F τ), which

was explicitly used in Eqs. (6) and (8).

In the dissipationless limit (τ → ∞) and to leading
order in |u0|/vF , the characteristic equation that deter-
mines the spectrum of collective modes reads (see SM [30]
for details)

(ω − u0kx)

[

ω2 − ω2
p + u0kx

(

u0kx − 4

3
ω

)

− v2sk
2
x

]

= 0

(10)
in 3D and

(ω − u0kx)
[

ω (ω − u0kx)− v2sk
2
x (1 + ξ)

]

= 0 (11)

in 2D. Here, vs = vF /
√
d is the sound velocity in a d-

dimensional space (d = 2, 3). The square of the plasma
frequency for a 3D relativisticlike fluid is given by

ω2
p =

4πe2n2
0v

2
F

w0
. (12)

In the 2D case, we introduced dimensionless parameter
ξ = 2e2n2

0/(w0C).

Collective modes.— To clarify the physical origin of
the EWI, it is instructive to determine the solutions to
the characteristic equations (10) and (11) in an infinite
medium without imposing any boundary conditions.

To the leading order in |u0|/vF ≪ 1, we find the fol-
lowing dispersion relations for collective modes:

3D: ω± ≈ ±
√

ω2
p + v2sk

2
x +

2

3
u0kx, (13)

2D: ω± ≈ ±vpkx +
1

2
u0kx, (14)

2D and 3D: ωe ≈ u0kx. (15)

Here, ω± correspond to plasmons. Notice that the plas-
mon spectrum in a gated 2D sample is gapless and linear
in the wave vector. The corresponding plasmon velocity
is vp = vs

√
1 + ξ. The third solution ωe given in Eq. (15)

corresponds to the so-called entropy wave [28, 29].

Considering the important role of the entropy wave,
let us discuss its properties in detail. For simplicity, we
consider the limit τ → ∞. In drastic contrast to plas-
mons, the flow velocity does not oscillate in this wave,
i.e., u1 = 0. It is characterized by oscillating electron
n1 and energy ǫ1 densities and, in turn, the entropy. As
follows from the Navier-Stokes equation (6), the solution
with u1 = 0 is possible because the gradient of pressure
defined by the third term on the left-hand of the equa-
tion is counterbalanced by the Coulomb force provided
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by the term on the right-hand side. To the leading order
in |u0|/vs, one finds that

n1

n0
≈ −

(

vskx
ωp

)2
ǫ1
w0

. (16)

According to Eq. (15), the entropy wave is a downstream
wave, i.e., it propagates with the local flow velocity u0.
It is interesting to point out that modes with similar

dispersion relations appear in geophysics. For example,
the Coriolis force and the pressure gradient compensate
each other in the Rossby wave [33], which is an inertial
wave occurring in rotating fluids. Its dispersion relation
contains the term ∝ u0kx and a term quadratic in kx due
to the coordinate-dependence of the planetary vorticity.
In the absence of background flow, the frequency of the
entropy mode is zero which is analogous to geostrophic
currents [34].
Boundary conditions and instabilities.— Both plas-

mons and entropy waves are stable collective modes in
an infinite medium. Let us show now that the stability
of these modes is affected profoundly by the boundary
conditions. We consider a sample with length L along
the x-direction. In addition to the standard Dyakonov-
Shur boundary conditions, we fix temperature at the left
(x = 0) surface

n1(x = 0) = 0, (17)

Jx(x = L) ≡ n0u1(x = L) + u0n1(x = L) = 0, (18)

T1(x = 0) = 0. (19)

Physically the Dyakonov-Shur boundary conditions cor-
respond to short-circuiting the sample at x = 0 (zero
impedance) (17) and leaving the other side x = L open
(infinite impedance) (18). The condition in Eq. (19) can
be enforced by connecting the boundary to a large ther-
mostat, e.g., made of a metal with high thermal conduc-
tivity and specific heat. It is convenient to solve hydro-
dynamic equations in terms of u1, n1, and ǫ1. One can
show (see SM [30] for details) that oscillations of pressure
P1 are related to ǫ1 as follows:

P1 ≈ ǫ1
d

− ǫ0
2(d+ 1)

d3
u1u0

v2s
, (20)

at the leading order in |u0|/vs. Then, the boundary con-
dition (19) can be reexpressed in terms of ǫ1 and u1, i.e.,

ǫ1(x = 0) ≈ u1u0

v2s

d+ 1

d2
ǫ0

[

1− (d+ 1)
(

1− Λ2
p

)]

, (21)

where Λp = ωp/(vsqTF) and q2TF = 4πe2 (∂µn0) is the
square of the Thomas-Fermi wave vector.
We seek solutions to Eqs. (6) through (9) in the form

n1

n0
=

3
∑

j=1

Cje
ikjx (22)

and define u1, ǫ1, and ϕ1 from Eqs. (7), (8), and (9)
(see SM [30] for the corresponding expressions). Here,
∑

j runs over the three roots kj(ω) of Eq. (10) or (11).
By using the boundary conditions (17), (18), and (21),
we derive the characteristic equation for ω, which defines
allowed modes in the system.
Let us start with the plasmons. To the linear order in

u0, their frequencies are given by the following relations:

ω3D
± ≈ ±

√

ω2
p +

[

vs
π

L

(

l +
1

2

)]2

+ i
2u0

3L

(

3− 2Λ2
p

)

(23)
in the 3D case, and

ω2D
± ≈ ±vp

π

L

(

l +
1

2

)

+ i
u0

2L

(

4− 3Λ2
p

)

(24)

in the 2D case, respectively. In both expressions, l ∈ Z.
(For the results to the quadratic order in u0, see SM.)
Since 0 < Λp < 1 for T 6= 0 (see SM for the temperature
dependence of Λp), the plasmons are unstable in both 3D
and 2D systems. This is an agreement with Refs. [19, 22]
for slow flow [35].
As we see from Eqs. (23) and (24), enforcing the

boundary conditions leads to the DSI for u0 > 0. In
the linear regime, it is quantified by a growing ampli-
tude ∝ eIm[ω±]t. Eventually, the growth will be cut off
by nonlinearities (see, e.g. Refs. [21, 22]). As for the real
part, the plasmon frequencies are quantized due to the
finite thickness of the slab, where kx → π(l+1/2)/L. As
expected, the minimal frequency is determined by ωp in
3D and the inverse sample size in 2D.
Entropy-wave instability and numerical results.— Let

us turn to the entropy mode now. By solving the charac-
teristic equation for large Lωp/vs [36], the corresponding
frequency can be approximated as

ω3D
e ≈ 2πl

L
u0 − i

u0ωp

vs
− i

u0

L
ln

[

3

8

v2s
u2
0

(

1− Λ2
p

)

]

(25)

in 3D and

ω2D
e ≈ 2πl

L
u0 − i

u0

L
ln

[

2

3

v2p

u2
0

(

1− Λ2
p

)

]

(26)

in 2D. For the entropy wave, unlike plasmons, the real
part of ωe is controlled by the flow velocity and the sam-
ple size, i.e., Re [ωe] ∝ u0/L, in both 2D and 3D. The
entropy mode becomes unstable for u0 < 0 due to the
combined effect of the fluid flow and the boundary con-
ditions.
Let us emphasize several distinctions between the plas-

mon and entropy modes. Plasmons are characterized by
large in-phase oscillations of energy and number densi-
ties, as well as have a nonnegligible velocity (see SM [30]
for details). They are also delocalized, i.e., the magnitude
of oscillations is large throughout the slab. In the case
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of entropy modes, oscillations of velocity are suppressed.
Unlike plasmons, these modes show a noticeable localiza-
tion at the x = L interface. This localization becomes
less pronounced for the modes with large l when the real
part |Re [ωe] | & ωp in 3D or |Re [ωe] | & vsπ/(2L) in 2D,
when the entropy waves may hybridize with plasmons.
Our numerical and approximate analytical results for

collective modes in a 3D Dirac system are shown in Fig. 1.
The results for the 2D case are qualitatively similar with
the frequency scale normalized by vs/L instead of ωp, see
SM [30]. The separation between the branches of both
modes become small for realistic system size Lωp/vs ≫ 1.
While this complicates the numerical calculations and ob-
scures the presentation, the qualitative features remain
the same as for Lωp/vs ∼ 10. Therefore, for the sake of
clarity, we use a rather small width L = 10 vs/ωp and
show only the lowest five branches of the numerical re-
sults and the approximate analytical solutions given in
Eq. (25). As one can see, even at such a small width, the
density of solutions quickly increases at u0 → 0 for the
entropy mode. It is clear from Fig. 1 that the approxi-
mate expressions (23) and (25) agree well with the nu-
merical results. As expected, the plasmons have nonzero
frequencies at u0 → 0 and the solutions for the entropy
modes vanish in this limit. We notice also that the in-
stability increment is much larger for the entropy waves
than for plasmons. Therefore, the corresponding insta-
bility should be more pronounced than the DSI for the
same flow velocities.
All in all, different frequencies, growth rates, and spa-

tial profiles of oscillating variables make the EWI pro-
foundly different from the conventional DSI.
Estimates and momentum relaxation effects.— For

typical 3D Dirac and Weyl semimetal parameters, we
use µ0 = 20 meV, T0 = 25 K, and the Fermi ve-
locity vF ≈ 1.4 × 107 cm/s [37]. Then, we estimate
ωp/(2π) ≈ 12 THz and vs ≈ 8 × 106 cm/s. The char-
acteristic length scale is vs/ωp ≈ 1 nm.
For the 2D case, we use graphene as a characteris-

tic example with vF = 1.1 × 108 cm/s, µ0 = 100 meV,
T0 = 100 K, Lg = 100 nm, and ε = 3.3 (assum-
ing a hexagonal boron nitride substrate). In this case,
vs ≈ 7.8× 107 cm/s, ξ ≈ 65.1, and vp ≈ 8.1 vs. The cor-
responding characteristic frequency of collective modes is
vp/L ≈ L−1 [µm] THz, i.e., it also lies in the THz range.
It is instructive to discuss briefly the effects of momen-

tum relaxation and viscosity. In view of a distinct nature
of plasmons and entropy waves, the role of momentum
relaxation in the DSI and EWI is qualitatively differ-
ent. The suppression of the plasmon DSI can be roughly
described by replacing ω → ω − i/τ , where τ is the re-
laxation time. For the parameters used, the instability
disappears when τ . 3L/(2u0) in 3D and τ . 2L/u0

in 2D (we assumed Λp ≈ 1 here). On the other hand,
the EWI is quite robust with respect to momentum re-
laxation. This is explained by the fact that these waves

ω±

ωe

-0.2 -0.1 0.0 0.1 0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u0/vs

R
e[
ω
]/
ω
p

(a)

ω±

ωe

-0.2 -0.1 0.0 0.1 0.2

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

u0/vs

Im
[ω

]/
ω
p

(b)

FIG. 1. The real (panel (a)) and imaginary (panel (b)) parts
of the frequency of collective modes as a function of velocity
u0 in the 3D case. We show only the lowest five branches
of numerical and approximate analytical results. Black solid
lines correspond to the approximate expression (23). The
approximate relation (25) is shown by magenta dashed lines.
We fixed L = 10 vs/ωp, Λp ≈ 0.98, and τ → ∞.

have weak oscillating velocity compared to other oscillat-
ing variables, e.g., |u1|/vs ≪ |n1|/n0; see also SM. The
effects of viscosity can be estimated similarly to Ref. [1]
as ω−i/τ → ω−i/τ−iηkinπ

2/L2. In essence, it also sup-
presses the DSI but becomes important only for a small
width. A more detailed study of the dissipation effects
will be reported elsewhere.
Summary.— We found that Dirac and Weyl semimet-

als, subject to the Dyakonov-Shur boundary conditions
and a boundary condition for temperature, develop an
entropy-wave instability. The latter is connected with the
entropy mode in relativisticlike hydrodynamics, where
the energy current plays an important role. The entropy-
wave instability is absent in materials with a nonrelativis-
tic energy dispersion, where the energy current plays a
secondary role.
We estimate that the growth rate of the entropy-

wave instability is parametrically larger than that for the
Dyakonov-Shur instability. Moreover, the two instabili-
ties occur for the opposite directions of the applied cur-
rent. The frequencies of unstable modes are determined
by the system size and the flow velocity (entropy wave),
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only the system size (2D plasmons), and the plasmon
frequency (3D plasmons). The tunability of the entropy-
wave instability provides the means to detect and dis-
tinguish it from other instabilities in the experiment. It
can be identified by measuring the emission of radiation
with a frequency proportional to the flow velocity. Our
estimates suggest that the current-driven instabilities are
achievable for realistic samples and flow velocities. Thus,
the entropy-wave instability holds a potential for use in
tunable sources of radiation.
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C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler,
R. Clarke, J. E. Cunningham, and M. B. Johnston,
The 2017 terahertz science and technology roadmap,
J. Phys. D. Appl. Phys. 50, 43001 (2017).

[5] M. Dyakonov and M. Shur, Detection, mix-
ing, and frequency multiplication of terahertz
radiation by two-dimensional electronic fluid,
IEEE Trans. Electron Devices 43, 380 (1996).

[6] L. W. Molenkamp and M. J. de Jong, Observation
of Knudsen and Gurzhi transport regimes in a two-
dimensional wire, Solid State Electron. 37, 551 (1994).

[7] M. J. De Jong and L. W. Molenkamp, Hydro-
dynamic electron flow in high-mobility wires,
Phys. Rev. B 51, 13389 (1995).

[8] J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim,
A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watan-
abe, T. A. Ohki, and K. C. Fong, Observation of the
Dirac fluid and the breakdown of the Wiedemann-Franz
law in graphene, Science 351, 1058 (2016).

[9] F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M. S.

Foster, and P. Kim, Enhanced Thermoelectric Power in
Graphene: Violation of the Mott Relation by Inelastic
Scattering, Phys. Rev. Lett. 116, 136802 (2016).

[10] R. Krishna Kumar, D. A. Bandurin, F. M. D. Pel-
legrino, Y. Cao, A. Principi, H. Guo, G. H. Auton,
M. Ben Shalom, L. A. Ponomarenko, G. Falkovich,
K. Watanabe, T. Taniguchi, I. V. Grigorieva, L. S. Lev-
itov, M. Polini, and A. K. Geim, Superballistic flow
of viscous electron fluid through graphene constrictions,
Nat. Phys. 13, 1182 (2017).

[11] A. I. Berdyugin, S. G. Xu, F. M. D. Pellegrino, R. Kr-
ishna Kumar, A. Principi, I. Torre, M. Ben Shalom,
T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini,
A. K. Geim, and D. A. Bandurin, Measuring Hall viscos-
ity of graphene’s electron fluid, Science 364, 162 (2019).

[12] D. A. Bandurin, A. V. Shytov, L. S. Levitov, R. K. Ku-
mar, A. I. Berdyugin, M. Ben Shalom, I. V. Grigorieva,
A. K. Geim, and G. Falkovich, Fluidity onset in graphene,
Nat. Commun. 9, 4533 (2018).

[13] M. J. H. Ku, T. X. Zhou, Q. Li, Y. J. Shin, J. K.
Shi, C. Burch, L. E. Anderson, A. T. Pierce, Y. Xie,
A. Hamo, U. Vool, H. Zhang, F. Casola, T. Taniguchi,
K. Watanabe, M. M. Fogler, P. Kim, A. Yacoby, and
R. L. Walsworth, Imaging viscous flow of the Dirac fluid
in graphene, Nature 583, 537 (2020).

[14] J. A. Sulpizio, L. Ella, A. Rozen, J. Birkbeck, D. J.
Perello, D. Dutta, M. Ben-Shalom, T. Taniguchi,
K. Watanabe, T. Holder, R. Queiroz, A. Principi,
A. Stern, T. Scaffidi, A. K. Geim, and S. Ilani, Vi-
sualizing Poiseuille flow of hydrodynamic electrons,
Nature 576, 75 (2019).

[15] A. Lucas and K. C. Fong, Hydrodynamics of electrons in
graphene, J. Phys. Condens. Matter 94, 2280 (2017).

[16] B. N. Narozhny, Electronic hydrodynamics in graphene,
Ann. Phys. (N. Y). 411, 167979 (2019).

[17] J. Gooth, F. Menges, N. Kumar, V. Süβ, C. Shekhar,
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