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We present a grain boundary (GB) solute drag model in regular solution alloys. The model
accounts for solute-solute interactions in both the bulk and GBs and captures effects such as mono-
layer, multilayer, and asymmetrical segregation. Our analysis shows that deviations from ideal
solution thermodynamics play a paramount role, in which solute drag is shown to scale with solute-
solute interaction parameters. Further, it is found that the asymmetry in GB segregation introduces
an additional component to solute drag. A universal solute drag-GB velocity relation is proposed
and used to explain recent experimental observations of sluggish grain growth in a wide range of
engineering alloys.

Motivation.—Nearly all structural and functional materials are polycrystalline aggregates. They are composed
of crystalline grains that are joined at internal interfaces, termed grain boundaries (GBs) [1]. It is well
accepted that GB dynamical processes play a pivotal role in controlling the formation and evolution of microstructure
and, as a result, many crystal-size dependent materials properties, such as mechanical strength [2, 3] and transport [4,
5]. Even minute amounts of intended or unintended impurities at GBs result in profound changes to GB dynamics.
The preferential segregation of elemental species to GBs has been found to influence materials phenomena, including
diffusion [6], GB cohesion and embrittlement [7], and activated sintering [8, 9]. Of particular interest is the role that
GB solute segregation plays in grain growth, in which curvature-driven GB migration is expressed using the
following for the normal velocity V of the GB [10]

V = Mgb∆P = MgbγgbK. (1)

Here, Mgb is the GB mobility and ∆P = γgbK is the driving force for GB migration, where γgb is the GB energy
and K is the local interface mean curvature. Two primary mechanisms contribute to the migration of doped GBs.
The first is thermodynamic, described using the Gibbs adsorption equation [11, 12]. The segregation of an alloying
element to a GB at a given temperature and pressure leads to the reduction of GB energy and, thus, the driving
force for GB migration. The second effect is kinetic, termed solute drag. Segregated solutes will attempt to remain
within the GB and, as a result, the migrating GB has to drag solute atoms, creating a drag force [13, 14]. Indeed,
recent experimental studies have demonstrated GB solute segregation as a mechanism to mitigate grain
coarsening in a wide range of nanocrystalline alloys [15–20]. However, much of our current understanding has
been focused on the thermodynamic aspect of GB segregation, and the role of solute drag remains poorly understood.
This in part is due to the fact that existing solute drag treatments employ several restrictive assumptions, severely
limiting their ability to quantitatively predict the impact of solute drag on GB migration. Existing solute drag
treatments employ ideal and dilute alloy thermodynamics [13] or do not account for solute-solute
interactions within GBs [21, 22]. However, recent studies revealed heavily doped GBs with solute
levels that are too high to be considered ideal [17, 18, 23–25]. Such studies highlight the need to
account for GB solute–solute interactions, which can be attractive or repulsive, and are in principle
different from those in the bulk grains. For example, atomistic simulations of the free energy of a
Σ5 (310) GB in a model Cu-Ag system revealed repulsive GB solute-solute interactions over some
range of Ag concentrations [26]. Very recently, a discrete model of GB phase transformations and segregation
has been proposed and used to demonstrate the impact of GB phases on boundary mobility [27]. In addition, the
aforementioned solute drag treatments assume monolayer and symmetric segregation profiles; an assumption that
is only valid for a small subset of GBs. Multilayer segregation has been experimentally observed in a wide range
of metallic alloys [28, 29]. Xie et al. [30] revealed asymmetrical solute segregation to tilt GBs in a Mg-based alloy.
The goal of this letter, therefore, is to present a GB solute drag model in regular solution alloys that accounts for
solute-solute interactions in both bulk and GBs and captures effects such as multilayer and asymmetrical segregation.

Model.—In this work, we consider a one-dimensional bi-crystal system with semi-infinite grains, where the first
grain extends in the region x ∈ (−∞,−δ) and the second one is defined over x ∈ (+δ,+∞), resulting in a GB width
of 2δ. The starting point of our treatment is the introduction of a spatially varying indicator function Υ(x) used to
locate the GB region and define solute-GB interactions. Υ = 0 in the bulk grains and peaks to a value of one within



2

-δ δ0
0

1

Gr
ain

 1

Gr
ain

 2

( )

Migrating GB

GB width

FIG. 1: The four Υ functions used to describe GB-solute interactions. The Gaussian (green), smoothed Boxcar
(black), left–(blue), and right–skewed (red) functions.

the GB region. Two canonical functional forms for Υ are explored in this work, representing a wide range of possible
GB segregation profiles. The first is a smoothed Boxcar function, which results in a GB with multilayer segregation,
and the second is a skew-normal function used to account for asymmetrical GB segregation. The functional forms for
Υ(x) are given by
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where (ε, ρ) = (0.8δ, 0.1δ) are the Boxcar function parameters used to define Υ over the GB width 2δ. For the skew-
normal function φ (x) = exp[−x2/2]/

√
2π, Φ(x) = (1 + erf(x/

√
2))/2, and ξ, ω, and α are parameters controlling its

mean, variance, and skewness γsn [31]. Here, we note that α = 0 reduces to the standard Gaussian. Letting η =
(
√

2/π)α/
√

1 + α2, γsn = (4−π)η3/(2(1−η2)3/2) [31], and we set β = (ω/2)/max(φΦ), so Υ peaks at one within the
GB region. In this study, we explore three cases for the skew-normal Υ function: a symmetric Gaussian with (ξ, ω, α) =
(0, δ/

√
8, 0) and a left- and right-skewed functions with (ξ, ω, α) = (±0.81δ, 0.58δ,∓10). Figure 1 shows a schematic

representation of the four Υ functions used in this work. The Gaussian and Boxcar functions represent symmetric
monolayer and multilayer segregation, respectively, whereas the left-skewed (right-skewed) functions account for strong
segregation on the leading (trailing) ends of the migrating GB [travelling left to right according to Fig. 1]. Next,
we use a solute concentration field c(x, t) to describe bulk fb(c, T ) and GB fgb(c, T ) free energies, where T is the
absolute temperature. To account for solute-solute interactions within both the bulk and GB regions, we employ
regular solution thermodynamics for the functional form of the free energy, which is given by [32]

fi = GBi c+GAi (1− c) + kBT

[
c ln (c) + (1− c) ln (1− c)

]
+ Ωic (1− c) , i = gb, b, (3)

where GA(GB) describes the free energy of pure solvent A (solute B) and kB is Boltzmann constant. Ωb and Ωgb are
the regular solution, or heat of mixing, model parameters for the bulk grains and GBs, respectively. The total free
energy of the system is written as ftot = Υfgb + (1−Υ)fb, where Υ is used to interpolate the free energy between the
bulk grains and GBs. The resultant chemical potential µ = µB − µA = ∂ftot/∂c is then given by

µ = GBb −GAb + kBT ln

(
c

1− c

)
+ Ωb(1− 2c)− (G∗ + 2Ω∗c) Υ, (4)

where Ω∗ = Ωgb − Ωb and G∗ = ∆GA −∆GB − Ω∗. ∆GA = GAgb −GAb ∝ γAgbAgb and ∆GB = GBgb −GBb ∝ γBgbAgb,

where γAgb(γ
B
gb) is the GB energy of pure A(B) and Agb is the GB area. Ω∗ describes the deviation of the GB heat

of mixing parameter from the bulk one, where Ω∗ < 0 corresponds to immiscible alloys (i.e., Ωb > 0) and/or ones
with GBs that act as preferential sites for A-B mixing (i.e., Ωgb < 0). A close examination of Eq. 4 reveals that
the coupling between the migrating GB and concentration field is described by a concentration-dependent interaction
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FIG. 2: Solute concentration profiles across the GB for V = 0, 4, and 12 for the four Υ functions used in this work. Here, we
set (c∞,Ωb,Ω∗, G∗) = (0.1, 0.75,−5.75, 5.75).

energy E = −(G∗ + 2Ω∗c(x))Υ(x), in contrast to existing solute drag treatments, which assume a concentration-
independent interaction energy [13, 21]. Next, gradients in the chemical potential result in a mass flux given by
j = −[Dc(1 − c)/kBT ]∂µ/∂x, where c(1 − c)/kBT arises from the thermodynamic factor [33]. D is the
solute diffusion in the direction of the migrating GB and is expressed as D(x) = DoΥ(x), where Do is a
reference GB diffusivity. The steady state solute transport equation expressed in a frame moving with the GB at
a constant velocity V is given by

∂

∂x

[
DoΥc(1− c)

kBT

∂µ

∂x

]
+ V ∂c

∂x
= 0. (5)

Using the GB half-width δ and thermal energy of the system kBT as reference length and energy scales, respectively, the
above transport equation can be made non-dimensional by letting x̄ = x/δ, µ = µ/kBT , E = E/kBT , Ω∗ = Ω∗/kBT ,
G∗ = G∗/kBT , and Ωb = Ωb/kBT leading to V = Vδ/Do, which defines the GB Peclet number. By integrating
Eq. 5 once using the far-field boundary condition c → c∞ as x → −∞, we obtain Υc(1 − c)∂µ/∂x = −V (c− c∞),
which upon using Eq. 4 yields the following governing equation for the concentration field

∂c

∂x
=
g1c

3 + g2c
2 + g3c+ Vc∞

g4 (c2 − c) + g5
, (6)

where g1 = −2Ω∗ΥΥ′, g2 =
(
2Ω∗ −G∗

)
ΥΥ′, g3 = G∗ΥΥ′ − V, g4 = 2Υ

(
Ω∗Υ + Ωb

)
, and g5 = Υ. Here, (· · · )′ =

d(· · · )/dx. Next, the solute drag pressure Pd that the migrating GB experiences can be expressed in non-dimensional
form P d as [13]

P d =
Pdva
kBT

= −
∫ ∞
−∞

(c− c∞)
dE

dx
dx, (7)

where va is the atomic volume. Equation 6 was solved numerically [34–36], where we simulated the concen-
tration fields for all four Υ functions employed in this work and using a far-field bulk concentration c∞ = 0.05, 0.1,
and 0.2. Further, we used V ∈ [0, 100], Ωgb ∈ [−8.25, 0], and Ωb ∈ [0.75, 1.75] in steps of 0.1, 0.25, 0.25, respectively.
Once the concentration fields were obtained, Eq. 7 was numerically integrated to obtain solute drag P d as a function
of V and Ω∗.
Results.—The goal of this letter is to explore GB segregation and solute drag in binary metallic alloys that are

representative of experimentally observed ones, i.e., immiscible alloys with large solute concentration levels [17, 18, 24].
As a demonstration, we explore an alloy with c∞ = 0.1 and we let G∗ = −Ω∗, indicating that the GB energy
in pure A is comparable in magnitude to the one in pure B. Figure 2 shows a plot of concentration profiles
for the four Υ functions used in this work for V = 0, 4, and 12 and using (G∗,Ω∗,Ωb) = (5.75,−5.75, 0.75). For
stationary GBs, our concentration profiles reproduce the exact solution to Eq. 5 with V = 0 [34]. It can be seen
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FIG. 3: For the four Υ functions used in this work: (a) A surface plot depicting solute drag P d as a function of Ω∗ and V. (b)
Slices of the P d surface for various Ω∗ values depicting the shift in the maximum solute drag to larger V with decreasing Ω∗.
In both panels, (c∞,Ωb) = (0.1, 0.75).

that the form of Υ influences both the concentration profile within the GB region and the depleted zone ahead of
the migrating GB. It is also interesting to note that the functional form of Υ serves to break the symmetry in the
concentration profiles. This can be seen in the cases with the left- and right-skewed Υ functions at V = 0, where
the concentration is asymmetric across the GB. V plays a similar role, in which increasing V breaks the symmetry in
concentration profiles as in the cases with the symmetric Boxcar and Gaussian functions in Fig. 2. Further, while the
left- and right-skewed Υ functions used in this work have the same structure except for a mirror reflection about x = 0,
they exhibit drastically different concentration profiles across the migrating GB. For the case with the right-skewed
function, solutes segregate to the trailing end of the migrating GB and, thus, a high level of solutes is maintained
within the GB region. In contrast, the system with the left-skewed function shows that solutes segregate to the leading
end of the migrating GB and, as a result, the GB experiences a large drop in solute concentration with increasing
V. Next, we explore the resultant GB solute drag pressure, where Fig. 3(a) shows surface plots of solute drag P d as
a function of Ω∗ and V using (c∞,Ωb, G∗) = (0.1, 0.75,−Ω∗). It can be seen that solute drag increases rapidly with
decreasing Ω∗. Again, Ω∗ < 0 represents immiscible alloys and/or systems with GBs that favor A-B mixing. Indeed,
the trends depicted in Fig. 3(a) are consistent with experimental observations, in which stagnant grain growth was
observed in a wide range of immiscible alloys [17, 18, 24]. An interesting effect emerges in regular solution alloys,
which deals with the location of the peak point in solute drag–velocity curves. Figure 3(b) shows slices of the P d
surface as a function of V for various values of Ω∗, where it can be seen that decreasing Ω∗ shifts the peak point in
solute drag to larger V values, thus extending the regime where solute drag is effective in mitigating GB migration.
A closer examination of Fig. 3 suggests a self-similar behavior of solute drag, in which P d can be cast in a functional
form as

P d

P
∗ = Gref(V/V

∗
), (8)

where P
∗

= P
∗
(Ω∗) encompasses the role of bulk and GB heat of mixing in the maximum value of solute drag,

and Gref is a reference function of the re-scaled V/V∗, describing the structure of the solute drag–velocity curve.

V∗ = V∗(Ωgb,Ωb) is a characteristic velocity at the maximum drag pressure. For all simulated cases in this work,

solute drag–velocity curves are re-scaled by their respective P
∗

and V∗ values at the maximum point, and the results
are shown in shaded gray lines in Fig. 4(a) for systems with c∞ = 0.05, 0.1 and 0.2. The collapsed solute drag–velocity
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FIG. 4: (a) A plot of the proposed form for Gref [Eq. 9] along with the collapsed solute drag–velocity curves (gray lines) for

alloys with c∞ = 0.05, 0.1 and 0.2 and using the four Υ functions employed in this work. Using Eq. 8, a plot of (b) P
∗

= P
∗
(Ω∗)

and (c) V∗ = V∗(Ωgb,Ωb) for the alloy with c∞ = 0.1 for various values of the bulk heat of mixing Ωb.

curves reveal a Gref function that can be well fitted using

Gref =
1(
V
V∗

) exp

λ2 −
(

ln
(
V
V∗

)
− λ
)2

2λ

 , V
V∗

> 0, (9)

where λ = 2.3 ± 0.09 is a fitting parameter. Figure 4(a) depicts a plot of Gref [Eq. 9] for the alloys with c∞ =
0.05 (red circles), 0.1 (solid black line), and 0.2 (green triangles), demonstrating that Eq. 9 provides a robust fit to all

solute drag profiles. Figure 4(b)–(c) shows respectively a plot of P
∗

and V∗ for the alloy with c∞ = 0.1, where it can

be seen that the maximum solute drag P
∗

scales with Ω∗ (i.e., P
∗ ∝ Ω∗) for all Υ functions explored in this work.

This behavior can be understood by substituting the expression for E in Eq. 7 to yield [34]

P d = G∗

∫ ∞
−∞

(c− c∞) Υ′dx− Ω∗

∫ ∞
−∞

(c2)′Υdx, (10)

where it is evident that P d scales with Ω∗ as in the case with G∗ = −Ω∗ depicted in Fig. 4(b). It is interesting to
note that the first integral on the right hand side of Eq. 10 corresponds to the solute drag predicted by Cahn [13]
for ideal and dilute alloys. However, an additional contribution to solute drag, given by the second integral on the
right hand side of Eq. 10, emerges in regular solution alloys, which depends on the structure of the Υ function rather
than its spatial gradient. This indicates that asymmetric Υ profiles introduce an additional component to solute
drag that scales with Ω∗. This can be seen in Fig. 4(b), where solute drag in systems with the skewed Υ functions
differs from the one with symmetric Gaussian Υ profile, and that this difference grows with decreasing Ω∗ values.
Next, Fig. 4(c) shows a plot of V∗ as a function of the heat of mixing model parameters for the alloy with c∞ = 0.1.
An interesting effect can be seen in which the location of maximum solute drag shifts to larger velocities according
to V∗ ∝ (Ω∗ + Ωb) = Ωgb. This is an indication that negative GB heat of mixing Ωgb plays a stabilizing role in
which decreasing Ωgb shifts the maximum solute drag to large velocities, thus expanding the stability region (i.e., drag
increases with GB velocity) due to solute drag. Finally, we compare our solute drag values with the intrinsic driving
force for curvature-driven GB migration ∆P = γgbK in some of the recently observed thermally stable nanocrystalline
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alloys. Using γgb = 1 J/m2, operating temperature of T=800–1000 K, atomic volume va = 1.0−3.0 Å3, and assuming
a grain size in the range of 50-100 nm resulting in mean curvatures K ≈ 4− 8× 107 m−1, the non-dimensional driving
force for GB migration ∆P = ∆Pva/kBT ≈ 0.003− 0.02, which falls well within the maximum solute drag values P

∗

shown in Fig. 4(b).
Conclusions.—In this letter we presented a solute drag model in regular solution alloys that accounts, at a

mesoscopic scale, for monolayer, multilayer, and asymmetrical segregation. One conclusion from our work
is that the spatial details of GB-solute interactions play a critical role in the magnitude of solute drag, with the case
of multilayer segregation resulting in the largest solute drag. The maximum solute drag was found to scale with
Ω∗, which describes the deviation in the GB heat of mixing from that of the bulk grains. It was also found that
the peak points in solute drag-velocity curves shift to larger GB velocities with decreasing Ω∗, i.e.,
attractive (repulsive) solute-solute interactions within the GB (bulk). This letter motivates further
explorations of GB solute drag effects in engineering alloys.
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