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Abstract: Noise and disorder are known, in certain circumstances and for certain 
systems, to improve the level of coherence over that of the noise-free system.  
Examples include cases in which disorder enhances response to periodic signals, and 
those where it suppresses chaotic behavior.  We report a new type of disorder-
enhancing mechanism, observed in a model that describes the dynamics of external 
cavity-coupled semiconductor laser arrays, where disorder of one type mitigates (and 
overcomes) the desynchronization effects due to a different disorder source. Here we 
demonstrate stabilization of dynamical states due to frequency locking and 
subsequently frequency locking-induced phase locking. We have reduced the 
equations to a phase model that illustrates the mechanism behind the misalignment-
induced frequency and phase synchronization.  

Synchronization in networks of nonlinear elements, including semiconductor diodes, 
has been studied, revealing a variety of spatial and temporal behaviors [1-22]. The 
equations describing the dynamics of a semiconductor diodes and diode arrays have 
been experimentally verified and extensively tested [3, 23-29].  Nearest neighbor 
coupled semiconductor lasers can be phase synchronized [24-26]; however, for large 
arrays, the in-phase solution destabilizes, and spatiotemporal chaos may occur. This 
destabilization occurs because as coupling strength increases, the number of external 
cavity modes increases and the coupled lasers chaotically hop between these fixed-
frequency solutions [3, 27, 29]. 

Although noise and/or spatial disorder typically are expected to reduce coherent 
behavior, under certain circumstances they can improve it [30-45].  In one widely 
studied class, known as stochastic resonance, dynamical noise enables the influence 
of a weak periodic force [30,31]. It has been recently suggested that uncorrelated 
noise can promote rather than inhibit coherence in natural systems and that the same 
effect can be harnessed in engineered systems [32].  Alternatively, quenched disorder 
can suppress or eliminate large deterministic fluctuations of a chaotic system to yield 
synchronized behavior [33-41]. Coupled dynamical systems with highly 
heterogeneous time delays or other system parameters have been studied [22,46-48].  

In this paper, we identify a new mechanism in single-mode semiconductor lasers 
whereby the addition of disorder enhances system-wide coherence.  We find that one 
type of disorder mitigates array desynchronization shaped by a different type of 
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disorder and generates a highly ordered dynamical state. While the nature of 
disorder-enhanced synchronized states could vary both temporally (i.e., fixed point 
solutions, limit cycles, quasiperiodic solutions, etc.) and spatially (external cavity 
modes, in-phase solutions, etc.), we focus our attention on states that lead to the high 
degree of frequency and phase-locking important for a variety of applications. We 
demonstrate a disorder-driven mechanism by which frequency and frequency-
induced phase-locking is achieved. 

We begin with a version of the Lang-Kobayashi (LK) equations that has gain 
saturation nonlinearity and amplitude-phase coupling. We describe the i th laser field 
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Here, 8

0 1.5 10N    is the number of carriers at transparency, 8 11.5 10 psg     and 
72 10s    are the differential gain coefficient and the gain saturation coefficient 

respectively [50,51], 10.5ps   is the cavity loss, 5   is the linewidth 

enhancement factor [52,53], 10.5nsn
  is the carrier loss rate, 0 0( )nJ a N

g


   is 

the pump current, f  is the feedback strength, EF  are complex Gaussian noise, 
*( ), ( ) ( )

i jE E sp ijF t F t R t t      , and 
NF  are real Gaussian noises, 

( ), ( ) ( ) ( )
i jN N n i ijF t F t N t t t        [54,55]. The frequency detuning of the i th laser is 

i  where i  is a random fixed real number distributed with zero mean and 2  

variance, and   represents the variance of the detuning with units ns-1. For 
simulations, we use a fourth order Adams-Bashforth-Moulton stochastic integration 
method [56]. We note that the effects discussed in this paper occur without noise, 
however we include the noise term to illustrate that the phenomenon is robust. 

The delay time between the i  and j  lasers has an offset ( )ij i j     , the vector   is 

a random vector of time-delays drawn from a positive half-normal distribution with zero 

mode, variance 
2

(1 )


 , 
i  and 

j are positive (and hence  ij  is positive). The value of 

time delay ( 3ns  ) is large enough not to consider multiple reflections from the 
misaligned facets [57, 58]. The parameter   is related to the variance of the delay 

misalignment and has units of ns. Here, we note that typically a phase factor proportional 

to the time-delay and carrier frequency 0 iji
e
 

multiplies the feedback term. For a typical 

diode laser, the period is 
0

2


~ 610 ns, whereas the misalignment of the i th laser is i ~

110 ns, consequently, the misalignment parameters can be slightly adjusted by less than a 
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wavelength to negate the phase-shift without significantly changing the delay time 

misalignment. Therefore, we assume that i  is an integer multiple of 
0

2


. We note that 

disorder does not have to be random: engineered or random engineered disorder can lead 

to very similar outcomes promoting synchrony in the system. We therefore do not include 

the phase factor. We have numerically confirmed in several examples that adding 0 iji
e
 

to 

the feedback term does not change the main results of our paper and will only make the 

mathematical description of the underlying mechanism more complicated.  

We consider the decayed nonlocal coupling matrix K  whose ij  element is | |i j

ij xK d   

where (0,1)xd  . In the case of a 2-dimensional array, the matrix element coupling 

the ik  laser with the jl  laser is | | | |

,

i j k l

ij kl x yK d d  , where , (0,1)x yd d  . This matrix 

corresponds in principle to many external cavity designs because the mode structure 
is similar to that of a resonator with "good" properties [14,21,59,60].  

In an array of identical lasers ( 0  ) coupled with decayed nonlocal coupling  K  and 
no misalignment ( 0  ), phase locking occurs as a form of array-wide transverse 
mode selection, where the dynamics of the mode selected by the array are similar to 

the dynamics of a single laser with an effective feedback constant 1

f

M


   where 

1  

is the largest eigenvalue of K  [61,62]. This phase locked state is robust to small 
amounts of frequency detuning and the phase-locking persists even in chaotic 
parameter ranges [61]. However, when detuning becomes too large, the lasers begin 
to desynchronize. If a laser in the array has a frequency 

i  that is far from the central 

frequency 
1

j

jM
 , then it becomes unlikely for the laser to participate in the phase-

locked state. 

Even when natural frequencies of individual lasers are far enough apart to cause 
desynchronization, we find that introduction of facet misalignment causes all lasers 
to converge perfectly to a single frequency. In Figure 1 we show cos( )

i
  for a 10x10 

diode laser array without and with facet misalignment, and corresponding power 
spectra. We have tested different size arrays, 1-dimensional and 2-dimensional, and 
confirmed that the results in Figure 1 are typical for different sizes and parameters.   
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We observe that with 0   the power spectrum of all lasers is broad, indicating 
chaotic behavior. Further, detuning is large enough that average phase 
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 is low. With facet misalignment, phase 

synchronization improves to almost perfect phase synchrony and all lasers lock to a 
single frequency. We have tested disorder-enhanced frequency-locking for 100 
different misalignment disorder realizations and random-phase, zero-amplitude 
initial conditions and find very similar results. 

It is well-known that for a single laser, the Lang-Kobayashi equations’ solution-space 
is determined by the stability properties of the External Cavity Mode (ECM) solutions 
[63-68]. Each solution is a fixed-frequency fixed-intensity solution. As feedback 
strength to a laser is increased, the number of ECMs increases [64]. It has been shown 
[61,62] that coupled array (without misalignments) can synchronize on a collective 
mode and undergo the same feedback-induced bifurcation cascade as a single laser. 
For weak to moderate feedback, this synchrony is stable. However, for sufficiently 
large feedback strength that is required to phase-locking moderately frequency-
detuned arrays, the chaotic behavior destabilizes synchrony [61,62]. In this strong 
feedback regime, "attractor hopping" takes place where the frequencies of the 
individual lasers slowly hop between the ECM frequencies [61,62,64,69,70]. The 
power spectrum for 0   in Figure 1(b) indicates chaotic behavior with many 
frequencies, in contrast to a single dominant frequency for 0   seen in Figure 1(d). 
The presence of misalignment destabilizes all but a single fundamental frequency for 
the system, even though each laser has a detuned central frequency. 

We begin by changing Equation (1) to polar coordinates such that ( )
( ) ( ) ii t

i iE t r t e


  and 

use 0

2
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. Since 

0J  is much higher than threshold, all the ECM 

Figure 1: (a, c) cosi  (blue is -1 and yellow 

is +1) as a function of time (x-axis) and laser 
number (y-axis) for a two-dimensional array 

of 100M   lasers with 0.95x yd d  and 

130 f ns . (b, d) The corresponding 

power spectra. The lasers are detuned with 
variance of 3GHz  . For the top figures, 

the facets are perfectly aligned 0   , and for 

the bottom figures, the facet is misaligned so 
that 0.1  .  
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solutions that we consider are within the gain bandwidth for the system, so we will 
not need to use the carrier number equation for this analysis. We now consider 
dynamics on the timescale of the ECM frequencies. In diode lasers ECM frequencies 
are much lower than relaxation oscillation frequencies [64,69-71]. Therefore, in our 
derivation the effects of carrier dynamics will be effectively treated as fluctuations 
about ECM solutions. We also assume constant (or fluctuating around constant) value 

for field amplitudes .ir  These assumptions are further justified in the Supplement S1. 

Equations (1) reduce to: 
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Combining these, we arrive at a time-delayed phase equation with added noise 
similar to that in [73]: 
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We simplify the noise term as:  
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We can now consider fluctuations of the central frequency of each laser, rather than 
the phase. This treatment is similar to that in [69,72]. We assume, as in the simulation, 
that the individual laser frequencies vary on a time scale longer than  . Then the 
frequency of i th laser can be approximated by ( ) ( ( ) ( )) /i i it t t        and the 
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The time scale of variation of the frequency 
i  is much larger than  . We then 

approximate the instantaneous frequency ( )i t  , assuming it resides on a single 

frequency during a delay interval (which is substantiated by our numerical 
experiments in this parameter range) [72]: 

2 2( ) ( ) 1 1
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According to the simulations presented here and the results of [61,62], the steady 
state solutions of the array in the case of small   and 0   are similar to the ECM 

solutions for a single laser, which satisfy 21 sin( arctan( ))f         . For 

an array of lasers, the array solutions are similarly ECM solutions of a single laser with 
a modified effective coupling [61,62]. We therefore approximate the feedback term in 

the case of 0   using 1 1sin( ( ) ( ) tan ( )) sin( tan ( ))           j i it t : 
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The first approximation in (7) is simply a first-order expansion. We make the stronger 
approximation (8) as an ansatz. This stronger approximation seems to work for the 
set of parameters and system considered in this paper and has been numerically 
verified (see Supplement S2). 

We then arrive at the expression: 
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When 0  , the i  are essentially uncoupled. This does not imply that the actual 

laser dynamics is uncoupled.  For 0   the only frequency-locking mechanism could 
be related to the coupling matrix term

ij

j

K that would be almost equal for large 

arrays. This coupling term may be too small to overcome the random detuning, 
leading to poor frequency - and thus phase-locking.  Equation 10 shows that 
misalignment affects coupling and as demonstrated in Figure 1, can induce frequency 
locking.  

To gain further insight into this mechanism, we recast Equation 10 as a potential 
system: 
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There are three components to the potential function (see Figure 2). The first term, 
which includes the detuning, leads to a parabolic potential with a minimum (for an 

individual laser) at i  so that the potential minima of two detuned lasers are pulled 

apart, as illustrated in Figure 2(a). The second term of the potential can be thought of 
as an ECM contribution. The increase in the number of ECM solutions increases the 
number of local minima. The third term, proportional to  , generates a "spring-like 
force" (Figure 2(b)):  misalignment ( 0  ) effectively forces the frequencies of lasers 

towards one another. The presence of sufficiently large f  makes it possible for two 
lasers' delay coordinates to settle into local minima that have nearly equal frequency; 
however, it is nonzero   that induces exact frequency alignment.  

 

Figure 2: Diagrams of the effective potential functions of two detuned lasers’ delay coordinates for 0  (a) and  

0   (b). The solid lines denote the potentials for a very small value of  f
 and the dash-dotted lines denote 

the potentials for increased  f
.  
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We illustrate the behavior of the potential model (Eq. (11)) in Figure 3 (left panel), 

where approximate steady-state values of i  are plotted as a function of  . The data 

is from a single simulation that starts with 0  , increasing   by 0.001 ns every 400 
time units. It is clear from the figure that as   increases, the frequencies of the lasers 

are pulled together. Further, there are clearly discrete frequencies to which the i  

converge. To test that misalignment in the form of nonzero   is the fundamental 
cause of frequency locking, we use the full system of equations (Eq. (1)) and follow a 
similar procedure to the one shown in the left panel of Figure 3. We consider a system 
of 10 lasers that are initially perfectly aligned. In a continuous simulation, every 
300ns the misalignment scaling   is increased by 0.001 ns. We record the delay 
coordinate for each laser (which should be related to the main frequency of the laser) 
at the last 30ns of each time segment and plot the set of points as a function of 
(Figure 3, right panel). The arrays have the same instance of frequency disorder with 

3GHz  .  

 
Figure 3: (left panel), values of i  are plotted for each laser for a potential model (Eq. (11)) simulation of an 

array of 10 detuned lasers ( 3GHz  ) with 0.8xd  . (right panel), phase delay ( ( ) ( )) / 2t t      is plotted 

for each laser in an array of 10 lasers. This plot is generated from a single simulation with 10 detuned lasers (

3GHz  ) with 0.8xd  and slowly increasing  . The same realizations of ij  and i  are used for each 

simulation. The coupling strength is 
130nsf  . For both figures color represents laser number. 

We have seen that random misalignment can cause perfect frequency locking and 
improve phase synchronization of an otherwise poorly synchronized diode laser 
array. Can engineered disorder achieve a similar effect? Apparently so: Figure 4 
shows an example of phase synchronization in a 100-diode two-dimensional array 
subject to four different types of disorder. In each panel, the data represent 100 
random realizations of disorder, all based on the same disordering principle. Linear 
and random disorder result in a high level of synchrony  S , while sinusoidal and 
constant disorder lead to rather poor synchrony. One could interpret the effect of 
certain types of spatial disorder as reducing spatial symmetries in the time-delay and 
therefore reducing the number of available states to the system (random and linear), 
while others (sinusoidal and constant disorder) conserve or only mildly reduce 
spatial symmetries in time-delays.  
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To summarize, we have demonstrated how one type of disorder can mitigate the 
destructive effect of another type. In this case, disorder in time-delay between laser 
elements seems to overcome the effects of heterogeneity. The reduced model for 
frequency-locking in the system suggests that the mechanism might be relevant in 
other types of systems and that the underlying mechanism adds to the list of other 
well-known mechanisms. We believe the results presented in this paper pose an 
important question about how disorder (random and/or engineered) can be used to 
overcome the effects of heterogeneity and improve frequency and phase-locking in 
large single-mode semiconductor diode arrays. 

Acknowledgement: YB would like to acknowledge support from the Office of Naval 
Research.  

References: 

1. A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization, Cambridge University 
Press, 2003. 

2. J. A.  Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, Rev. Modern Phys. 
77, 137 (2005). 

3. M. C. Soriano, et al., Rev. Modern Phys. 85, 421 (2013). 

4. L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998). 

5. L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Nature 
Commun. 5, 1 (2014). 

6. D. Abrams and S. Strogatz, Phys. Rev. Lett. 93, 174102 (2004). 

7. T. Dahms, J. Lehnert and E. Schöll, Phys. Rev. E 86, 16202 (2012). 

8. F. Sorrentino, L. M.  Pecora, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Sci. Adv. 2 
(4) (2016). 

9. L. M. Pecora, and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990). 

10. J. D. Hart, K. Bansal, T. E. Murphy and R. Roy, Chaos 26, 94801 (2016). 

11. C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, 

Phys. Rev. Lett. 110, 64104 (2013). 

12. J. Shena, J. Hizanidis, P. Hövel, and G. P. Tsironis, Phys. Rev. E 96, 3 (2017). 

13. J. Shena, J. Hizanidis, V. Kovanis, and G. P. Tsironis, Sci. Rep. 7, 1 (2017). 

14. B. Liu, Y. Liu, and Y. Braiman, Opt. Express 18, 7361 (2010). 

Figure 4: Right panel (e) shows synchrony 

level  S  for 100 realizations of 

disorder: (a) random normal distribution (b) 
linear, (c) sinusoidal and (d) constant. All 

disorders have average 0.1.  100 diodes 

are arranged as a 10x10 array. 



10 
 

15. B. Liu, and Y. Braiman, Opt. Express 21, 31218 (2013). 

16. T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005). 

17. E. Kapon, J. Katz, and A. Yariv, Opt. Lett. 9, 125 (1984). 

18. J. R. Leger, and G. Mowry, Appl. Phys. Lett. 63, 2884 (1993). 

19. B. Liu, and Y. Braiman, Opt. Commun. 414, 202 (2018). 

20. A. A. Ishaaya, N. Davidson, and A. A.  Friesem, IEEE J. Sel. Top. Quantum Electron. 
15, 301 (2009). 

21. C. J. Corcoran, and F. Durville, Opt. Express 22, 8420 (2014). 

22. G. Schimmel, I. Doyen, S. Janicot, M. Hanna, P. Georges, G. Lucas-Leclin, J. Decker, 
P. Crump, G. Erbert, S. Kaunga-Nyirenda, D. Moss, S, Bull, E. C. Larkins, U. White, and 
M. Taub,  Proc. of SPIE 9733, 97330I (2016). 

23. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980). 

24. H. G. Winful, Phys. Rev. A 46, 6093 (1992). 

25. H. G. Winful and L. Rahman, Phys. Rev. Lett. 65, 1990 (1990). 

26. R.-D. Li and T. Erneux, Phys. Rev. A 46, 4252 (1992). 

27. B. Kim, N. Li, A. Locquet, and D. S. Citrin, Opt. Express 22, 2348 (2014). 

28. A. Argyris, M. Bourmpos and D. Syvridis, Opt. Express 24, 5600 (2016). 

29. R. L. Davidchack, Y.-C. Lai, A. Gavrielides and V. Kovanis, Physica D 145, 130 
(2000). 

30. R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, (1981); C. Nicolis and G. Nicolis, 
Tellus 33, 225 (1981). 

31. L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Rev. Modern Phys. 70, 223 
(1998). 

32. Z. G. Nicolaou, M. Sebek, I. Z. Kiss, and A. E. Motter, Phys. Rev. Lett. 125, 094101 
(2020). 

33. Y. Braiman, J. F. Lindner, and W. L. Ditto, Nature 378, 465 (1995).   

34. A. Gavrielides, T. Kottos, V. Kovanis, and G. P. Tsironis, Phys Rev E 58, 5529 (1998). 

35. A. Valizadeh, M. R. Kolahchi, and J. P. Straley, Phys. Rev. B 82, 144520 (2010). 

36. P. S. Skardal and A. Arenas, Phys. Rev. E 89. 062811 (2014).  

37. H. Hong, K. P. O’Keeffe, and S. H. Strogatz, Phys Rev. E 93, 022219 (2016).  

38. S. F. Brandt, B. K. Dellen, and R. Wessel, Phys. Rev. Lett. 96, 034104 (2006).  

39. R. Chacon and P. J. Martinez, Phys. Rev. Lett. 98, 224102 (2007).  

40. Y. Braiman, W. L. Ditto, K. Wiesenfeld, and M. L. Spano, Phys. Lett. A 206, 54 
(1995). 

41. Y. Zhang, J. L. Ocampo-Espindola, I. Z. Kiss, A. E. Motter, PNAS, 118(21), 
e2024299118 (2021). 

42. H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J. L. Rogers, Optics 
Letters 30, 1339 (2005).  

43. J. E. Rothenberg, Proc. SPIE 6873, Fiber Lasers V: Technology, Systems, and 
Applications, 687315 (2008).  



11 
 

44. E. Bochove and S. A. Shakir, IEEE Journal Selected Topics Quantum Electronics 15, 
320 (2009). 

45. B.  Abaie, M. Peysokhan, J. Zhao, E. Antonio- Lopez, R. Amezcua-Correa, A. 
Schülzgen, and A. Mafi, Optica 5, 984 (2018).  

46. S.  Petkoski, A. Spiegler, T. Proix, P. Aram, J.-J. Temprado, and V. K. Jirsa 

Phys. Rev. E 94, 012209 (2016). 
47. W.-T. Yu, J. Tang, J. Ma, and X. Yang, Europhys. Lett. 114, 50006 (2016). 

48. K. Wiesenfeld, P. Colet, and S. H. Strogatz, Phys. Rev. Lett. 76, 404 (1996). 

49. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980). 

50. C. Masoller, IEEE J. Quantum Electron. 33, (1997). 

51. G. Agrawal, IEEE J. Quantum Electron. 23, 860 (1987). 

52. C. Masoller, IEEE J. Quantum Electron. 33, 795 (1997). 

53. C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982). 

54. M. Yousefi, D. Lenstra, and G. Vemuri, IEEE J. Sel. Top. Quantum Electron. 10, 955 
(2004). 

55. M. Soriano, IEEE J. Quantum Electron. 47, 368 (2011). 

56. R. Toral, and P. Colet, Stochastic Numerical Methods: An Introduction for Students 
and Scientists. (Wiley, 2014). 

57. K. Hirosawa, F. Shohda, T. Yanagisawa, and F. Kannari, Proc. SPIE 9342, 934216 
(2015). 

58. N. Nair, E. Bochove, A. B. Aceves, M. R. Zunoubi, and Y. Braiman, Proceedings of 
SPIE 9343, (2015). 

59. D.-S. Seo, J.-D. Park, J. G. McInerney, and M. Osiński, IEEE J. Quantum Electron. 25, 
2229 (1989). 

60. Xing-Guang Wang, Bin-Bin Zhao, Yu Deng, Vassilios Kovanis, and Cheng Wang, 
Phys. Rev. A 103, 023528 (2021). 

61. N. Nair, E. Bochove, and Y. Braiman, Opt. Comm. 430, 104 (2019). 

62. N. Nair, E. Bochove, and Y. Braiman, Opt. Exp. 26, 20040 (2018). 

63. V. Rottschafer and B. Krauskopf, Int. J. Bifurc. Chaos 17, 1575 (2007). 

64. C. Masoller and N. B. Abraham, Phys. Rev. A. 57, 1313 (1998). 

65. B. Tromborg, J. Osmundsen and H. Olesen, IEEE J. Quantum Electron. 20, 1023 
(1984). 

66. S. Yanchuk, and M. Wolfrum, J. Appl. Dyn. Syst. 9, 519 (2010). 

67. P. M. Alsing, V. Kovanis, A. Gavrielides, and T. Erneux, Phys. Rev. A. 53, 4429–4434 
(1996). 

68. B. Kim, N. Li, D. Choi, A. Locquet, and D. S. Citrin, Proc. SPIE  9134, 965 (2014). 

69. J. Mørk, M. Semkow, and B. Tromborg, Electron. Lett. 26, 609 (1990). 

70. D. Lenstra, Opt. Commun. 81, 209 (1991). 

71. R. Vicente, J. Mulet, M. Sciamanna, and C. R. Mirasso, Proc. SPIE 5349, (2004). 

72. O. D’Huys, T. Jüngling, and W. Kinzel, On the Interplay of Noise and Delay in Coupled 
Oscillators, in Control of Self-Organizing Nonlinear Systems. Understanding Complex 
Systems., edited by E. Schöll, S. Klapp, P. Hövel (Springer, Cham, 2016) pp. 127-145. 



12 
 

73. M. K. S. Yeung, and S. H. Strogatz Phys. Rev. Lett. 82, 648 (1999). 

74. A. I. Khibnik, Y. Braiman, T. A. B. Kennedy, K. Wiesenfeld, Physica D. 111, 295 
(1998). 

 


