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We study the representational power of Boltzmann machines (a type of neural network) in quan-
tum many-body systems. We prove that any (local) tensor network state has a (local) neural network
representation. The construction is almost optimal in the sense that the number of parameters in
the neural network representation is almost linear in the number of nonzero parameters in the tensor
network representation. Despite the difficulty of representing (gapped) chiral topological states with
local tensor networks, we construct a quasi-local neural network representation for a chiral p-wave
superconductor. These results demonstrate the power of Boltzmann machines.

A generic state in quantum many-body systems is clas-
sically intractable for the reason that the dimension of the
Hilbert space grows exponentially with the system size.
However, physically relevant states are often non-generic
in the sense of having structures, making use of which we
may overcome the curse of dimensionality. Traditionally,
tensor networks are used to characterize such structures
and efficiently represent states in classical simulations [1].
Recently, Carleo and Troyer |2] proposed neural networks
as an (alternative) ansatz for quantum many-body states.
Benchmark calculations suggest that this is a promising
approach.

Besides numerical experiments, it is also important to
explain the working principle of neural network methods.
One step in this direction is to characterize the represen-
tational power of neural networks. Here we specialize to
Boltzmann machines 3], and our main contributions are:

e We prove that any (local) tensor network state can
be converted into a (local) neural network without
significantly increasing the number of parameters.

e Despite the difficulty of representing (gapped) chi-
ral topological states with local tensor networks [4],
we construct a quasi-local neural network represen-
tation for a chiral p-wave superconductor.

The first result states that the representational power of
neural networks is at least not weaker than that of tensor
networks. The second gives a physically relevant example
where neural networks may go beyond tensor networks.
In combination, these results provide complementary ev-
idence that neural networks are a promising ansatz.
Boltzmann machines.—We provide a minimum back-
ground for those people with no prior knowledge of Boltz-
mann machines. The goal is to motivate the definition
of neural network states, rather than a general-purpose
introduction from the perspective of machine learning.
Formally, a Boltzmann machine is a type of stochastic
recurrent neural network. In the language of physicists, it

is a classical Ising model on a weighted undirected graph.
Each vertex (also known as a unit or a neuron) of the
graph carries a classical Ising variable s; = +1 and a
local field h; € R, where j is the index of the vertex.
For a reason that will soon be clear, the set of vertices is
divided into the disjoint union of two subsets V and H
so that |V| + |H| is the total number of units. Vertices
in V are called visible units, and those in H are called
hidden units. For notational simplicity, we assume that
visible units have small indices 1,2,...,|V], and hidden
units have large indices |V| + 1,|V| + 2,...,|V| + |H]|.
Each edge of the graph carries a weight w;; € R that
describes the interaction between s; and si. The energy
of a configuration is given by

E({s;}) =) hjsi+ > wjksjsk. (1)
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A restricted Boltzmann machine [3] is a Boltzmann ma-
chine on a bipartite graph, i.e., wji # 0 only if the edge
(4, k) connects a visible unit with a hidden unit.

At thermal equilibrium, the configurations follow
the Boltzmann distribution. Without loss of gener-
ality, we fix the temperature T = 1. Let Z =
Z{sj}e{i1}X<\V\+\H\> e~ P{si}) be the partition function.
The probability of each configuration {s;} is given by
e~ E(si} )/Z . Furthermore, the probability of each con-
figuration {s;<|v|} of visible units is the marginal prob-
ability obtained by summing over hidden units:

P{SJ'S\VI}Z% >
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The process of training a Boltzmann machine is spec-
ified as follows. The input is a (normalized) probability
distribution @ over the configurations of the visible units.
(Here we assume, for simplicity, that @ is given. In prac-
tice, @ may not be explicitly given but we are allowed
to sample from @.) The goal is to adjust the weights



w, such that the probability distribution P (2)) best ap-
proximates (as measured by Kullback-Leibler divergence
or some other distance function) the desired distribution
@. This is a variational minimization problem. We min-
imize a given objective function of P with respect to the
ansatz (), in which the weights are variational parame-
ters. Note that Monte Carlo techniques are usually used
in training a Boltzmann machine.

An interesting question is whether an arbitrary @ can
be exactly represented by a Boltzmann machine. Due to
the strict positivity of exponential functions, it is easy
to see that the answer is no if the probability of some
configuration is zero. Nevertheless,

Theorem 1 (Le Roux and Bengio [6]). Any probability
distribution @ can be arbitrarily well approximated by an
restricted Boltzmann machine, provided that the number
|H| of hidden units is the number of configurations with
nonzero probability. In general, |H| < 2V

This result can be slightly improved [7]. Indeed, a sim-
ple counting argument suggests that an exponential num-
ber of hidden units is necessary in general. As a function
from {£1}*IVI to [0,1] with one constraint (normaliza-
tion), the probability distribution @ has 2IVI — 1 degrees
of freedom. Therefore, a sufficiently well approximation
of @) requires an exponential number of bits.
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Note that summing over hidden units is very different
from taking partial trace, for the latter usually results in
a mixed state. Similarly, a neural network state based on
a restricted Boltzmann machine is given by Eq. (8] on a
bipartite graph as described previously.

A very minor modification of the proof of Theorem [I]
leads to

Corollary 1. Any N-qubit quantum state |1) can be
arbitrarily well approrimated by a neural network state
based on a restricted Boltzmann machine with wj, €
R, h; € C, provided that the number |H| of hidden units
is the number of configurations with nonzero probability
amplitude. In general, |H| < 2V,

The formalism of neural network states developed thus
far applies to general quantum many-body systems. We
now consider the situation that the qubits are arranged
on a lattice. The lattice allows us to introduce the notion
of locality 9] (with respect to the shortest path metric),
which underlies almost all successful methods for simu-
lating quantum lattice systems. Hence, it is desirable to

Neural network states.—Carleo and Troyer |2] devel-
oped a minimum extension of Boltzmann machines to the
quantum world. In this extension, each vertex still carries
a classical spin (bit). This is very different from another
extension [8], in which each vertex carries a quantum spin
(qubit). Tt should be clear that the latter extension is
more “quantum,” for it is operated by quantum comput-
ers. In the former extension, we use classical computers
to simulate quantum many-body systems.

Expanded in the computational basis {£1}*IVI a
quantum state |¢) of |V| qubits can be viewed as a
function from {+1}*IVl to B(0,1) with one constraint
(normalization), where B(0,1) denotes the closed region
|z| < 1 in the complex plane. Recall that a probabil-
ity distribution @ is characterized by the probability of
each configuration. In comparison, a state |¢) is charac-
terized by the probability amplitude of each configura-
tion. This analog between classical probability distribu-
tions and quantum states motivates the following ansatz
dubbed neural network states.

Consider a graph as before. The visible units corre-
spond to physical qubits, and hidden units are auxiliary
degrees of freedom (to be summed over). The local field
h; € C at each vertex and the weight w;; € C carried
by each edge are promoted to complex numbers because
probability amplitudes are generally complex. An (un-
normalized) neural network state based on a Boltzmann
machine is given by

efzjhij*ZMwijjskHSl’SQ,.'_,SIV‘}>. (3)

incorporate locality into the neural network. To do this,
we define a position for each unit. Let each site of the
lattice carry a visible unit and some hidden units. We
require that w;i # 0 only if the units j and k are close
to each other. As an example, Deng et al. [10] showed
that the ground state of the toric code in two dimensions
can be exactly represented as a local neural network state
based on a restricted Boltzmann machine.

Using variational quantum Monte Carlo techniques
(“quantum Monte Carlo” is not a quantum algorithm;
rather, it is just a classical Monte Carlo algorithm applied
to quantum systems), Carleo and Troyer [2] performed
practical calculations for quantum lattice systems in one
and two spatial dimensions. For the models they studied,
they observed that variational approaches based on neu-
ral networks are at least as good as those based on tensor
networks. It seems worthwhile to devote more study to
the practical performance of neural network states.

Tensor network states.—We provide a very brief intro-
duction to tensor network states following the presenta-



tion in Ref. [11], Subsection 6.3 or [12], Subsection 2.3.
Then, it will be clear almost immediately that any (lo-
cal) tensor network state has a (local) neural network
representation.

An [-dimensional tensor T is a multivariable function
T:{1,2,...,d1}x{1,2,...,da}x---x{1,2,...,d;} = C,
and D = max;d; is called the bond dimension. It is
easy to see that T' can be reshaped to an {’-dimensional
(" = > ,[logy d;| with [-] the ceiling function) tensor
T’ with bond dimension 2 by representing every input
variable in binary. Moreover, there is a straightforward
way to identify T’ with an I’-qubit unnormalized state
expanded in the computational basis:

= >
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(4)
Thus, a neural network state with |V| visible units is a
|V'|-dimensional tensor with bond dimension 2. Indeed,
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Note that only visible units are allowed to be contracted
on, and such visible units become hidden after the con-
traction. Thus, the Boltzmann machine after contraction
has |V |+ |V'| —2c visible and |H|+|H’| 4 ¢ hidden units.

A multi-qubit state [1)) is a tensor network state if
its tensor representation 7" () can be obtained by con-
tracting a network of C-dimensional tensors, where C'is a
small absolute constant. The bond dimension D of a ten-
sor network is defined as the maximum bond dimension
of each constituting tensors in the network.

Theorem 2. Any tensor network state 1)) can be arbi-
trarily well approximated by a neural network state based
on a Boltzmann machine with w;, € R, h; € C, provided
that the number |H| of hidden units is sufficiently large.
Let O(T;) be the number of nonzero elements in a consti-
tuting tensor T;, and #(T;) be the number of elements.
It suffices that

n

[H| =) (0(T}) + logy #(T) + O(1)), (6)

Jj=1

where n is the number of constituting tensors. Further-
more, the number of parameters in the neural network
representation is upper bounded by

Z 0(T;)logy #(T;) + less significant terms.  (7)
J

Jltsi

each visible unit corresponds to an input variable to the
tensor. As a restatement of Corollary [I]

Corollary 2. Any [-dimensional tensor T can be arbi-
trarily well approximated by a restricted Boltzmann ma-
chine with wj, € R, h; € C, provided that the number
|H| of hidden units is the number of nonzero elements in

T. In general, |H| < H§:1 d;.

Informally, tensor contraction is defined as fol-
lows.  Suppose we have two 3-dimensional tensors
T1(j1, j2, Js), T2(41, 33, js) of shapes di x dg x d3, dy x d2 %

%, respectively. Their contraction on the middle indices
is a 4-dimensional tensor Z;lz:l Ty (41,7, 33)T2(41, 4, 35)-

Similarly, suppose we have two Boltzmann machines
with units {s;} = VUH, {s}} = V'UH’, weights w;x, w},
and local fields h;, h;-, respectively. Their contraction on
the first ¢ visible units is defined as identifying s; with

s; and then summing over s; for j =1,2,...,c:

()

The neural network is local (translationally invariant) if
the tensor network is local (translationally invariant).

Proof. We first represent each T} with a restricted Boltz-
mann machine as in Corollary 2] and then contract the
restricted Boltzmann machines in the same way as T}’s
are contracted. Note that the Boltzmann machine af-
ter contraction is generically not restricted. The first
term on the right-hand side in Eq. (6]) is the total num-
ber of hidden units in all constituting restricted Boltz-
mann machines, and the other terms are responsible for
the production of hidden units in the contraction pro-
cess. Equation (7)) is the total number of parameters in
all constituting restricted Boltzmann machines, and the
contraction process does not introduce any new parame-
ters. It is obvious that the construction is locality- and
translational-invariance-preserving. [l

This result is almost optimal in the sense that the num-
ber of parameters in the neural network representation is
at most a logarithmic (in the bond dimension) multiple
of the number of nonzero parameters in the tensor net-
work representation. In cases that the tensors are sparse
(possibly due to the presence of symmetries), this conver-
sion to neural network states has the desirable property
of automatically compressing the representation.

As an example, we specialize Theorem 2] to matrix
product states [13].

{Sc+17 Sc+2y -y S\V|}>®|{S/c+l7 S/c+27 R STV’|}>



Corollary 3. To leading order, any N -qubit matrix prod-
uct state with bond dimension D has a neural network
representation with 2N D? hidden units and 4N D? logy D
parameters.

Chiral topological states.—It seems difficult to obtain
a local tensor network representation for gapped chiral
topological states. Early attempts did not impose lo-
cality |14] or just target at expectation values of local
observables rather than the wave function |15]. Recent
progress |4, [16] shows that local tensor networks can de-
scribe chiral topological states, but the examples there
are all gapless. Indeed, Dubail and Read |4] even proved
a no-go theorem, which roughly states that for any chiral
local free-fermion tensor network state, any local parent
Hamiltonian is gapless. Here we construct a Boltzmann
machine that approximates the unique ground state of a
(gapped) chiral p-wave superconductor. The error of ap-
proximation is an inverse polynomial in the system size,
and the neural network is quasi-local in the sense that
the maximum distance of connections between units is
logarithmic in the system size. This example explicitly
demonstrates the power of Boltzmann machines.

From now on, we consider fermionic systems, for which
it is necessary and there are multiple ways to account for
the exchange statistics of fermions. We take a straight-
forward approach: Each vertex carries a Grassmann vari-
able ¢; rather than an Ising variable s;, and the sum over
Ising variables in hidden units are replaced by the Grass-
mann integral. We work in the second quantization for-
malism. Let ¢;j, c} for 1 < j < |V| be the fermionic
annihilation/creation operators, and |0) be the vacuum
state with no fermions. We identify c; with &; so that
=]0) represents a fermionic state, where = is an arbi-
trary Grassmann variable in the algebra generated by

£1,&,...,&§v|. As an analog of Eq. (@),

|H|

v = | [e=mmse [Lagu | 0 ®)
=1

is an (unnormalized Gaussian) fermionic neural network
state. Note that we have set h; = 0. This class of states
appeared previously in Ref. [4].

One of the simplest examples of a chiral topological
phase is the p+ip superconductor [17]. For concreteness,
we consider the lattice model in Ref. [18]. Let cz, c;, be
the fermionic annihilation and creation operators at the
site ¥ € Z? on a two-dimensional square lattice. Let
i=(1,0) and j = (0,1) be the unit vectors in the 2 and
y axes, respectively. The Hamiltonian is

_ T . T . T T . T
H= Z Co 70T + Cy47C7 + iz + icy, <z + h.c.
TEL?

—2u Z C;Cf, weR. (9)

TEZ?
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Let k = (kg,k,) be the lattice momentum, and .- dk
be the integral over the Brillouin zone (—m,n]*2. To
slightly simplify the presentation, we will be sloppy about
unimportant overall prefactors in the calculations below.
The Fourier transform

c;:/ eii’;'fc%dg, ci:/ ei’;'chdE (10)
BZ BZ
leads to

H = HE d];, HE = AEC}%CT_E + A%C_]-C‘CE + 2M]-€‘C£.C]-€‘
(11)

in the momentum space, where
Ay =sink, +isink,, M; = cosk, +cosk, —p. (12)

The quasi-particle spectrum is given by

B =2,/|Ap2 + M2

= 2y/sin” ky + sin? k, + (cosky + cosk, — p)2. (13)

Hence, H is gapless for 4 = 0,£2 and gapped otherwise.
The unique ground state of H is

v

=

3 Jaz CL‘CJL dk

£10), (14)

=

) e

where |0) is the vacuum state, and

’U]-C‘ZAE, UEZ,/|A;€‘|2+M§—M§ (15)

so that vz = —v_jp and up = u_. It is not difficult to see
that the model (@) is a trivial superconductor for |p| > 2.
It is topological superconductors with opposite chirality
for =2 < 4 < 0 and 0 < p < 2, respectively.

Indeed, a state of the form (I4]) has an exact local neu-
ral network representation (§) [4] if ug, v are constant-
degree trigonometric polynomials, i.e., polynomials in
ettks eFky - In particular, we have each site & carry a
visible and a hidden unit. To simplify the notation, the
Grassmann variable in the visible unit is identified with
c;, and that in the hidden unit is denoted by &z. The
Fourier transform of Grassmann variables is defined as
(o = g e 7 dk. In the momentum space, it is easy
to see that the state (I4]) can be represented as

) o [ lagglele Fosseek- b)) o), (1)

where [[d¢;] denotes the integral over all Grassmann
variables in the momentum space with a proper measure.
Transforming to the real space, [d{;] becomes [];c4- &z,
and the exponent in parentheses is local because ug, vy
are trigonometric polynomials (the maximum distance of
connections between units is proportional to the degree of
the trigonometric polynomials). Thus, Eq. (I6]) reduces



to Eq. ([§) with additional properties: (i) the neural net-
work representation is translationally invariant; (ii) there
are no connections between visible units.

Generically, exact representations are too much to ask
for; hence approximate representations are acceptable.
Furthermore, we usually have to work with a finite sys-
tem size in order to rigorously quantify the error of the
approximation and the succinctness of the representa-
tion. We now justify these statements with an example.
Matrix product states constitute an excellent ansatz for
ground states in one-dimensional gapped systems [19]. A
generic gapped ground state in a chain of N spins (i)
cannot be exactly written as a matrix product state with
bond dimension e®); (ii) is not expected to be approxi-
mated (in the sense of 99% fidelity) by a matrix product
state with bond dimension O(1) because errors may accu-
mulate while we truncate the Schmidt coefficients across
every cut [20]; (iii) can be approximated by a matrix
product state with bond dimension N°() [21].

The goal is to construct an as-local-as-possible neural
network representation (8)) for the ground state of the
model ([@).

Proposition 1. Let 1)) be the ground state of the model
(@) on a (finite) square lattice of size L x L with periodic
boundary conditions. There exists a neural network state
|¢) such that the fidelity |($|v)] > 1 —1/poly(L) and that
the mazimum distance of connections between units is
O(etlog L), where € is the energy gap.

Proof. For concreteness, we consider 0 < p < 2 so that
the only common zero of ugz and vy is at k=0, It
should be clear the same result applies to other values of
1 provided that the system is gapped. The main idea is
to approximate uy (I3) with a trigonometric polynomial.
The approximation error is exponentially small in the
degree of the polynomial because uj is a real analytic

function of k. The locality of the neural network is due
to the smallness of the degree.

We now provide the details of the construction. As-
sume L is odd. This slightly simplifies the analysis, but
it should be clear that a minor modification of the anal-
ysis leads to the same result for even L. We abuse the
notation by letting BZ denote the set of viable points
{0,427/L,...,£(L — 1)7/L}*? for lattice momenta in
the Brillouin zone, and hBZ = {k € BZ|k, > 0V (k, =
0Aky, > 0)} be the “right half” of BZ. The Fourier
transform (0] becomes discrete:

1 o 1 .

T —ik-% T _ ik-Z

=7 Z e s =7 Z e ey, (17)
EeBZ keBZ

and the Hamiltonian in the momentum space is given by

H=2 Z Mcc Mﬂc iC k—i—A cﬂc ﬂ—I—Aac _iC

EehBZ

+2Mp_gel_cp_g. (18)

The normalized ground state is

Q) lvp),

kehBZ

vgctci</ug
[ihg) oc e FTR-ETTE|0). (19)

Consider the normalized state
(m)y _ (m) (m) v
6) = Q) ler™), o) o e
kehBZ

(m)

where u:.

ot (m)
CEC—E/uE |

0), (20)

is a degree-m trigonometric polynomial ob-
tained by expanding uj in Fourier series and computing
the partial sum up to order m. Similar to Eq. [I8), |¢(™))
has an exact neural network state representation () such
that the maximum distance of connections between units
is O(m).

As up is a real analytic function of E, its Fourier coeffi-
cients of order m decay exponentially as e~™/¢ for some
constant & > 0. The decay rate £ is a function of p and
can be solved analytically; see, e.g., Ref. [22], Section

2. In the regime the energy gap € is small, we obtain
& = O(1/e). Therefore,

ul™ — ug| = O(e™™/%), k€ hBZ. (21)

Furthermore, the absolute values of ug,v;: are bounded
away from 0:

lugl > QUL™?),
Equations (1)), (22) imply

Fi= 10U |0p)| > 1=1/poly(L), ¥k €hBZ (23)

log| > Q(L7Y), VkehBZ. (22)

for m = O(¢log L) with a sufficiently large constant pref-
actor hided in the big-O notation. As [t)), (™) are
product states in the momentum space, the fidelity is
given by

2 1
("™ |y)] (1—1/poly(L))°F) =1—-—— .
K | H fk /poly(L)) poly(L)
EehBZ
(24)
We complete the proof by letting |@) = [¢(™)). |

It is not difficult to see that |¢) is well approximated by
a thermal state at inverse temperature O(log L). Since
the thermal state has a projected entangled pair approx-
imation with quasi-polynomial bond dimension ¢Ollog” L)
[23-125], there exists a projected entangled pair state
|¢) with bond dimension 000" L) guch that [{(pl)] >
1 — 1/poly(L). Tt is an open problem to improve the
bond dimension of |¢) to poly(L).
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Note added.—Part of this work was presented on
November 27, 2014 (Thanksgiving day!) at the Perime-
ter Institute for Theoretical Physics. Very recently, we
became aware of some related papers [26-28], which stud-
ied the relationship between neural and tensor network
states using different approaches. In particular, Theorem
and Corollary B are stronger than Theorem 3 in Ref.
[28]. After the present work was on arXiv, some other
related papers [29-36] appeared.
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