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Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum
many-body states in analog quantum simulation. We describe a protocol where spatial deformations
of the many-body Hamiltonian, physically realized on the quantum device, serve as an efficient
variational ansatz for a local EH. Optimal variational parameters are determined in a feedback
loop, involving quench dynamics with the deformed Hamiltonian as a quantum processing step, and
classical optimization. We simulate the protocol for the ground state of Fermi-Hubbard models in
quasi-1D geometries, finding excellent agreement of the EH with Bisognano-Wichmann predictions.
Subsequent on-device spectroscopy enables a direct measurement of the entanglement spectrum,
which we illustrate for a Fermi Hubbard model in a topological phase.

Introduction – Significant progress has been made
in developing quantum simulation hardware [1, 2]. In
atomic physics, analog quantum simulators for Bose and
Fermi Hubbard models are realized with ultracold atoms
in optical lattices [3–10], and spin models can be imple-
mented with Rydberg tweezer arrays [11–13] and trapped
ions [14, 15]. A notable recent development is spatial
and temporal control, allowing addressing of single lattice
sites, and single-shot single-site read out of atoms [1, 2],
e.g. as spin and density resolved measurements with a
quantum gas microscope [16, 17]. The generic many-
body Hamiltonian realized in analog quantum simulators
has a (quasi-) local structure, Ĥ(g) =

∑
i giĥi, where

the ĥi act non-trivially on spatially contiguous sites i
as few-body operators. Achieving local control thus im-
plies tunability of the spatial couplings gi. Analog quan-
tum simulators are, therefore, capable of not only realiz-
ing homogeneous, i.e. ‘in-bulk’ translationally invariant
Hamiltonians Ĥ =

∑
i ĥi, but a whole family of spa-

tially deformed Hamiltonians Ĥ(g) with a spatiotempo-
rally programmable pattern g≡{gi}. This programma-
bility provides us with opportunities to design specific
classes of quantum protocols, running on the quantum
simulator, to achieve tasks of interest in quantum many-
body physics.

Below we describe a protocol based on a hybrid
classical-quantum algorithm [18] to learn the entangle-
ment Hamiltonian (EH) of a subsystem A of a quantum
many-body state [see Eq. 1]. In the protocol, a deformed
Hamiltonian Ĥvar

A (g) plays the role of an ansatz for the
EH, where g represents a small set of variational parame-
ters scaling polynomially with the system size. These are
determined efficiently in a quantum feedback loop from
monitoring the time evolution of certain local, experi-

FIG. 1. Quantum variational learning (QVL) of EH a) sub-
system A is time-evolved with the deformed Hamiltonian
Ĥvar
A (g), while measuring observables 〈ÔA〉t at time instances
{tn}. A classical computer optimizes a cost function C(g) in a
feedback loop, minimizing the time variation of observables.
b) Fermi Hubbard Model, and subsystem A. c) Time vari-
ation of observables indicating convergence in the feedback
loop from the initial g0 to final gopt parameters, d) corre-
sponding cost function vs. iteration number of the optimizer.
The colormap visualizes the distance to the final parameter
vector ∆g = |gi − gopt|. Data plotted in c) and d) were
obtained in simulated runs for a 2-leg Fermi-Hubbard ladder
[see text and Fig. 2a),b)], monitoring double site occupancy
by means of a quantum gas microscope.

mentally accessible observables evolving under Ĥvar
A (g).

As outlined in Fig. 1a), our protocol differs from clas-
sical learning (CL) methods [19–22] by implementing a
quantum processing step through time evolution with the
deformed Hamiltonian, acting in situ on the quantum



2

state stored in quantum memory of the quantum sim-
ulator. A unique feature of the present setting is that
the learned EH is also available as a physical Hamil-
tonian on the quantum device for further experimental
studies, such as, e.g., determining the entanglement spec-
trum (ES) through spectroscopy. This is in contrast to
tomography-based methods [23, 24], where the ES is ob-
tained by diagonalizing the (learned) EH on a classical
computer.

We emphasize that by devising variational quantum al-
gorithms in the framework of analog simulation we build
on existing, scalable and high-fidelity quantum hard-
ware, capable of realizing physically motivated varia-
tional ansätze for the EH. As illustrated below, this hard-
ware efficiency includes the ability to represent fermions
in Hubbard models naturally as fermionic atoms and as-
sociated fermionic quantum operations. While digital
algorithms [25–31] offer in principle a broader scope of
applicability, they come in general with the significant
hardware requirement of a freely programmable quantum
computer and involve a technical overhead for realising
fermionic models.

Ansatz for EH as deformed Hamiltonian – The entan-
glement Hamiltonian (EH) H̃A and the collection of its
eigenvalues {ξα}, the entanglement spectrum (ES), are
central to our understanding of complex quantum states
as they completely characterize all correlations in a sub-
system A. Given a many-body state ρ̂, they are related
to the reduced density matrix on A via

ρ̂A ≡ Tr¬A[ρ̂] ≡ exp(−H̃A) =
∑
α

e−ξα |ΦαA〉 〈ΦαA| . (1)

The ES can distinguish different quantum phases, e.g.
its low-lying part reflects the structure of the conformal
field theory (CFT) describing edge excitations in a topo-
logical phase [32, 33]. Moreover, the EH plays a key role
in the holographic approach to geometry emerging from
entanglement [34].

In many physically relevant cases, H̃A is a defor-
mation of the system Hamiltonian Ĥ. A seminal ex-
ample is provided by the Bisognano-Wichmann (BW)
theorem of local quantum field theory (QFT) [35]. It
states that the EH for the ground state of a relativis-
tic QFT and a subsystem A defined by x1 > 0 is given
by H̃A =

∫
x∈A dxβ(x)Ĥ(x)+c. Here Ĥ(x) is the energy

density of Ĥ, c is a normalization constant and the
EH is parametrized by a local “inverse temperature”
β(x) = 2πx1, taking the form of a linear ramp. We
emphasize that the BW theorem holds in arbitrary spa-
tial dimensions [36]. Remarkably, BW-like deformations
also provide excellent approximations for the EH of the
ground state in a variety of lattice models [37–40]. Based
on this observation, Ref. [41] proposed that, assuming the
validity of a lattice version of the BW theorem, the BW-
deformed Hamiltonian can be physically realized and
probed in quantum simulation experiments. In contrast,

our hybrid classical-quantum learning algorithm explic-
itly finds the optimal variational approximation for the
EH among a class of deformed system Hamiltonians.

Protocol – The key ingredient of the algorithm
is the capability of the quantum simulator to re-
alize unitary evolution under deformed Hamiltonians
Ĥvar
A (g) =

∑
j⊂A gj ĥj , acting for some time t on a sub-

system of interest A. As illustrated in Fig. 1a, we first
prepare a desired quantum state, then evolve the subsys-
tem according to Ĥvar

A (g), and monitor the evolution of

local observables ÔA in the subsystem,

〈ÔA〉t ≡ TrA

[
ÔAe−iĤ

var
A (g)tρ̂Ae

iĤvar
A (g)t

]
. (2)

The classical-quantum feedback loop consists in find-
ing an optimal set gopt by minimizing the time variation
of the observables, i.e. we wish to enforce 〈ÔA〉t = const.
In practice, we achieve this by minimizing a cost function

C(g) =
∑
t∈T,ÔA∈O

(
〈ÔA〉t − 〈ÔA〉0

)2
, where T = {ti}

denotes a set of observation times. The precise choice of
observables ÔA is not critical for our protocol, as we ex-
pect the quantum dynamics to scramble them into com-

plex many-body operators as long as
[
ÔA, Ĥvar

A (g)
]
6= 0.

Thus, monitoring a small number of local observables
at different observation times {ti} provides a sufficient
number of constraints for the algorithm to find an op-
timal variational approximation to the EH. This is effi-
cient in view of the quasi-local ansatz with a small set of
variational parameters, and we refer to the Supplemental
Material [42] for a detailed technical discussion, includ-
ing the choice of observables and the role of conservation
laws.

We note that the EH is obtained from Eq. (2) only
up to a scale factor and an overall shift, H̃var

A =

βĤ(gopt)+c, i.e. the ES is determined as universal ratios,
κα = (ξα − ξα0

)/(ξα1
− ξα0

). As discussed in the Supple-
mental Material [42], which includes the references [43–
47], these scale factors can be determined in additional
steps.

Learning the EH of ground states of the Fermi-Hubbard
model – We now demonstrate the quantum EH learning
protocol for the Fermi-Hubbard model (FHM). The FHM
is a paradigmatic model in condensed matter physics for a
strongly interacting quantum many-body system, and in
two spatial dimensions (2D) is central to studies of high-
temperature superconductivity. The FHM is described
by the Hamiltonian

ĤFHM =− J
∑
〈jk〉,σ

(
ĉ†jσ ĉkσ + H.c.

)
+ U

∑
j

n̂j↑n̂j↓ − µ
∑
jσ

n̂jσ ,
(3)

with ĉjσ (ĉ†jσ) destruction (creation) operators for
fermions on lattice site j with spin σ = {↑, ↓}. The
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FIG. 2. Quantum variational learning (QVL) of the EH for
different geometries of a Hubbard model. Left column: results
for a 5-site subsystem on the right boundary of a 10-site Hub-
bard chain with U/J = 1 and µ/J = −0.5. Right column:
results for a single chain in a 2-leg ladder with U/J‖ = 8,
J⊥/J‖ = 2 and µ/J = 0. a), b) lattice geometries with

highlighted subsystems. c), d) variational parameters goptj

obtained from optimization with 6 × 104 experimental runs
(QVL), fixing gj=1. The optimal parameters are rescaled (cor-
responding fidelities shown in Fig. 3) for comparison with the
EH parameters obtained by numerically optimizing the rela-
tive entropy (black solid lines, see also Supplemental Material
[42]). e), f) Universal ratios κα calculated by diagonalizing the

variationally obtained EH Ĥvar
A (gopt) in comparison to exact

eigenvalues of the reduced density matrix ρA. All simulations
are performed for the ground state in the zero magnetization
sector. Error bands are computed by repeating the entire
optimization run 10 times and computing the standard error.

first term describes hopping of particles with tunneling
strength J between neighboring sites 〈jk〉, the second
term represents an on-site interaction with strength U
with densities n̂jσ = ĉ†jσ ĉjσ, and the last term involves
chemical potentials µσ. The FHM is realized in state-of-
the-art quantum simulators employing fermionic atoms
trapped in optical lattices [5–8].

We illustrate quantum variational learning (QVL) of
the EH structure for the FHM with two examples (see
Fig. 2). The first example considers a 1D chain with
subsystem A on the right boundary [Fig. 2a)]. The sec-
ond example is a two-leg ladder, which is cut horizontally
defining A as the lower leg [Fig. 2b)]. For the two-leg lad-
der, we consider a slight modification to the FHM with
anisotropic hopping J → J‖, J⊥ between horizontal and
vertical links, respectively. In both FHM examples, we
assume the total system is in its ground state with half
filling, and in the zero magnetization sector. As an ansatz
for the deformed Hamiltonian to be learned for these ex-
amples, we choose Ĥvar(g) =

∑
j∈A gj ĥj , defined on a

subsystem A, with quasi-local operators centered on lat-
tice site j:

ĥj = −
∑

k∈〈jk〉∩A

∑
σ

J

2
(ĉ†jσ ĉkσ + H.c.) + Un̂j↑n̂j↓ − µ

∑
σ

n̂jσ,

(4)

where for the horizontally cut ladder, J = J‖. We note

that for the full system, ĤFHM ≡
∑
j ĥj , and that the

ansatz Ĥvar(g) =
∑
j∈A gj ĥj can thus be viewed as a

discretized lattice version of the BW deformation, as
originally defined in the continuum. Realizing such a
deformed Hamiltonian in the laboratory requires local
control over the Hamiltonian parameters J, U , and µσ,
which can be achieved e.g. by using digital mirror devices
to shape optical potentials [48], and through Raman in-
duced laser couplings [49]. Alternatively, time evolution
with a deformed Hamiltonian can also be naturally imple-
mented as digital quantum simulation, achieved with spa-
tially homogeneous Hamiltonians acting for short times
on properly chosen subregions of A (see Supplemental
Material [42]).

We numerically simulate the full protocol of determin-
ing the EH (Fig. 1), including quantum projective mea-
surements and variational optimization with an adaptive
DIRECT algorithm, as used in Ref. [15], constraining
the total number of experimental runs to 6 × 104. As
observables to be monitored, we choose the double oc-
cupancy on lattice sites for the first example [50], and
for the second example local tunneling elements J σj,j+1 =

ĉ†jσ ĉj+1,σ+H.c., which can be accessed by inducing super-
exchange oscillations accompanied by site-resolved mea-
surements in a quantum gas microscope [51, 52].

For the 1D Hubbard chain, Fig. 2c) shows the opti-
mized parameters gopt, consistent with the BW expecta-
tion of an approximately linear ramp, but bending over to
a parabolic shape due to boundary effects. For the two-
leg FHM with horizontal cut, Fig. 2 d) shows the learned
deformation as approximately flat, again in agreement
with a minimal version of BW. We can understand this
result perturbatively in the limit U � J⊥/|| for J⊥ � J||.
In this case, following [53], the EH is proportional to the
system Hamiltonian restricted to a single leg of the lad-
der.

Having learned the operator structure of the EH
Ĥvar(gopt) =

∑
j g

opt
j ĥj , and having a realization of the

EH available as physical Hamiltonian on the quantum de-
vice, we can proceed to extract entanglement properties
encoded in the EH with both classical or quantum (on
device) postprocessing. Below we focus on the entangle-
ment spectrum, which is obtained either by diagonalizing
the EH classically, or via ‘on device’ spectroscopy, which
potentially scales to regimes beyond classical postpro-
cessing.

Classical postprocessing of the EH – Fig. 2e,f) shows
universal ratios κα obtained by diagonalizing the learned
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FIG. 3. Error assessment vs. number of experimental runs
NM : Maximally achievable Uhlmann fidelity with respect to
the exact density matrix ρ̂A as a function of the total num-
ber of measurements for a half-partition of a 10-site Hubbard
chain (NA = 5) for U/J = 1 as shown in the inset. For com-
parison, the blue data points represent a learning protocol
based on classical post-processing of measurement data [19].
The data show the median of the fidelity when the experiment
is repeated 100 times. We plot a selection of representative
error bars which indicate 2σ confidence intervals.

EH. The results compare favorably to the exact values
within 2σ error bands. To further quantify the perfor-
mance of the EH reconstruction, we compare in Fig. 3b)
the Uhlmann fidelity F(ρ̂varA (g), ρ̂A) [54] of the recon-
structed state ρ̂varA (g) with respect to the exact density
matrix ρ̂A as a function of the total number of experimen-
tal runs. The analysis is performed for a 5-site subsystem
on the right boundary of a 10-site Hubbard chain as de-
picted in Fig. 3. We present results for a parametrization
of the form Ĥvar

A (g) =
∑
j∈A gj ĥj , with operators ĥj as

defined in Eq. (4), which reaches fidelities close to 1 with
a remarkably small number NM ∼ O(104) of experimen-
tal runs. In our numerical experiments, we initialize each
variational search with a random parameter vector g0.

The blue curve in Fig. 3b) shows the behavior of the
Uhlmann fidelity for a classical protocol to learn the EH
as developed by [19] for system Hamiltonians, which we
adapt here to EHs. This approach is based on measuring
local observables ÔA which involve next- and next-next-
nearest neighbor atomic currents (see Supplemental Ma-
terial [42]). This is in contrast to QVL, where measure-
ment of nearest-neighbour currents and local densities is
sufficient. Fig. 3 shows results, where we estimate the
scaling with a finite number of runs NM by adding inde-
pendent Gaussian noise to the observables OA, with zero
mean, and variance ε2 = Var(OA)/NM (see Supplemen-
tal Material [42] for details). While QVL is bound to
the restriction of implementing deformed Hamiltonians
on the quantum device, convergence is achieved signifi-
cantly earlier compared to CL. We note that for CL the
number of experimental runs may be reduced by a fac-
tor ∼NA by grouping operators OA into commuting sets

FIG. 4. Entanglement spectroscopy of the Heisenberg model
on a ladder. a) Schematic of the setup, with subsystem A the
right half of a 12-site ladder. We fix the ratio of horizontal
to vertical couplings as J||/J⊥ = 0.25 and tune the relative
strength of diagonal and vertical couplings with λ ∈ [0, 1].
b) Level scheme of the low-lying part of the entanglement
spectra, indicating the dominant transitionsillustrated here
for ε = 0. c) Measured entanglement spectrum (see main
text), for small values ε of the perturbation, in the trivial
phase (λ = 0). d) Same as c) at λ = 1. e) Measured entan-
glement spectra versus λ, at ε = 0.05J̄⊥. All spectra are com-
puted assuming 5000 measurements per observable at each
time, measured up to t = 1000/J̄⊥.

which can be measured simultaneously.
On-device entanglement spectroscopy – The realiza-

tion of the EH as a physical Hamiltonian on the quantum
device allows measurement of the ES via spectroscopy
[41] (see also [55]). Below we illustrate such a quantum
post-processing step and simulate entanglement spec-
troscopy. To this end, we evolve the reduced system ρ̂A
once again, but now with a perturbation added to the
EH, Ĥvar

A (gopt) + εĤ ′. For an appropriately chosen weak

perturbation εĤ ′, the subsystem’s response exhibits a
quantum beat pattern with frequencies ∝ (ξα − ξβ) that
can be extracted by extrapolating ε→ 0.

For simplicity, we consider the FHM on a ladder geom-
etry [see Fig. 4a)] in the limit of large on-site interaction
U � J , where it reduces to the Heisenberg model de-
scribed by the Hamiltonian

Ĥ =
∑
〈ij〉

ĥij , ĥij = J̄
∑

a=x,y,z

σ̂ai σ̂
a
j , (5)

with the sum running over neighboring sites on the ladder
and we abbreviated J̄ = J2/(2U). We first apply our pro-

tocol to find an optimal EH, Ĥvar
A (gopt) =

∑
〈ij〉A g

opt
ij ĥij ,

for the subsystem A indicated in Fig. 4a). The ex-
pected level structure of the corresponding ES is shown
in Fig. 4b). In order to induce transitions that re-
solve the degeneracy of the low-lying levels, we then
evolve with the learned EH perturbed by a local mag-
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netic field, Ĥ ′ =
∑
i0=1,2

~Bi0 · ~̂σi0 , supported on the two
sites i0 = 1, 2 at the edge of the entanglement cut indi-
cated by the red circles in Fig. 4a), with ~B1 = (1, 0, 1)

and ~B2 = (1, 0,−1/2).

We probe the response of the system by measur-
ing f(t) = 〈

∑
j∈A(−1)jx+jy σ̂zj (t)〉 and plot the corre-

sponding discrete cosine transformed spectrum F (ν) in
Fig. 4c). The dominant lines correspond to transitions
between the ground state and the first three excited
states of H̃A. Beating between excited states is signifi-
cantly weaker due to the thermal occupation in the state

ρ̂A = exp
(
−H̃A

)
. Our results clearly demonstrate that

the values ξ1,2,3 − ξ0 can be obtained by extrapolating
the peak positions to ε = 0. Importantly, the Zeeman-
type splitting provides a clear resolution of the three-fold
degeneracy. In an experiment, the ability to resolve this
splitting will be limited by the coherence time of the de-
vice.

Measuring the ES and resolving its degeneracies con-
stitutes a powerful tool to distinguish different quantum
phases and identify topological order. Motivated by a
recent experiment [56], we demonstrate this possibility
in a generalized model, where we decrease the inter-leg
couplings

√
1− λ J̄⊥ while increasing new diagonal terms

with strength λ J̄⊥, as indicated by the dashed and dot-
ted links in Fig. 4a). This situation can be realized ex-
perimentally by displacing the two legs along the longitu-
dinal direction, thereby smoothly interpolating between
the previous analysis at λ = 0 and a Haldane phase at
large λ. According to the Li-Haldane conjecture [57], this
topological phase can be directly detected with the ES
by counting the degeneracy of the ground state of H̃A.
The simulated spectrum in Fig. 4d) shows six dominant
transition lines merging at ν ≈ 0 as ε → 0, which is a
direct signature of the expected four-fold degeneracy of
the ground state of H̃A in the thermodynamic limit (in
the zero magnetization sector). Finally, we sweep λ from
0 to 1, as illustrated in Fig. 4e), where the structure of
resonant peaks shifts to ν = 0. This directly reflects the
expected changes of the ES [cf. Fig. 4b)], demonstrating
that the on-device entanglement spectroscopy enables us
to probe the transition from the trivial to the topological
phase.

Outlook – Quantum variational learning provides a
universal experimental toolset in the ongoing experi-
mental effort to characterize novel equilibrium and non-
equilibrium quantum phases [13] via their entanglement
structure. Entanglement data obtained in the present
framework can serve as input for further classical anal-
ysis, e.g., to train machine learning algorithms to iden-
tify quantum phases [58]. The fact that the optimization
is performed on device is a key feature of our protocol,
which not only enables the subsequent spectroscopy, but
also provides robustness against potential miscalibration
of the experimental setup. Additionally, since our cost

function is built from local observables, we expect the op-
timization to behave favorably under the barren plateau
problem [59], though further investigations are required.
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