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We study the properties of a weakly interacting Bose-Einstein condensate (BEC) in a flat band
lattice system by using multiband Bogoliubov theory, and discover fundamental connections to the
underlying quantum geometry. In a flat band, the speed of sound and the quantum depletion
of the condensate are dictated by the quantum geometry, and a finite quantum distance between
the condensed and other states guarantees stability of the BEC. Our results reveal that a suitable
quantum geometry allows one to reach the strong quantum correlation regime even with weak
interactions.

Introduction — Geometric and topological properties
of Bloch wave functions in periodic lattice systems [1, 2]
- i.e. the quantum geometry – are important to describe
a range of physical phenomena. Tremendous progress
in the understanding of the physical relevance of con-
cepts such as the quantum metric [3–5], Berry curva-
ture, Chern number, and other topological invariants has
been made [6–12], and experimental techniques to probe
quantum geometry have been developed [13, 14]. Quan-
tum geometric phenomena are especially striking in sys-
tems that feature dispersionless (flat) Bloch bands, where
the kinetic energy is quenched and quantum states are
strongly localized [15]. Due to a vanishing kinetic energy,
the transport properties of a flat band are determined by
the overlap between Bloch states, that is, by the quantum
geometry [16]. Indeed, previous studies have shown that
the superfluid density of flat band systems is determined
by the Chern number, quantum metric or Berry curva-
ture [17–19] despite the fact that effective mass of the
electrons in a flat band is infinite. Recently it has been
proposed [20–23] that the observed superconductivity in
twisted bilayer graphene [24, 25] stems from quantum
geometric properties of quasi-flat Bloch bands.

Geometric properties of quantum states are widely
studied in fermionic systems but less is known about
their role in bosonic systems where particles can undergo
Bose-Einstein condensation (BEC). While bosonic flat
band geometries have been studied experimentally [26–
34], and quantum geometry is experimentally accessible
in bosonic systems [13], understanding how the quan-
tum geometry affects the physical properties of a BEC
is still lacking. In this letter and in our more detailed
joint work of Ref. [35], by using multiband Bogoliubov
formalism, we theoretically unravel fundamental connec-
tions between a weakly-interacting BEC taking place in
a multiband lattice system and the quantum geometric
properties of the underlying Bloch states. Our focus is
on the systems where the condensation takes place within
a flat band. We show how the quantum geometry cru-

cially determines the stability and excitation properties
of a flat band BEC.

A fundamental question on flat band BEC relates to
the stability of the condensate: can the bosons coherently
condense to a single flat Bloch band when all the other
flat band states have the same energy? As a first guess,
one could think that the interaction effects renormalize
the energy dispersion so that the lowest excitation band
is not flat anymore, ensuring the stability of a BEC. We,
however, show that one can realize a stable BEC even
in the limit of vanishing interaction strength U . Intrigu-
ingly, a non-zero quantum distance D(q) (defined below
with q being the quasi-momentum and 0 ≤ D(q) ≤ 1)
between the flat band states prevents the scenario where
all the particles escape the condensate even if such ex-
citations do not in the limit of U → 0 cost any extra
energy. This mechanism guarantees a stable flat band
BEC. Because some of the non-condensed Bloch states
can overlap with the condensed state (i.e. D(q) < 1), in
the limit of U → 0 there can exists finite quantum deple-
tion, i.e. finite density of non-condensed bosons nex. This
is in stark contrast to conventional dispersive-band BEC
where limU→0 nex = 0 [36, 37]. We also find that the
quantum geometric origin of a stable BEC is manifested
by the speed of sound cs which turns out to be deter-
mined by the quantum metric [1, 2] at the condensed
state, i.e. the second derivative of the quantum distance.

Importantly, we show that limU→0 nex is determined
by the quantum geometry only and not by the total den-
sity ntot. Therefore, by decreasing the condensation den-
sity, one can increase the relative depletion of the conden-
sate, nex/ntot, even in the U → 0 limit. In this way, the
importance of quantum fluctuations and correlations can
be significantly enhanced. We demonstrate this in our
joint work [35] where we calculate the density-density
correlation function to show that the quantum geome-
try can provide access to a regime dominated by inter-
action effects even with infinitesimally small U . This is
highly relevant in systems where interactions are inher-
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ently small such as photon and polariton condensates.
In this letter, we consider a two-dimensional kagome

lattice geometry that supports a flat band. In our joint
work of Ref. [35], we provide the details of the calcula-
tions for a generic flat band system and furthermore show
the results for density-density correlations and superfluid
density. These two works together thus establish funda-
mental connections between quantum geometry and var-
ious physical properties of weakly interacting flat band
condensates.

Kagome flat band model — We consider a Bose-
Hubbard Hamiltonian H = H0 + Hint in kagome lat-
tice [see Fig. 1(a)] whose one-particle Hamiltonian in

momentum-space reads H0 =
∑

k

(
c†kαHαβ(k)ckβ −

µc†kαckα
)

with summations over repeated indices as-
sumed. Here, ckα annihilates a boson of momentum k
in the αth sublattice and µ is the chemical potential.
For kagome lattice there exists three sublattices and the
hopping matrix H(k) is

H(k) = 2t

 0 cos(k1/2) cos(k2/2)
cos(k1/2) 0 cos(k3/2)
cos(k2/2) cos(k3/2) 0

 , (1)

where ki = k · ai for i = {1, 2} and k3 = k1 − k2. Here
ai are the basis vectors [Fig. 1(a)] and t > 0 is the
nearest-neighbour hopping. One can diagonalize H(k)
as H(k)|un(k)〉 = εn(k)|un(k)〉, where εn(k) (|unk〉) are
the eigenenergies (Bloch states) and n is the band index
so that ε1(k) ≤ ε2(k) ≤ ε3(k). The lowest Bloch band is
strictly flat, i.e. ε1(k) = −2t, see Fig. 1(b).

The interaction Hamiltonian is Hint =
U

2N

∑
αk,k′,q c

†
kαck−qαc

†
k′αck′+qα, where N is the

number of unit cells and U > 0 describes the repulsive
on-site interaction. Because the lowest band is flat, it is
the interaction term that determines the momentum kc
and Bloch state |φ0〉 ≡ |u1(kc)〉 in which the BEC takes
place [38]. Via a mean-field analysis [37, 38] it is shown
that for kagome lattice the condensation takes place in
one of the Dirac points, e.g. in kc = [4π/3, 0] [black dot
in Fig. 1(b)] with |φ0〉 = [−1,−1, 1]T . For this Bloch
state the particle density is distributed uniformly among
all three sublattices so that the repulsive Hubbard
interaction is minimized [38].

To analyze the stability and excitation properties of
BEC, we utilize the multiband Bogoliubov approxima-
tion (details are provided in Ref. [35]) where the bosonic
operators for the condensate are treated as complex num-
bers, i.e. we write ckcα =

√
Nn0〈α|φ0〉, where n0 is

the number of condensed bosons per unit cell and 〈α|φ0〉
is the projection of |φ0〉 to the αth sublattice. In the
Bogoliubov theory, one considers only the interaction
terms that are quadratic in fluctuations ckα and c†kα with
k 6= kc. The total Hamiltonian is then H = Ec + HB ,
where Ec is a constant giving the ground energy of the
condensate, and the Bogoliubov Hamiltonian HB de-

FIG. 1. (a) Kagome lattice geometry. The unit cell is shown
as a blue parallelogram and black arros are the basis vectors
a1 and a2. Purple lines depict NN hopping terms of strength
t. (b) Bloch bands of the kagome lattice with t = 1 along
the path connecting the high-symmetry points shown in the
inset. The lowest band is strictly flat. The black dot marks
the Dirac point k = [4π/3, 0] in which BEC can take place.
(c) Speed of sound cs for the kagome flat band BEC as a
function of U . Total density was chosen to be ntot = 3, i.e.
one particle per lattice site. We also show the weak-coupling
result of Eq. (5) as a solid line. The energy scale Eg = 3t is
the energy gap from the flat band to the dispersive bands at
kc.

scribes the fluctuations of the condensate:

HB =
1

2

∑
k

′
Ψ†kHB(k)Ψk, (2)

where HB(k) is a 6× 6 matrix given by

HB(k) =

[
H(k)− µeff ∆

∆∗ H∗(2kc − k)− µeff,

]
,

Ψk = [ck1, ck2, ck3, c
†
2kc−k1, c

†
2kc−k2, c

†
2kc−k3]T ,

[∆]αβ = δα,βUn0/3,

[µeff]αβ = (ε0 −
Un0

3
)δα,β . (3)

The primed sum in Eq. (2) includes the momenta for
non-condensed states only, i.e. k 6= kc and 2kc−k 6= kc.

The excitation energies of the BEC can be accessed
by diagonalizing L(k) ≡ σzHB(k), where σz is the Pauli
matrix acting in the particle-hole space [39]. We then ob-
tain Bogoliubov bands of the energies E3(k) ≥ E2(k) ≥
E1(k) ≥ 0 ≥ −E1(2kc−k) ≥ −E2(2kc−k) ≥ −E3(2kc−
k). Positive (negative) energies describe quasi-particle
(-hole) excitations and the corresponding quasi-particle
(-hole) states are labelled as |ψ+

m(k)〉 (|ψ−m(k)〉). The
lowest quasi-particle energy band becomes gapless at kc,
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i.e. E1(k → kc) = 0, which corresponds to the Gold-
stone mode emerging from the spontaneous gauge U(1)
symmetry breaking of the complex phase of the BEC
wavefunction [36, 37].

Speed of sound of kagome flat band BEC — As the
speed of sound cs for a BEC is given by the slope of the
gapless Goldstone mode E1(k) at kc, we write k = kc+q,
where q << 1. We then unitary transform L(k) to the
Bloch band basis and discard the dispersive bands of free-
dom to obtain the 2 × 2 matrix Lp(k) projected to the
flat band space:

Lp(k) =
Un0

3

[
1 α(q)

−α∗(q) −1

]
(4)

for q→ 0. Here, α(q) ≡ 〈u1(kc +q)|u1(kc−q)〉. Diago-
nalizing (4), we find the Goldstone mode as E1(kc+q) =
Un0

3 D(q), where D(q) =
√

1− |α(q)|2 is the Hilbert-
Schmidt quantum distance [40] which for fermionic flat
band systems was recently shown to dictate the spread
of the Landau levels [41]. By definition, 0 ≤ D(q) ≤ 1.
We can immediately see that non-zero D(q) is required
to have finite speed of sound cs.

By Taylor expanding the Bloch states up to second
order in q, one finds for cs

cs =
2Un0

3

√
g1(kc), (5)

where the quantity inside the square root is called quan-
tum metric and defined as [1]

gnµν(k) = Re
[
〈∂µun(k)|

(
1− |un(k)〉〈un(k)|

)
|∂νun(k)〉

]
.

(6)

with the notation ∂µ = ∂
∂kµ

. In case of kagome lattice

we have g1
xx(kc) = g1

yy(kc) ≡ g1(kc) and g1
xy(kc) =

g1
yx(kc) = 0. For anisotropic systems (for derivation

see [35]), cs(θq) = 2Un0

M

√
êTq g

1(kc)êq, where êq = q/|q|,
tan θq = qy/qx, [g1]µν = g1

µν , and M the number of or-
bitals.

A remarkable consequence of Eq. (5) is that a finite
quantum metric of the condensed state guarantees fi-
nite cs – and thus possibility for superfluidity – even if
the condensation takes place within a strictly flat band.
Conversely, by measuring the speed of sound of a flat
band condensate, one can extract the quantum metric at
the condensation point kc. This should be compared to
fermionic systems, where flat band superfluidity is guar-
anteed by finite Chern numbers or integrals of the quan-
tum metric over the first Brillouin zone (BZ) [17, 18, 42].
Moreover, in Ref. [43] it was shown that for a fermionic
two-body problem, the effective mass mC

eff of the Cooper
pairs within a flat band is inversely proportional to the
the quantum metric integrated over the whole BZ. Via

the usual dependence of cs ∝ 1/
√
mC

eff, one could an-

ticipate a similar relationship between cs and quantum

geometry. However, the result presented here is different:
only the quantum metric of the condensed Bloch state is
needed, not an integral over the whole BZ. Furthermore,
in Ref. [44] the speed of sound was analyzed for spin-orbit
coupled Fermi gases: the Goldstone mode was shown to
depend on the momentum-space integrals in which the
quantum metric is convoluted with other non-geometric
terms. Thus, the significance of quantum geometry was
obscured due to the presence of more prominent non-
geometric contributions. In contrast to this, we have
shown that the quantum geometry plays a dominant role
for determining the speed of sound in a flat band BEC.

In Fig. 1(c) we plot cs for the kagome flat band con-
densate as a function of U by numerically extracting
the speed of sound from the full Bogoliubov Hamilto-
nian (2). Moreover, we also plot the weak-coupling result
of Eq. (5). The agreement at small U is excellent.

Note that we find linear Goldstone modes for flat band
condensates. In contrast, in Refs. [45, 46] the sound mode
for spin-orbit (SO) coupled BEC is quadratic in the di-
rection of dispersionless one-dimensional flat band. This
is due to the inter-sublattice interaction term, induced by
the SO coupling, and thus does not contradict our results
as we only consider intra-sublattice interaction.

Excitation density — An important question related
to the stability of flat band BEC is how the excitation
density nex behaves, in particular when U → 0. For the
usual dispersive band BEC, one has limU→0 nex = 0 [36].
However, for a strictly flat band, the U → 0 limit of
Eq. (4) implies that the Goldstone modes becomes flat.
One could then conclude that the condensate becomes
unstable as exciting particles out of the condensate does
not cost energy. We now show that this is not the case as
the quantum distance ensures the stability of a flat band
BEC in the non-interacting limit.

The expression for nex reads [35]:

nex =
1

N

∑
km

′
〈c†kmckm〉 =

1

2N

∑
km

′
[−1 + 〈ψ−m(k)|ψ−m(k)〉]

≡ 1

N

∑
k

′
nex(k), (7)

where c†km creates a boson in the Bloch band m with
momentum k. We again consider the projected Lp(k) of
Eq. (4) and neglect the higher bands as we are considering
the U → 0 limit. By diagonalizing Eq. (4), one obtains

lim
U→0
〈c†k1ck1〉 =

1−D(q)

2D(q)
, (8)

where q = k − kc. Equation (8) provides a remarkable
link between the density of non-condensed bosons, nex,
and the quantum distance D(q). We see that nex(k) di-
verges for D(q) = 0, implying the breakdown of the Bo-
goliubov theory. This is intuitively easy to understand as
D(q) = 0 indicates the perfect overlap between the con-
densed state |φ0〉 and other flat band condensates, i.e.
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FIG. 2. (a) Excitation fraction nex/ntot at ntot = 3 as a
function of U for the flat band BEC (t = 1) and dispersive
band BEC (t = −1). Purple triangle depicts the analytical
result of Eq. (8) integrated over the first BZ. (b) Momentum
dependence of nex(k) at Un0/Eg = 5.13×10−4. (c) Quantum
distance D(q) as a function of k = kc +q. In (b) and (c) the
red dot depicts the momentum kc = [4π/3, 0] of the flat band
BEC. (d) Densities n0 and nex as a function of ntot for the
flat band condensation at U = |t|/1800. Excitation density
nex remains constant, as it is determined by the quantum
distance.

〈u1(kc + q)|φ0〉 = 1 [35]. On the other hand, finite D(q)
sets the limit for the excitation density, allowing a sta-
ble flat band BEC at arbitrarily small interaction values.
The Eqs. 5 and 8 are valid for any flat band with real
Bloch functions |u1〉; the relation to quantum geometry
is similar also for arbitrary wavefunctions although the
formula are slightly more complicated [35].

In Fig. 2(a) we present nex/ntot, where ntot is the to-
tal density, for the kagome lattice as a function of U . In
addition to the flat band BEC, we also provide the result
for dispersive band BEC. Condensation to one of the dis-
persive bands of the kagome lattice can be achieved by
changing the sign of the NN hopping term, i.e. t < 0.
This choice flips the Bloch band structure such that the
dispersive band is the lowest band for which the con-
densation takes place at kc = 0. From Fig. 2(a) we
see that limU→0 nex = 0 for the dispersive band BEC,
as expected. However, for the flat band BEC, the non-
interacting asymptote of nex is given by Eq. (8) inte-
grated over the first BZ. This clearly illustrates that
the quantum distance determines the excitation density
and protects the stability of flat band BEC in the weak-
coupling limit.

In Figs. 2(b)-(c) we show nex(k) for small U and
D(q = k − kc), respectively, as a function of momen-
tum k across the first BZ. We see that indeed the quan-
tum distance is imprinted to the momentum distribution
of excitation density. Importantly, nex(k) is the Fourier
transform of the following first-order spatial coherence
function: g̃(1)(j) ≡ 1

N

∑
iα〈δc

†
i+jαδciα〉, where δciα an-

nihilates a non-condensed boson in the ith unit cell and
αth sublattice. Thus, first order coherence is fundamen-
tally determined by quantum geometry, and measuring
it provides a direct access to the quantum distance.

Surprisingly, the number of atoms excited out of
the condensate for a vanishing interaction strength,
limU→0 nex given by Eq. (8), does not depend on the to-
tal density ntot but is solely determined by the quantum
geometry of the flat band. This implies that by decreas-
ing ntot, the excitation fraction nex/ntot of the flat band
BEC and the role of the interactions can be made large
even at U → 0. We demonstrate this in Fig. 2(d) by pre-
senting n0 and nex as a function of ntot for small U . We
see that nex remains constant, consistent with Eq. (8),
whereas n0 decreases with decreasing ntot, implying that
at the low density regime, the condensate depletion and
interaction effects can be made significant, even at the
non-interacting limit of U → 0. The validity of the Bo-
goliubov theory for large nex/ntot ratios is addressed in
Ref. [35].

Discussion—By using Bogoliubov theory, we have
studied fundamental connections between the excitations
of a BEC and quantum geometry of the Bloch states. The
properties of the flat band BEC are dictated by the un-
derlying quantum geometry and are strikingly different
from the dispersive band case. The speed of sound cs
is proportional to the quantum metric of the condensed
state, and the excitation density nex does not vanish
with interactions as in case of a dispersive band BEC.
In contrast, it obtains a finite value given by the quan-
tum distance between the Bloch states. These results
have a common origin; the quantum metric is the small
momentum limit of the quantum distance, meaning that
long-wavelength physical quantities such as cs and low
energy excitations depend on the quantum metric, while
those that involve higher momenta, e.g. nex, are governed
by the quantum distance. While the quantum distance
has been previously connected to Landau level spreading
in non-interacting flat band models [41], our results are
among the first to unravel the deep connections between
the quantum distance and relevant physical quantities in
an interacting many-body quantum system.

Our predictions should be readily observable. The lin-
ear dependence of the speed of sound in a flat band BEC
on the interaction strength is in stark contrast to the
usual quadratic dependence of a dispersive band BEC
and can be detected by tuning the interaction for example
in experimental ultracold gas settings [47, 48]. Further-
more, as the excitation fraction is the Fourier transform
of the first order coherence, measurement of the latter
gives access to the quantum geometry effects. In addi-
tion to ultracold systems [26, 49], flat band condensates
can be also created in polaritonic platforms [30–34] which
therefore could be used to study quatum geometric effects
discussed here.

Enhancing interaction effects has been a key motiva-
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tion for studying flat band systems. The present work,
alongside the accompanying study of Ref. [35], shows
that indeed this promise is realized in the context of
BEC. Even more importantly, we show that these ef-
fects are controlled by the non-trivial quantum geome-
try. Therefore, bosons in a flat band provide a highly
promising platform to explore beyond mean-field physics
and effects of the quantum geometry, as well as to real-
ize strong correlations even in the weak interaction limit.
This is particularly important for photon and polariton
systems where effective interactions in general are small.
The results presented here are thus relevant for efforts
of realizing strongly correlated photons, important for
both fundamental research and opto-electronic compo-
nents. In the future, it would be interesting to explore
how quantum geometry affects the spatial and tempo-
ral dependence of the first and second order correlation
functions, the physics of the strong interaction limit [50],
and driven-dissipative BECs.
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S. Höfling, and S. Klembt, arXiv:2011.10766 (2020).

[35] A. Julku, G. M. Bruun and P. Törmä, Excitations of a
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