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1Department of Physics, Brown University, Providence, Rhode Island 02912, USA
2Brown Theoretical Physics Center, Brown University, Providence, Rhode Island 02912, USA

(Dated: September 20, 2021)

Aharonov-Bohm interferometry is the most direct probe of anyonic statistics in the quantum Hall
effect. The technique involves oscillations of the electric current as a function of the magnetic field
and is not applicable to Kitaev spin liquids and other systems without charged quasiparticles. Here,
we establish a novel protocol, involving heat transport, for revealing fractional statistics even in the
absence of charged excitations, as is the case in quantum spin liquids. Specifically, we demonstrate
that heat transport in Kitaev spin liquids through two distinct interferometer’s geometries, Fabry-
Perot and Mach-Zehnder, exhibits drastically different behaviors. Therefore, we propose the use of
heat transport interferometry as a probe of anyonic statistics in charge insulators.

The last three years have seen important developments
in probing fractional statistics in the quantum Hall effect
[1]. One development was a Fabry-Perot interferometry
experiment [2] at the filling factor 1/3 (Fig. 1a). In
the experiment, electric current flows through two con-
strictions (QPC1 and QPC2). The interference of the
contributions from the two constrictions manifests itself
in Aharonov-Bohm oscillations of the current in response
to changing magnetic field. The period of the oscillations
is determined by the charge of the interfering quasipar-
ticles. At some values of the field, the oscillation phase
jumps. This happens because new anyons enter between
the constrictions. The phase jumps encode the statistics
of those anyons. The physics is even more interesting for
non-Abelian anyons in the second Landau level, where
the even-odd effect is expected: as new anyons enter the
device, an interference picture alternatively turns on and
off [3–5].

Anyons are electrically charged in the quantum Hall ef-
fect. Fractional statistics has also been long predicted in
systems without charged excitations. Examples include
the Kalmeyer-Laughlin [6] and Kitaev [7] spin liquids.
A recent thermal conductance experiment [8] supports
the presence of non-Abelian anyons in α−RuCl3, which
is believed to host a Kitaev liquid [9]. The interpreta-
tion of that experiment is currently debated [10–12], and
it is clear that new methods are needed to test quasi-
particle statistics of neutral excitations. Interferometry
is the most direct probe [13–15] of statistics since it in-
volves running anyons around other anyons. However,
the Aharonov-Bohm technique cannot work in the ab-
sence of charged quasiparticles. Thus, one can only im-
plement it indirectly by conjugating a spin liquid with a
system that can carry electric current [14].

In this paper we show that a direct version of interfer-
ometry does not require charged excitations. It involves
heat current instead of electric current and can be im-
plemented in any systems since energy can flow in any
system. The magnetic field ceases being a convenient
experimental knob. Instead, it becomes useful to com-
pare transport in the Fabry-Perot [13] and Mach-Zehnder

[16, 17] geometries (Fig. 1).
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FIG. 1: Fabry-Perot (a) and Mach-Zehnder (b) interferome-
ters. Heat travels from sources S1 and S2 to drains D1 and
D2 along chiral edges and tunnels between the edges at the
two point contacts shown with dashed lines. The cross shows
a localized anyon.

Multiple experiments on quantized thermal conduc-
tance in topological matter have been published in recent
years. This includes work on the integer quantum Hall
effect [18], the fractional quantum Hall effect in GaAs
[19, 20] and graphene [21, 22], and the high-magnetic-
field regime [8, 23] in α−RuCl3. At low temperatures,
the gapped bulk of a topological material does not par-
ticipate in heat conduction and only the edges matter.
At the same time, any material contains gapless phonons,
which should be taken into account in the interpretation
of the data [18–20]. Their interaction with the edges
rapidly decreases as the temperature goes to zero [10, 11]
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and will be neglected below [24]. In the opposite limit
of a strong interaction, interferometry cannot work due
to the dominant dephasing of edge degrees of freedom by
phonons [25].

Our approach can be used with any fractional statis-
tics. We will focus below on one particular anyon statis-
tics predicted [7] in a non-Abelian Kitaev spin liquid.
Three types of excitations exist in that liquid: trivial bo-
son or vacuum 1, Majorana fermion ψ, and Ising anyon
σ. Any combination of quasiparticles belongs to one of
these sectors. Two quasiparticles can fuse in the follow-
ing ways:

ψ × ψ = 1; ψ × σ = σ;σ × σ = 1 + ψ, (1)

where the final equality expresses two possible fusion out-
comes for Ising anyons. The outcome of an interferom-
etry experiment can be expressed in terms of the any-
onic topological spins [7] θx and depends on the phase
exp(iφcab) = θc

θaθb
accumulated by anyon a on a full coun-

terclockwise circle around anyon b under the assumption
that the two anyons fuse to c. We will need the following
phases [26]:

φσσ1 = 0; φσσψ = π; φ1σσ = −π/4; φψσσ = 3π/4. (2)

Such phases are accumulated when one anyon a = σ
tunnels consecutively through the two point contacts in
Fig. 1 while another anyon b = 1, ψ, σ is trapped between
the two contacts.

Quantized thermal conductance is expected [27–29]
when the two edges of a sample are far from each other.
In interferometry, the edges are brought close in two
points, and heat tunnels between the edges. This results
in a non-universal correction to the thermal conductance.
The correction depends on the tunneling amplitudes at
the two contacts.
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FIG. 2: A single tunneling contact is shown with a dashed
line.

We start with a brief discussion of a single contact (Fig.
2). The Lagrangian of the system in Fig. 2

L1 = Ledge,1 + Ledge,2 − T, (3)

where Ledge,n are the Lagrangians of the two edges and
T describes tunneling. In the simplest model, the edges
host free Majorana fermions [7]:

Ledge,n = i

∫
dxψn(∂t ± v∂x)ψn, (4)

where v is the edge velocity and the sign shows the prop-
agation direction. The tunneling operator creates two
excitations that fuse to vacuum on the opposite sides of
the contact. In the Ising order each particle is its own
antiparticle and hence T creates two quasiparticles of the
same type. In principle, T describes tunneling of multi-
ple quasiparticle types and includes an infinite number
of perturbations to the sum of the edge actions (4). At
low temperatures and weak tunneling, the only pertur-
bations that matter are relevant in the renormalization
group sense. Our theory allows only one such perturba-
tion

T = exp(−iπ/16)Γσ2(x)σ1(x), (5)

where σ2 and σ1 create Ising anyons in point x on the
upper and lower edges respectively, Γ > 0 is the tunneling
amplitude [30], and the exponential factor [14, 31] ensures
hermiticity and equals 1/

√
topological spin.

We are interested in the deviation of the thermal cur-
rent between the terminals in Fig. 2 from the quan-
tized value. The deviation equals the tunneling thermal
current IT through the point contact between the two
edges. The current depends on the temperature differ-
ence between two sources S1 and S2 and hence the two
edges that emanate from the source terminals. It also
depends on the tunneling amplitude Γ and scales as Γ2

in the lowest order of the perturbation theory at small
Γ, IT = r(T1, T2)Γ2, where T1 and T2 are the tempera-
tures of the two edges, and the factor r(T1, T2) depends
on details of the edge physics and can be computed with
Fermi’s golden rule:

r =
2π

~
∑
mn

∆E|〈m|T/Γ|n〉|2δ(Em − En)Pn(T1, T2), (6)

where |n〉, |m〉 are eigenstates of the edge Hamiltonian,
En,m are the combined energies of the two edges in those
states, Pn is the Gibbs distribution, and ∆E is the energy
change of the upper edge in the |n〉 → |m〉 process.

The perturbative calculation is applicable as long as
the tunneling heat current is much smaller than the to-
tal heat current along the edges. In the simplest model

(4), r ∼ T
1/4
1 at a constant ratio T1/T2 since the scaling

dimension [7] of σ is 1/16.
We turn to a Fabry-Perot interferometer (Fig. 1a) now.

The Lagrangian differs from (3) only by the presence of
two tunneling terms in T :
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T = exp(−iπ/16)Γ1σ2(x1)σ1(x1)

+ exp(−iπ/16)Γ2σ2(x2)σ1(x2), (7)

where x1 and x2 are the locations of the two point con-
tacts. The tunneling amplitudes Γ1 and Γ2 can be de-
termined experimentally up to the factor r(T1, T2) from
comparison with a single-point-contact geometry. For
such a comparison, one needs to fabricate a single point
contact in exactly the same way as one of the two con-
tacts in the interferometer and measure the tunneling
heat current.

We will assume that the thermal length is much longer
than the distance between the two QPCs, hv/kBT �
x2 − x1. This will allow us to treat the interferometer as
a single point contact in an effective low-energy theory
for energies E ∼ T1,2. In the absence of trapped quasi-
particles, the low-temperature physics of the interferom-
eter then reduces to that of a tunneling contact with the
tunneling amplitude Γ = Γ1+Γ2. Thus, the thermal cur-
rent through the interferometer that contains no trapped
topological charge

IFP,1 = r(T1, T2)(Γ1 + Γ2)2, (8)

where the factor r(T1, T2) is the same as for a single point
contact. The above expression can be understood as the
result of constructive interference of the two paths from
the lower edge to the upper edge via the two point con-
tacts.

A trapped Majorana fermion contributes a phase of
π to any trajectory that encircles it. Hence, when the
interferometer contains the topological charge ψ, there is
a phase difference of π for the trajectories via the two
point contacts. Interference becomes destructive:

IFP,ψ = r(T1, T2)(Γ1 − Γ2)2. (9)

A particularly interesting situation presents itself if the
trapped topological charge in the device is b = σ. We
need to consider separately two possibilities for the fu-
sion channel of the tunneling and trapped anyons, c = 1
and c = ψ. The processes in the two fusion channels
do not interfere with each other just like interference is
absent for electron transport in the two spin channels.
The probabilities of the two channels are equal as follows
from the general expression [32]

P cab = N c
ab

dc
dadb

, (10)

where the fusion multiplicities N1
σσ = Nψ

σσ = 1 and the
quantum dimensions d1 = dψ = 1, dσ =

√
2. According

to Eq. (2), the interference phases in the two channels
differ by π. Thus,

IFP,σ =
r(T1, T2)

2
×[

|Γ1 + exp(−iπ/4)Γ2|2 + |Γ1 − exp(−iπ/4)Γ2|2
]

= r(T1, T2)[Γ2
1 + Γ2

2]. (11)

If one can control the topological charge of the inter-
ferometer, the observation of the three regimes (8,9,11)
would prove the Ising anyonic statistics. At present it
is unclear [14] how to control the trapped charge, so it
may happen that every interferometer is always in the
same regime. This can only happen [33] in the regime
(8), in which case the experiment is not very informa-
tive: the behavior (8) can be observed for any statistics,
if the trapped topological charge is trivial. We thus turn
to Mach-Zehnder interferometry (Fig. 1b) that does not
require control of the trapped topological charge.

S1 D1
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FIG. 3: The Mach-Zehnder setup is topologically equivalent
to a setup with an infinite open inner edge.

In Mach-Zehnder interferometry, the topological
charge inside the device changes after each tunneling
event [1, 17]. Indeed, each anyon that tunnels into the in-
ner edge of the device is eventually absorbed by a drain
located inside the device. Fig. 3 depicts an alterna-
tive setting: a tunneling anyon ends up on a very long
edge, which is inside the interference loop topologically.
As a consequence, the tunneling probability changes for
each tunneling event. We thus need to introduce a fam-
ily of tunneling rates pcσb, where b is the trapped topo-
logical charge and c is the fusion channel of b and the
tunneling anyon σ. As before, we assume that the dis-
tance between the point contacts along each edge is much
shorter than the thermal length. The tunneling Hamil-
tonian T̂ = Γ1T̂1 + Γ2T̂2e

iα contains two real amplitudes
Γ1,2, two operators T̂1,2 that transfer an anyon from the
outer edge to the inner edge, and a phase α, which en-
sures hermiticity. We will find α from the condition that
the same tunneling rates obtain from T̂ and the tunnel-
ing Hamiltonian T̂ † = T̂ = Γ1T̂

†
1 + Γ2T̂

†
2 e
−iα, where T̂ †1,2

transfer anyons from the inner edge to the outer edge.
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We first use T̂ . Only one fusion channel exists for
b = 1, ψ, and one finds

pσσ1 = p(T1, T2)|Γ1 + Γ2e
iα|2; (12)

pσσψ = p(T1, T2)|Γ1 − Γ2e
iα|2, (13)

where the expression for p(T1, T2) follows from Fermi’s
golden rule and is similar to (6):

p =
2π

~
∑
mn

|〈m|σ2(x)σ1(x)|n〉|2δ(Em − En)Pn(T1, T2).

(14)
Two fusion outcomes are possible for b = σ. The prob-

abilities of the fusion outcomes are identical, but the tun-
neling rates for the two outcomes are not:

p1σσ =
p(T1, T2)

2
|Γ1 + Γ2 exp(iα− iπ/4)|2 ; (15)

pψσσ =
p(T1, T2)

2
|Γ1 − Γ2 exp(iα− iπ/4)|2 . (16)

The total tunneling rate

pσσ = p(T1, T2)[Γ2
1 + Γ2

2]. (17)

Repeating the same calculation [34] with T † gives the
same set of answers for α = π/8, which is thus the right
choice in the above equations.

1 σ ψpσσ1

p1σσ

pψσσ

pσσψ

FIG. 4: The symbols in the circles show the trapped topolog-
ical charge in a Mach-Zehnder interferometer. Arrows show
possible transitions.

The average energy transferred between the edges
in each tunneling event is the same[35]: ∆E =
r(T1, T2)/p(T1, T2). Thus, to compute the heat current
we need to find the average number of tunneling events
per unit time. All possible tunneling events are repre-
sented by the diagram in Fig. 4. The states of the inter-
ferometer are labeled with the trapped topological charge
b. If we assume that the initial trapped charge is b = σ,
the average time until a tunneling event tσ = 1/pσσ.
The probabilities of tunneling into states with b = 1 and
b = ψ are q1 = p1σσ/pσσ and qψ = pψσσ/pσσ respectively.
The average times until tunneling from the states with
b = 1 and b = ψ to b = σ are t1 = 1/pσ1 and tψ = 1/pσψ.
After two tunneling events the system always returns to
b = σ. The average time of two tunneling events is given
by

t̄ = tσ + q1t1 + qψtψ. (18)

Hence, the thermal current becomes

IT =
2∆E

t̄
= r(T1, T2)(Γ2

1 + Γ2
2). (19)

For comparison, if the tunneling particles are bosons or
fermions, the behavior is the same as in the Fabry-Perot
setup, Eq. (8). Thus, the observation of the contrasting
behavior (8) and (19) in the two setups is a signature of
fractional statistics is a system without charged quasi-
particles.

The results for a Mach-Zehnder interferometer do not
change if topological charge can tunnel between the edges
of the device and localized states in the bulk as long as the
typical time between tunneling events exceeds the time
between tunneling events at the point contacts. This is
not the case in the Fabry-Perot setup, where the tunnel-
ing to localized states must be slow on the laboratory
time-scale to have no effect on the current. Rare tun-
neling events into localized states in the Fabry-Perot ge-
ometry lead to strong telegraph noise [36] that serves as
another signature of fractional statistics. In the absence
of tunneling into localized states, telegraph noise can be
induced by making a hole in the device as discussed in
Supplemental Material [34].

To measure edge heat currents, one can transfer all or
a fraction of the heat current to a quantum Hall (QH)
edge. The transferred heat current can be extracted from
the temperature of a piece of metal, connected to a QH
edge [18, 19, 34]. One approach to heat transfer between
a Kitaev magnet and a QH system relies on a supercon-
ductor as an intermediary [14]. Alternatively, one can
transfer heat from the spin liquid to a conductor con-
nected with a QH edge. Fig. 5 illustrates the setup for
a quantum wire in the role of the conductor. A hole is
created in the Kitaev liquid near the edge so that anyon
tunneling is possible between the edge of the hole and the
outer edge of the liquid in the constriction. The most rel-
evant interaction of the wire and the Kitaev magnet is
W = σhσe∂xφ, where σh,e create Ising anyons on the
edge of the hole and the outer edge of the liquid; ∂xφ is
proportional to the charge density in the wire. Near a
resonance, the Hamiltonian of the Kitaev liquid contains
no tunneling term σhσe. The scaling dimension of W is
9/8 and W ensures significant energy exchange between
the wire and the magnet.

In conclusion, interferometry allows probing fractional
statistics with heat transport. Information about heat
currents can be extracted from the temperatures of the
source and drain reservoirs. The temperatures of electri-
cally conducting reservoirs can be found from noise [18–
20] or quantum dot [37–41] thermometry. The contrast-
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FIG. 5: A dashed line shows a constriction between the outer
edge and the edge of the hole in a Kitaev magnet. The thick
line at the bottom represents a conductor in contact with a
magnet edge and a QH edge (not shown).

ing behavior of Mach-Zehnder and Fabry-Perot interfer-
ometers is a smoking gun evidence of fractional statistics.
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