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Abstract:  

Graphene nanoribbons (GNRs) possess distinct symmetry-protected topological phases. We 

show, through first-principles calculations, that by applying an experimentally accessible 

transverse electric field (TEF), certain boron and nitrogen periodically co-doped GNRs have 

tunable topological phases. The tunability arises from a field-induced band inversion due to an 

opposite response of the conduction- and valence-band states to the electric field. With a 

spatially-varying applied field, segments of GNRs of distinct topological phases are created, 

resulting in a field-programmable array of topological junction states, each may be occupied 

with charge or spin. Our findings not only show that electric field may be used as an easy 

tuning knob for topological phases in quasi-one-dimensional systems,	but also provide new 

design principles for future GNR-based quantum electronic devices through their topological 

characters. 

 

 

  



The topology of a crystal’s electronic structure, in par with its band structure and electron 

filling, plays an essential role in its electronic properties [1-3]. For example, joining two 

insulators of different topological classes produce robust junction states in the bandgap of these 

insulators [2-6]. Recently, a wide range of graphene nanoribbons (GNRs), including the 

armchair, cove-edged, and chevron GNRs, have been shown to host rich electronic topological 

phases depending on their width, edge shape and end terminations [7-10]. Moreover, the recent 

rapid development of bottom-up synthesis of GNRs from precursor molecules enables 

atomically precise design of a large variety of GNRs, including control of widths [11-13], 

dopant atoms [14,16], and diverse edge shapes [17-20]. Such synthesis capabilities have led to 

the striking experimental discovery of 1D superlattices formed by alternating segments of 

topologically distinct GNRs which have been measured to host one-dimensional array of 

topological junction states [21, 22], as predicted by theory [7]. 

Having the ability to controllably tune the topological invariants of materials is an actively 

pursued topic since it opens new opportunities for scientific studies and applications. Despite 

proposals on switching between normal and topological insulators (TIs) in 2D and 3D based 

on first-principles calculations, using external electric fields [23], tensile strains [24, 25], 

temperature and alloying [26-29], and so on [30-32], strategies for tuning topological phases 

in 1D systems remain relatively underexplored. In this work, by first-principles calculations, 

we discover that topological phases of certain quasi-1D systems may be practically tuned by a 

new strategy that exploits external transverse electric fields (TEF). We demonstrate this 

strategy using a designed GNR periodically co-doped with nitrogen and boron. [Fig. 1(a).]  

The band topological invariant of a 1D insulating crystal with multiple atoms per unit cell 

depends on the assignment of its unit cell, which in turn is dictated by the atomic structure at 

the end termination of the 1D system (i.e., the unit cell should be commensurate with the 

boundary geometry) [7]. For instance, using the approximate chiral symmetry (the A/B 

sublattice symmetry) of the GNRs, the band topology of this multi-band system can be 

characterized by a winding number 𝑍, which may be obtained using the difference between the 

intercell part of the Zak phase contributed by the A sublattice and that contributed by the B 

sublattice, summed over all bands up to the charge neutrality gap [10]. For such a system with 

a winding number 𝑍, there will be Z topologically protected localized in-gap state at its end 

termination with vacuum, according to the bulk-edge correspondence [33]. On the other hand, 

a 𝑍! topological classification can be exactly applied to an 1D insulating crystal with spinless 

time reversal symmetry (TRS) and spatial inversion/mirror symmetry [7].  



In an 1D crystal, the Zak phase [34] for the nth band is defined as the integral of the Berry’s 

connection across the 1D Brillouin zone (BZ): 𝛾" = 𝑖(!#
$
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the lattice-periodic part of the Bloch state, 𝑑 is the unit cell size, and 𝑘 is the wavevector. The 

Zak phase of an isolated band of a general 1D insulator can take on any value, depending on 

the choice of the shape and origin of the unit cell. Nevertheless, if the unit cell of the crystal 

has inversion/mirror symmetry, the intercell (origin independent) part of the Zak phase is 

uniquely determined for a given unit cell shape and is quantized to 0 or 𝜋 (mod 2𝜋) [7, 8]. The 

𝑍! invariant of a 1D insulator with such symmetries is then given by (−1)*# = 𝑒+,!∈%&&	.!, 

where the sum is over the occupied bands. When the total intercell Zak phase is 𝜋 (0) (mod 

2𝜋), the 𝑍! invariant is 1 (0). As shown in previous work [4, 7], for a unit cell with inversion 𝐼4 

or mirror 𝑀6  symmetry (𝑂8 = 𝐼4	or	𝑀6), the 𝑍! invariant of a GNR may be determined by the 

product of the eigenvalues of 𝑂8  of the states at all the time reversal invariant momentum 

(TRIM) k-points in the occupied band manifold: (−1)*# = ∏ ∏ =𝜓"/'?𝑂8?𝜓"/'@/'"∈122  where 

𝜓"/' is the wavefunction at the TRIM Γ+ = Γ, 𝑋 in the 1D BZ. In this study, we analyze our 

system using both classification schemes since it possesses TRS and spatial symmetries, as 

well as, to a very high degree, chiral symmetry.  

For experimentally bottom-up synthesized GNR systems, the dangling 𝜎 orbitals of the edge 

carbon atoms are capped by hydrogen, and are removed in energy from the bandgap region, so 

these 𝜎 states are not involved in the formation of the end/junction in-gap states. Also, because 

the GNRs considered in this work have a mirror symmetry with respect to the carbon basal 

plane, the 𝜎  (mirror even) and 𝜋  (mirror odd) bands do not hybridize. Only the 𝜋  bands 

account for the in-gap physics of interest. Thus, both the 𝑍 and 𝑍! invariants of the GNRs of 

interest are calculated from the occupied band manifold of 𝜋 electrons (denoted by “𝜋	&	𝑜𝑐𝑐”) 

only. For example, 𝑍! is given by: 

(−1)*# = ∏ =𝜓"/?𝑂8?𝜓"/@=𝜓"3?𝑂8?𝜓"3@"∈	#	&	122  ,                                   (1) 

In general, a transition from one topological phase to another one for an insulator requires its 

bandgap to close and reopen by external tuning parameters while preserving the symmetries 

desired. In our case, a TEF along the width of the GNR (the y-axis) [Fig. 1(a)] is used because 

it preserves both the approximate chiral symmetry in the GNR (see Supplemental Material 

(SM), Sec. I [35]) and the mirror symmetry of the GNR unit cell.  



As indicated by Eq. (1), changing the 𝑍!  invariant by band reordering at the fundamental 

bandgap requires the wavefunctions at the minimum of the bottom conduction band (BCB) and 

the maximum of the top valence band (TVB) to have opposite parities at one of the Γ+ points, 

i.e., =𝜓565/'?𝑀6?𝜓565/'@=𝜓785/'?𝑀6?𝜓785/'@ = −1 . This ensures zero wavefunction mixing 

between the two states at this Γ+ point of the BCB and TVB as a function of the TEF strength; 

so, a bandgap closing is ensured during the induced band inversion process.  

We satisfy this requirement by designing an armchair GNR (AGNR) with periodic arrays of 

substitutional boron-dimer and nitrogen-dimer dopants [Fig. 1(a)]. From our density functional 

theory (DFT) calculations, comparing results for an isolated boron-dimer to a nitrogen-dimer 

substitutionally doped onto the backbone of an AGNR shows that these two dimer defects 

introduce dopant states of opposite parity in the fundamental bandgap of the pristine AGNR. 

We therefore incorporate both boron- and nitrogen-dimer arrays into the same AGNR, and 

achieve having a boron-dimer (nitrogen-dimer) dopant band as its new BCB (TVB) with -1 

(+1) parity eigenvalue at both Γ and 𝑋.  

Secondly, to make possible a field-induced band inversion, the BCB and TVB should have 

opposite energy shift in response to the applied TEF, requiring the wavefunction amplitude of 

BCB and TVB (and thus the GNR structure) to be asymmetric along the transverse (width-

wise) direction of the GNR. Thus, we put the boron- and nitrogen-dimer dopants near the 

opposite edges of the AGNR [Fig. 1(a)]. 

The boron- and nitrogen-dimer dopants are symmetric to a mirror plane (red dashed vertical 

line in Fig. 1(a)) which retains the mirror symmetry of the system. In addition, in AGNRs with 

odd number of rows of atom forming the width, the boron- and nitrogen-dimer exchange 

positions upon a reflection with respect to the perpendicular plane at the central backbone, 

defined by the blue dashed line in Fig. 1(a). This ensures the system to have chiral symmetry 

within the nearest-neighbor tight-binding model, with and without the presence of the TEF (see 

SM, Sec. I [35]). Thus, the topology of the system can be classified by either a 𝑍! index (using 

the former) or a 𝑍 index (using the latter).  

Among a series of GNR structures designed, guided by the above design principles, an AGNR 

having 11 rows of carbon atoms with one boron-dimer dopant and one nitrogen-dimer dopant 

in every 3 pentacene units (abbreviated as B&N-11AGNR) [Fig. 1(a)] is found to have the 

desired properties for field-tunable topological phases. The pristine B&N-11AGNR without 

any applied field has a direct bandgap of ~2.9 meV, calculated using DFT within the local 



density approximation (LDA) as implemented in the QUANTUM ESPRESSO (QE) package 

[36]. This small gap (dictated by the ribbon width [37], density and exact positions of dopants) 

makes an electric-field-induced band inversion experimentally feasible.  

The evolution of the DFT-LDA band structure with different applied TEFs [Fig. 2] is calculated 

using a supercell method that has a saw-tooth potential changing along the y direction and 

accounts for dipole correction and depolarization field appropriately [38]. We find that band 

inversion at the 𝑋 point happens at a critical TEF (with positive direction defined in Fig. 1(a)) 

strength of Ec ~ -0.2 V/nm. For TEF with E < Ec, the orbital characters and parity eigenvalues 

of the bottom of the BCB and the top of the TVB at the 𝑋 point switch with each other, giving 

rise to inverted bands. A wavefunction projection analysis shows that, for E < Ec, the orbital 

character of the band states, as a function of wavevector k, does recover to its original character 

at some distance away from the 𝑋 point [Fig. 2(c, d)]. From Eq. (1), we obtain that the value 

of 𝑍! changes from 1 to 0 as E goes below Ec. We also evaluate the 𝑍! invariant by calculating 

the center of the Wannier functions [39-42] using the WANNIER90 package [43] (see SM, 

Sec. V [35]). Moreover, we show that the DFT Hamiltonian for our system may be mapped 

approximately to a chiral Hamiltonian in a maximally localized Wannier function basis (see 

SM, Sec. III [35]), and that its 𝑍 index changes from 1 to 0 as the E goes below Ec, consistent 

with the above 𝑍! classification. Thus, the B&N-11AGNR satisfies all our designing principles 

and has a topological 𝑍!  invariant and a 𝑍 invariant that are tunable with an experimental 

realizable TEF in the order of 0.1 V/nm [44-46].  

We next investigate the topological end states of a B&N-11AGNR finite-length segment and 

the relation between the number of the end states and the value of 𝑍, namely, the bulk-boundary 

correspondence [6, 10, 33]. We perform DFT calculation of the electronic structure of a finite-

length B&N-11AGNR including 24 repeating unit cells of the form shown in Fig. 1(a), with 

the SIESTA package [47] using a limited single zeta atomic basis. All the dangling 𝜎 bonds at 

the end of the ribbon (which is a zigzag termination) are capped by hydrogen atoms. The 

number of in-gap end states at one end in the charge neutrality gap as a function of the TEF 

strength and direction have three regions of distinct behavior [Fig. 3(e)]. For E > Ec, (with the 

critical field Ec ~ -0.8 V/nm for band inversion from the SIESTA calculation) one topological 

in-gap end state appears at each end, while for Es < E < Ec, no in-gap end state emerges (Es ~ -

1.8 V/nm). For E < Es, two localized states emerge in the bandgap at each end. However, these 

two end states, unlike the topologically protected one in the case of E > Ec, can be eliminated 

by small perturbations on the end atoms (see SM, Sec. IV [35]), so they are trivial end states. 



Thus, as expected, the bulk-boundary correspondence holds in this system. The planewave 

basis set used in the QE calculation of the periodic system [Fig. 2] is well converged. However, 

for the finite segment SIESTA calculations [Fig. 3], a limited basis set was used (because of 

the large number of atoms), leading to less converged bandgap values. This results in different 

values of Ec and Es obtained by the two packages. Nevertheless, the topological character of 

the bands of the two calculations remains the same.  

From our theory, the TEF strength not only changes the number of end states, it also controls 

how localized the end states are. The local density of states (LDOS) at the end unit cell of the 

finite segment for 3 different TEFs [Fig. 3(a-c)] are compared with the bulk density of states 

(DOS) per unit cell. For E = 1.09 V/nm (𝑍 = 1), the end-cell LDOS shows a sharp and big 

peak at 𝐸 − 𝐸9 = 0, arising from a very localized in-gap state at each end [Fig. 3(a)]. A smaller 

bulk gap at E = 0 V/nm makes the end states less localized, resulting in a lower peak height at 

𝐸 − 𝐸9 = 0 [Fig. 3(b)]. For E = -1.09 V/nm (𝑍 = 0), no in-gap peak emerges in the end-cell 

LDOS [Fig. 3(c)], showing absence of in-gap end state.  

A field switchable topological phase enables the use of a spatially varying TEF to create and 

confine topological junction states between two insulating regions of different 𝑍 invariants. To 

illustrate this effect, we apply a superlattice electric field (i.e., a periodically repeated pattern 

of TEF with a repeating unit profile shown in Fig. 4(a)) on a B&N-11AGNR as shown in Fig. 

4(b). The TEF is negative (zero) in the left (right) half of the supercell, and has a form 𝐸: =
;(
#
I𝑎𝑟𝑐𝑡𝑎𝑛(𝑥) − 𝑎𝑟𝑐𝑡𝑎𝑛 O𝑥 − $)&
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!
R, where the length of the supercell 

along the 𝑥 direction is 𝑑<2 = 305.2	Å. A TEF of such pattern may be created by a periodic 

array of parallel gates with alternating bias voltages [48]. For example, a topological junction 

state is confined at the junction between the left part with E = -1.58 V/nm and the right part 

with E = 0 V/nm (𝐸= = 1.58 V/nm) [Fig. 4(b)] because the 𝑍 invariant changes by 1 across the 

junction under this field profile. The two junctions in one supercell each hosts a protected 

junction state, which form 2 bands with small dispersions (~5 meV) inside the common gap of 

the left and right “bulk” region. Hence the LDOS of the unit cell at the junction (the red 

rectangle in Fig. 4(b)) shows two ~5 meV wide peaks inside the common bulk gap [Fig. 4(c)]. 

In contrast to heterostructures of geometrically different GNRs of distinct topological phases 

in which junction states appear at the junction [7, 8, 10, 21, 22], the topological junction states 

of the B&N-11AGNR are created by the profile of the TEF and can be moved freely to different 

locations in the material by varying the field profile. This gives us another degree of freedom 



in the rational control of topological junction states in 1D systems [7]. Furthermore, the 

coupling between two nearby localized states of the junction array, given by the junction 

separation, is programmable by the spatial profile of the field.  

In conclusion, we have proposed a scheme for designing GNRs with tunable topological phase 

by an applied TEF and demonstrated its feasibility through ab initio studies. Our analyses and 

first-principles calculations show that topological end states can be created/annihilated by a 

uniform applied TEF on a GNR finite segment, and topological junction states can be generated 

in a homogeneous GNR by applying specific profile of piecewise uniform TEFs. Our study 

provides a new way of controlling topological junction/end states in 1D systems which may be 

used in building quantum dot spin qubits with tunable couplings, and this is a promising new 

approach for designing future GNR-based quantum electronic devices.  
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FIG. 1. (a) A unit cell of the B&N-11AGNR (commensurate with a zigzag end termination). 

The blue arrow shows the direction of a positive TEF. The red dashed line shows a mirror plane 

of the system, and the blue dashed line defines a normal plane about which the positions of the 

boron- and nitrogen-dimers are switched upon reflection. (b, c) The BCB wavefunction (b) and 

TVB wavefunction (c) at the Γ point on a plane at 1 Å above the GNR basal plane. (d) The 

B&N-11AGNR band structure without any applied field. The blue, red and green colors in the 

band structure denote the module squared weights of the wavefunction that are projected onto 

the boron, nitrogen and carbon atomic orbitals, respectively. The scale bar defines the mapping 

between the color scale and the percentage weight. The projection is normalized according to 

the total number of atoms of each species per unit cell. The parity eigenvalues =𝜓"/'?𝑀6?𝜓"/'@ 

of the 8 bands near the Fermi level EF at Γ and 𝑋 are marked as “+” (“-”) for value of +1 (-1).  

 

 

 

 



 

FIG. 2. The band inversion process under changing TEFs from DFT-LDA calculations. As the 

TEF goes below a critical field strength of Ec ~ -0.2 V/nm, the characters (and parities) of the 

states of the BCB and TVB at the 𝑋 point are inverted, and both the 𝑍 and 𝑍! invariants of this 

system change from 1 to 0. The bands are zoomed in a region near the 𝑋 point in reciprocal 

space spanning over 1/10 of the Γ − 𝑋 length.  

 

 

 

 

 

 

 

 

 

 

 



 

FIG. 3. Bulk-boundary correspondence. (a-c) The red curves show the calculated end-cell 

LDOS (integrated in the red rectangular region in (d)) of the 24-unit-cell finite-length GNR 

with TEF of E = 1.09 (a), 0 (b), and -1.09 (c) V/nm, while the blue curves show the bulk DOS 

per unit cell at the same TEFs. Both the LDOS and DOS are in units of number of states per 

energy per length without considering spin degeneracy. The Gaussian broadening factor is 1 

meV for both the LDOS and bulk DOS. The insets zoom in the green dashed rectangular 

regions. (d) The iso-surface charge density plot at 1.4 × 10)>Å)? (1% of the maximum value) 

of the topological end state in the 24-unit-cell finite segment (only the left 1/3 of the segment 

is shown). The TEF is 1.09 V/nm (𝑍 = 	1). (e) DFT-LDA bandgap versus TEF calculated using 

the SIESTA package (Ec ~ -0.8 V/nm). The calculated 𝑍 invariant is 1 (0) for E > Ec (E < Ec). 

The colors on different parts of the curve denote the number of end states per end for the system. 

 



 

FIG. 4. (a) The TEF profile in one repeating period as a function of coordinate 𝑥 which is along 

the axis of the ribbon. (b) The iso-surface charge density plot at 2.7 × 10)@Å)? (2% of the 

maximum value) of the topological junction state (evaluated at Γ-point of the superlattice) of a 

B&N-11AGNR with the superlattice electric field in (a) applied. One repeating period of the 

TEF (the supercell shown in (b)) contains 24 B&N-11AGNR unit cells. The field strengths in 

the center of the left (right) region are -1.58 V/nm (0 V/nm) resulting in the system with 𝑍 

being 0 (1). (c) DOS of the GNR in a superlattice electric field. The red solid curve shows the 

LDOS computed in the junction region (the red rectangle in (b)). The green (blue) dashed 

curves show the bulk DOS per unit cell with a uniform TEF of E = -1.58 V/nm (0 V/nm).  


