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The colocation of individuals in different environments is an important prerequisite for exposure to infec-
tious diseases on a social network. Standard epidemic models fail to capture the potential complexity of this
scenario by (1) neglecting the higher-order structure of contacts which typically occur through environments
like workplaces, restaurants, and households; and by (2) assuming a linear relationship between the exposure to
infected contacts and the risk of infection. Here, we leverage a hypergraph model to embrace the heterogeneity
of environments and the heterogeneity of individual participation in these environments. We find that combining
heterogeneous exposure with the concept of minimal infective dose induces a universal nonlinear relationship
between infected contacts and infection risk. Under nonlinear infection kernels, conventional epidemic wisdom
breaks down with the emergence of discontinuous transitions, super-exponential spread, and hysteresis.

Mathematical models of epidemics play an increasingly im-
portant role in public health efforts and pandemic prepared-
ness [1]. By providing insights on the interplay of the bi-
ological and sociological aspects of epidemics, models can
test potential interventions in silico and suggest potential out-
comes [2]. However, large-scale forecasting comparisons
show that statistical models often outperform mechanistic
models that make assumptions about spreading dynamics [3].

In this letter, we look at the interplay of two commonly
used assumptions in disease models: Random mixing and the
linearity between infection risk and exposures to infected in-
dividuals. In almost all disease models, doubling the num-
ber of contacts between susceptible and infectious individuals
doubles the risk of infection for the susceptible individuals.
Some past work in mathematical biology has considered non-
linear infection rates [4, 5], but these models are rarely used
in practice. Other fields such as sociology do often consider
generalized contagion models, often dubbed complex conta-
gions [6, 7]. In these complex contagions, having a nonlinear
relationship between infection rate and sources of infection
allows the model to consider mechanisms such as social re-
inforcement [8], where a set of multiple exposures can have
more impact than the mere sum of unique exposures.

The mathematical convenience of assuming random mixing
when modeling infectious diseases comes at the price that all
contacts between susceptible and infectious individuals are ef-
fectively equivalent. This assumption has often been lifted us-
ing heterogeneous mathematical models where individuals are
distinguished by some individual features such as their intrin-
sic susceptibility or reaction to the infection [9, 10], relaxing
the mass-action assumption directly [11, 12], or by specifying
an underlying contact network [13, 14].

Moreover, the linearity assumption says that all increments
in the total exposure to infectious individuals (measured for
example as a viral inoculum) are equivalent. Evidence asso-

ciated with the minimal infective dose of different infectious
diseases shows that not all exposures are equal, and that some
minimal dose might be required for an infection to likely oc-
cur. More precisely, the ID50 value is a measure of the dose
needed to cause an infection in 50% of individuals. These
concepts are needed because our immune system is usually
able to handle microscopic challenges from viruses and bac-
teria alike. While an infective dose of tuberculosis might only
require between 1 and 5 bacteria [19], some enterics might
require up to 109 pathogenic particles [20], and others like
common respiratory infections still require further study [21].
There are indeed multiple different physical mechanisms be-
hind immune evasion, for example some airborne viruses need
to find their receptors on lung epithelial cells, while some bac-
teria might instead require interaction with the immune sys-
tem [22]. These mechanisms are reviewed in Refs. [22–26],
and all of them combine to determine the ID50 of specific
pathogens. Likewise, the decay or clearing rates of pathogens
in non-infectious courses can also vary a lot, potentially re-
quiring days for bacteria to hours for airborne viral infections.
For example, mathematical models for the pathogenesis of
SARS-CoV-2 or influenza A use decay rates of the order of
7-18 hours but empirical estimates vary wildly (see Ref. [27]
and [28] and references therein).

To study the effect of simultaneously relaxing these two
assumptions, we consider a social structure where individ-
uals attend a certain number of environments such as work
places, gyms, or supermarkets. This division of contact struc-
ture in environments is motivated by the known role of super-
spreading events, which are for example critical to the ongo-
ing spread of COVID-19 [29–36]. While variations at the in-
dividual level is often used to explain superspreading [37], we
focus here on the variability of environments and of temporal
patterns [38–44] at the group level, which undoubtedly affect
epidemics [31], especially when a certain exposure within a
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FIG. 1. Modeling contagions and superspreading events through higher-order networks. (a) Scatter plot of superspreading events of COVID-19
where the number of people involved (size), the duration of the event, and the resulting proportion of infected individuals (attack rate) are all
available (extracted from Refs. [15, 16], see the supplemental material [17]). (b)-(c) Framework for contagions on hypergraphs [18], where the
size m of the hyperedges (environment), the hyperdegree k of the nodes (individuals), and the participation time to the environment τ are all
heterogeneous, distributed according to P̂(m), P̃(k), and P(τ) respectively. For the sake of simplicity, we assume the same distribution P(τ) for
all environments. (b) At each time step t, an individual participates for a time τ (drawn independently) to each environment. (c) An individual
gets infected with probability θm(ρ) in the environment at time step t, which depends on the size m and the fraction infected ρ.

certain time window is needed to confidently spark an infec-
tion. Interestingly, available case data highlight how there is
no expected size or duration for such events. Transmission
is highly context dependent on the settings (e.g., ventilation)
and activity (e.g., singing or shouting) such that the resulting
superspreading events are heterogeneous in size, duration and
attack rate, as shown in Fig. 1(a). Higher-order contact struc-
tures and heterogeneous temporal patterns are therefore key
ingredients for more realistic models of spreading dynamics.

Mathematically, we represent the contact structure as a hy-
pergraph [45–47] where each environment is described by a
hyperedge connecting m nodes (individuals) and where each
node is incident to k hyperedges. All hyperedges of a same
size m are considered equivalent, although this assumption
is relaxed in the supplemental material to consider additional
sources of heterogeneity [17]. To model heterogeneous tem-
poral patterns, we consider a discrete-time process, where at
each time step t = 1, 2, . . . , we draw for each individual a par-
ticipation time τ ∈ [1, τmax] for each environment to which
they are connected [Fig 1(b)]. The time steps correspond to
fixed temporal windows of size τmax, during which suscepti-
ble individuals can get infected through their participation to
environments.

We first study the impact of the spatiotemporal co-location
patterns on the infection kernel θm(ρ), the probability of get-
ting infected in an environment of size m when a fraction ρ
of the other participants are infectious [Fig. 1(c)]. We then
analyze the properties of the resulting contagion process.

Universal infection kernel from heterogeneous exposure.
Let us consider a susceptible individual participating to an en-
vironment of size m for a duration τ, where a fraction ρ of the
other participants are infectious. During this exposure period,

some of the other m − 1 individuals might participate to the
environment as well. We assume that the considered individ-
ual receives an infective dose κ ∈ [0,∞) from the infectious
individuals, distributed according to π(κ; λ), where λ ≡ 〈κ〉.
A reasonable assumption is that the mean dose received is
proportional to the time spent in the environment and to the
proportion of infectious people, λ = β f (m)τρ, where β is a
rate of dose accumulation and f (m), unitless, modulates the
typical number of contacts in environments frequented by m
individuals.

While this is not a strict requirement for our results to hold
(see supplemental material [17]), we further assume that the
random variable for the dose can be written as κ = λu, where
u is a random variable that is independent of λ. In this case, u
can be seen as an intrinsic property of the contagion process—
determined by rates of viral shedding, diffusion in the environ-
ment, variability of human interactions, etc.—while λ acts as
a scale parameter, i.e., π(κ; λ) = π(κ/λ; 1)/λ ≡ π(κ/λ)/λ.

To incorporate the concept of minimal infective dose, we
assume that an individual develops the disease if κ > K, a per-
spective analogous to standard threshold models [48–50] and
related to the assumption that successful host invasion neces-
sitates multiple attempts by the pathogen [51]. The probability
of getting infected in the environment is then

Π̄(K/λ) =

∫ ∞

K/λ
π(κ)dκ . (1)

The infection kernel θm(ρ) is calculated by averaging
Π̄(K/λ) over P(τ). We focus here on the case of heteroge-
neous exposure periods modeled with a Pareto distribution
P(τ) = Cατ

−α−1, where Cα is a normalization constant, α > 0
and τ ∈ [1, τmax]. However, for our dose mechanism to be
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well defined, we can only average over participation times
τ ∈ [1,T ], where T ≤ τmax is the clearing window, i.e., the
characteristic time for the immune system to get rid of any
dose κ < K. If we assume that this clearing window is suf-
ficiently large compared to τc ≡ K/β f (m)ρ, the characteristic
time to get infected in the environment, we can neglect events
where τ ≥ T as they do not contribute significantly to the
infection kernel [17]. We therefore redefine our support as
τ ∈ [1,T ] and the infection kernel is

θm(ρ) =

∫ T

1
Π̄(τc/τ)P(τ)dτ (2)

=
Cα

α

[
Π̄(τc) − Π̄(τc/T )T −α + τ−αc

∫ τc

τc/T

π(y)yαdy
]
.

When 1 � τc � T and π(y) decreases faster than y−α−1, then
the integral on the right converges to a constant, the term in
T −α can be neglected, and Π̄(τc) � τ−αc , which implies

θm(ρ) ∼ Dατ
−α
c ∝ ρ

α , (3)

where Dα is some constant. This form of infection kernel is
universal, driven by temporal patterns, and does not depend
on the value of K (given K > 0) or on the particular form of π.
We illustrate it in Fig. 2(a) using an exponential for the dose
distribution—other cases such as the Weibull and the Fréchet
distribution are presented in the supplemental material [17].

Let us stress that the condition 1 � τc � T is not restric-
tive. On the time scale on which we measure the exposure
periods, τc � 1 implies that the contagion does not spread
too fast, otherwise the whole population would be rapidly in-
fected, while T � τc suggests that it is transmissible before
the immune system is able to clear the dose received.

More broadly, we do not need to assume that π(y) decreases
faster than y−α−1, nor that λ is a scale parameter for κ. In fact,
π(κ; λ) does not even need to be a continuous distribution and
P(τ) could be asymptotically power law for large τ. In this
more general context, we still recover a universal infection
kernel θm(ρ) ∝ ρν in most cases, but ν is not always directly
equal to α [17]. Linear infection kernels (ν = 1) are recov-
ered only in some specific cases, for instance when α = 1 or
when we use a Poisson distribution for κ and K = 1. From
now on, we make abstraction of the underlying distributions
π(κ; λ) and P(τ), and focus on the resulting effective model
parametrized by ν.

Epidemic spreading with nonlinear infection kernel. We
now illustrate the consequences of nonlinear infection kernels
for contagion on hypergraphs. To simplify the mathemati-
cal analysis, we consider a Susceptible-Infectious-Susceptible
model. At each time step, an infected node becomes suscepti-
ble with probability µ, while a susceptible node gets infected
through a hyperedge of size m with probability θm. If a node
is part of multiple hyperedges, we assume that the probability
of infection through each hyperedge are independent. This is
reasonable if kmaxT ≤ τmax for a maximal hyperdegree kmax.
For instance, if T is of the order of a few hours, τmax a week,
and an individual participate to an environment once a day,

the night allows the immune system to clear any dose κ < K
accumulated the day before.

To obtain some analytical insights, we introduce a degree-
based mean-field theory [14], an approximation equivalent to
consider an infinite size annealed hypergraph, where at each
time step, the connections between nodes and hyperedges are
shuffled. We validate our approach with Monte Carlo simu-
lations on quenched hypergraphs in the supplemental mate-
rial [17].

With the mean-field approximation, the marginal probabil-
ity for a node to be infected at time t only depends on its hy-
perdegree, which we note ρk(t). The global prevalence is then
simply I(t) =

∑
k ρk(t)P̃(k) and the evolution of the system is

described by [14]

ρk(t + 1) = (1 − µ)ρk(t) + [1 − ρk(t)]Θk(ρ̄) , (4)

where Θk(ρ̄) = 1−[1−θ̄(ρ̄)]k is the probability for a susceptible
node of hyperdegree k to get infected. ρ̄(t) is the probability
that a node belonging in any hyperedge is infected and θ̄(ρ̄)
is the probability for a susceptible node to get infected in any
hyperedge,

ρ̄(t) =
∑

k

ρk(t)
kP̃(k)
〈k〉

and θ̄(ρ̄) =
∑

m

θ̄m(ρ̄)
mP̂(m)
〈m〉

, (5)

where θ̄m(ρ̄) is the probability for a node to get infected in a
hyperedge of size m. Because of the annealed structure, θ̄m(ρ̄)
is just the average of θm(ρ) with ρ = i/(m− 1) over a binomial
distribution,

θ̄m(ρ̄) =

m−1∑
i=0

(
m − 1

i

)
ρ̄i(1 − ρ̄)m−1−iθm

( i
m − 1

)
, (6)

with θm(ρ) defined at Eq. (2).
Figure 2(b) shows a first consequence of the nonlinear ker-

nel: the apparition of super-exponential growth for the global
prevalence I(t) when ν > 1. Note that the growth is approx-
imately exponential until a sufficiently high prevalence. For
ν ≤ 1, we instead have a standard exponential growth until
saturation is reached.

In the steady state of the epidemic dynamics, we obtain a
self-consistent solution

ρ∗k =
Θ∗k

µ + Θ∗k
and ρ̄∗ =

∑
k

P̃(k)
k
〈k〉

Θ∗k

µ + Θ∗k
≡ G(ρ̄∗) , (7)

since Θk is a function of ρ̄.
For contagions with a nonlinear infection kernel, the phase

transition associated with the order parameter I∗ can be con-
tinuous or discontinuous with a bistable regime. Conse-
quently, we define the invasion threshold βc such that for all
β > βc, the absorbing state I∗ = 0 is unstable [dashed line in
Fig. 2(c)]. We also define the persistence threshold βp such
that for all β < βp, the absorbing state I∗ = 0 is globally
attractive [dotted line in Fig. 2(c)]. For continuous phase tran-
sitions, βc and βp coincide, and is called the epidemic thresh-
old; for a discontinuous phase transition, βp < βc, and for all
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FIG. 2. Properties of contagions with nonlinear infection kernels induced by heterogenous exposure. We use an exponential dose distribution
π(κ; λ) ∝ e−κ/λ with a power-law distribution of participation time P(τ) ∝ τ−α−1, a clearing window T → ∞, and f (m) = 1. (a) Effective
infection kernel using β = 0.1. The infection probability has a power law scaling θm(ρ) ∝ ρα. (b)-(c) We use Poisson distributions for both
P̃(k) and P̂(m), with 〈k〉 = 5 and 〈m〉 = 10, and set µ = 0.05. We use Eqs. (4-6) to evolve the system. (b) Supra-linear kernels ν > 1 lead
to a super-exponential growth for the global prevalence I(t). We use β = 5 × 10−4, β = 0.025 and β = 0.077 for ν = 0.5, ν = 1 and ν = 1.5
respectively. τ̄ is the median exposure period. (c) The phase diagram for stable solutions in the stationary state (t → ∞) can be continuous or
discontinuous with a bistable regime. Sub-linear and linear kernels ν ≤ 1 lead to a continuous phase transition, and the invasion threshold βc

vanishes for ν→ 0. Supra-linear kernels ν > 1 can lead to a discontinuous phase transition with a bistable regime.

β ∈ (βp, βc), there exists typically three solutions, I∗1 = 0 and
I∗2 , I

∗
3 > 0, with I∗1 and I∗3 locally stable.

The invasion threshold βc can be found by imposing
G′(0) = 1, the persistence threshold βp is obtained by impos-
ing both ρ̄∗ = G(ρ̄∗) and G′(ρ̄∗) = 1 for ρ̄∗ > 0, and any tricrit-
ical point can be found by imposing G′(0) = 1 and G′′(0) = 0.

In the supplemental material [17], we obtain an exact self-
consistent expression for the invasion threshold, and using
again an asymptotic approximation, we find

βc ∝

(
µ 〈m〉 〈k〉〈

m(m − 1)1−ν [ f (m)
]ν〉 〈k2〉 )1/ν

. (8)

It depends in a intricate manner on both the moments of P̂(m)
and P̃(k) and the nonlinearity of the infection kernel. As il-
lustrated in Fig. 2(c), the invasion threshold can become very
small for ν < 1 (vanishing for ν → 0), even for homogeneous
P̃(k) and P̂(m). Note that to obtain a sub-linear kernel ν < 1,
it typically requires a distribution P(τ) ∝ τ−α−1 with α < 1,
which implies that the mean participation time 〈τ〉 diverges.
In the supplemental material [17], we show that if instead we
fix 〈τ〉 while varying α, there exists an optimal temporal het-
erogeneity α∗ that minimizes the invasion threshold βc, and
maximizes early spread.

The minimal kernel exponent νc leading to a discontinuous
phase transition is given by a tricritical point [17]. Although
exact solutions require numerical evaluation, we get three in-
sights from an asymptotic expansion. (i) ν > 1 is necessary
in order to have a discontinuous phase transition, but it is not
sufficient: νc depends on the first three moments of P̃(k), and
in a more complicated manner on the distribution P̂(m). (ii) It
is necessary to have environments of size m > 2 to have a
discontinuous phase transition. (iii) A more heterogeneous
P̃(k) leads to a larger νc. Similar observations were made in
Ref. [52] for m ≤ 3.

Conclusion. Our framework captures many properties
usually overlooked for the sake of simplicity in epidemic

models: the higher-order structure of contacts, the temporal
heterogeneity of human activity and thresholding effects over
the exposure due to the host immune system. In the supple-
mental material [17], we also demonstrate that our results are
robust to variations in individual infectiousness or local trans-
mission in different environments. In particular, we recover
a universal nonlinear infection kernel that provides a connec-
tion between complex contagions based on nonlinear infection
kernels [53] and threshold models [48–50].

Our results challenge a key assumption of most epidemic
models and ask: Why assume a linear relationship between
the number of infectious contacts and the risk of infection?
This question is critical since three of the basic insights gath-
ered from epidemic models break down under nonlinear in-
fection kernels: they can lead to a discontinuous relationship
between disease transmission and epidemic size, to a bistable
regime where macroscopic outbreak and disease-free state co-
exist, and to a super-exponential growth. While the first two
are difficult to assess for real contagions, super-exponential
spread has been observed for influenza-like illness [54].

Even though we considered the SIS model to simplify the
analysis, the universal infection kernel θm(ρ) ∝ ρν could be
directly integrated in more realistic models—such as SEIR or
SIRS—where the same phenomenology typically carries over.

The phenomenology being drastically different from stan-
dard epidemiological models begs the following question:
Why do linear models work? Even for a nonlinear kernel
θm(ρ), the probability of infection θ̄m(ρ̄) (averaged over hy-
peredge configurations) is linear in ρ̄ if ρ̄ � 1 [see Eq. (6)].
Therefore, linear models are a good approximation when
the prevalence is sufficiently low, but breaks down at higher
prevalence, as clearly illustrated in Fig. 2(b) when ν = 1.5.

The mathematical framework we use to solve the SIS model
hinges on a mean-field or annealed approximation, as in other
studies [52, 55–57], thereby suppressing dynamical correla-
tions within hyperedges. As we show in the supplemental
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material [17], dynamical correlations can be captured using
approximate master equations [58–64], which are more com-
plicated but provide similar results with better agreement to
simulations. Future works could investigate more thoroughly
the interplay between dynamical correlations, nonlinear ker-
nels, and spatiotemporal heterogeneity.

Altogether, our conclusions stress the need to embrace het-
erogeneity in disease modeling; in the infection dynamics it-
self, in patterns of temporal activity, and in the higher-order
structure of contact networks. Epidemics should be seen as
the result of a collective process, where higher-order structure
and temporal patterns can drive complex dynamics.
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