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We discuss the response of biopolymer filament bundles bound by transient cross linkers to com-
pressive loading. These systems admit a mechanical instability at stresses typically below that of
traditional Euler buckling. In this instability, there is thermally-activated pair production of topo-
logical defects that generate localized regions of bending — kinks. These kinks shorten the bundle’s
effective length thereby reducing the elastic energy of the mechanically loaded structure. This ef-
fect is the thermal analog of the Schwinger effect, in which a sufficiently large electric field causes
electron-positron pair production. We discuss this analogy and describe the implications of this
analysis for the mechanics of biopolymer filament bundles of various types under compression.

Long, stiff filaments held together by strong bonds are
ubiquitous in biology. These filaments appear in both the
cytoskeleton and the extracellular matrix in the form of
bundles bound by a variety of cross-linking molecules,
which, due to their weaker interactions with the fila-
ments, attach and detach from the bundle reaching a
chemical equilibrium with their concentration in the sur-
rounding fluid. The mechanical response of filaments
and their networks is well understood. The filaments are
nearly inextensible; they respond to tensile or compres-
sive loading by reducing or increasing (respectively) the
amount of filament arc length stored in their transverse
thermal undulations [1-4].

The collective mechanical response of filament bundles
is more complex than that of simple elastic rods. For
instance, bundles have a length-scale dependent bending
modulus [5] whereas the underlying filaments typically
do not. The increased thickness of the bundle suppresses
collective bending deformations, so bundles are signif-
icantly less compliant than their constituent filaments.
But bundles admit new internal degrees of freedom as-
sociated with the filament reorganization. There are two
relevant defects associated with these rearrangements:
braids, corresponding to the transposition of filaments
within the bundle, and loops, which trap extra length in
a subset of the bundle’s filaments between consecutive
cross links [6]. See Fig. 1C and D for schematic diagrams
of pairs of loops and braids respectively. Forming these
defects from a quench by adding cross linkers is common-
place, but since the addition or removal of these defects
requires a system-sized rearrangement of cross linkers,
one cannot expect them to form spontaneously. Rather,
they form in defect — anti-defect pairs, which require
only local cross-linker rearrangements. Since these de-
fect pairs are associated with kinks, compressive loading
suppresses the energy barrier associated with defect pair
production. As a result, at a critical compressive stress,
we expect defect pair proliferation once the energy cost
of pair production is reduced to the thermal energy.

Stiff rods under compression are known to undergo a
mechanical instability — Euler buckling [7, 8]. We find
that Euler buckling is precluded in bundles by another

type of instability: at compressive stresses lower than
the Euler buckling threshold, the bundles shorten by the
thermally-activated production of pairs of topological de-
fects, leading to localized regions of bending deformation
— kinks — unlike the system-sized bends encountered in
Euler buckling.

Defect pair production is analogous to the Schwinger
effect, in which electron-positron pair production was
predicted in a sufficiently strong static electric field [9,
10]. The forces due to the large electric field on the
charged particle pairs pulls them apart, stabilizing these
quantum fluctuations of the vacuum. In the same way, it
is energetically favorable for thermally-generated defects
to be produced under bundle compression. We term this
mechanism the thermal Schwinger effect.

To preserve the cross-linking structure far away from
a defect pair, the length stored by defects must be con-
served, so each defect carries a conserved scalar charge
associated with length. A loop defect takes up excess
length and its anti-defect returns it. Similarly, braids
carry a charge associated with the modified braid group.
To preserve the cross-linking structure far away from the
defect pair, the net braid charge of the defects must van-
ish, i.e., the braid/anti-braid pair must be associated
with inverse operations of the braid group. Each defect
in a three-filament bundle then carries a charge from the
product group Brz x Zs x R? (see SI). In the following,
loops refer to defects with zero braid-group charge, and
braids carry the scalar length charge necessary to min-
imize their defect core energy. We leave more complex
defect structures to future work. Defect pair production
shortens the end-to-end distance of the bundle through
the length stored in the defects cores and in the bundle’s
kinking at the defects, reducing the formation energy cost
of the defect pair under compression. Compression is
the analog of the applied electric field in the Schwinger
effect since it decreases the energy cost of defect pair
production. For the case of current interest the defect
pairs are created by thermal, not quantum, fluctuations.
Loop defects separate under compression, like the elec-
tron/positron pairs in the applied electric field. Braids,
however, attract each other forming bound states, which



FIG. 1.

Fluorescence microscopy images of a z-bend (A) and a u-bend (B) in a collagen bundle.
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(C) Two loops under

compression form a z-bend. (D) Two braids under compression form a u-bend. (E) Angle ¢ produced by a loop pair (blue,
left axis) and energy difference between the looped and straight bundle as a function of dimensionless torque (red, right axis).
(F) Angle ¢ produced by a braid pair (blue, left axis) and the energy difference between braided and straight bundles as the
function of dimensionless torque (red,right axis). [Images courtesy of E. Botvinick and Q. Hu]

has no analog in the standard Schwinger effect.

We first consider production energy of loop and braid
defects in a compressed bundle in order to compute the
loop pair production rate at temperature T in a calcula-
tion reminiscent of the Kramers’ escape problem [13, 14].
To compute the minimal energy configuration for stable
and metastable states of the N-filament bundle under a
compressive force F', we introduce the energy

N
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The first term gives the energy reduction due to the
shortening of the bundle’s end-to-end distance AL. The
cross linkers have binding energy p per unit length. Since
defects disrupt cross linking over a distance ¢, their pres-
ence increases the system’s energy as reflected by the sec-
ond term on the right hand side of Eq. 1. The third term
gives the bending energy stored in the bundle, where x;
and ;(s) are the bending modulus and tangent vector of
the i*? filament. s is the arc length along the bundle. We
neglect torsion, so all defect energies are actually lower
bounds. There will be a continuous spectrum of excited
states due to trapped torsion.

We examine first a pair of loop defects while assuming
the compressive load to be sufficiently weak so the char-
acteristics of the loop, i.e., the dependence of its kink
angle and energy on its size can be taken from our pre-
vious calculations in the zero-compression limit [6]. We
discuss the effect of the changing angle later and in the
SI. The kink angles generated by neighboring loops are
equal and opposite, since the amounts of their trapped
length have to be equal and opposite (which also makes
the loop sizes equal, see ST). A pair of loops produce a z-
bend where parts of the bundle not lying between the loop
pair are parallel and offset in the normal direction to the
undeformed bundle — Fig. 1A,C. This result holds even
for bundles having filaments of differing bending moduli,
as long as the excess trapped length in the loop is much
smaller than the total length of the defected region. For

simplicity, we focus on the case of equal bending moduli.
Then the total energy of configuration with two loops of
size £/2 each, generating kink angles ¢, and separated by
a distance R is

Eiot = g114£ — FR(1 — cos ¢). (2)

The first term in the Eq. 2 is the energy of the pair of
loops of length ¢/2; with coefficient g1 &~ 1.48 (see SI).
The second term is the decrease of energy due to the
compression (see Fig. 1C). As long as F' < p, it is not
important whether we define R to be the distance be-
tween centers of loops or their edges, since the difference
will be small in comparison with the first term. However,
we pick R to be the distance between closest edges, so it
is equal to zero when loops are not yet separated.

Loop formation involves cross linker removal and fila-
ment bending, leading to an energy increase of g; uf as the
loop size £ increases. At some loop size £y, the two grow-
ing loops separate due to random fluctuations. Once sep-
arated, the loops can no longer exchange trapped length
so their lengths are now fixed at ¢5/2 each (see SI). As
the distance interloop distance R of the z-bend grows, the
energy of the compressed bundle decreases due to short-
ening along the direction of the compressive force. We
can consider this process as an escape from the potential
well using x as a single reaction coordinate describing the
growth of the loop sizes while they overlap and then their
separation afterwards:

gipz,x < Lo
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x grows with the sizes of the loops x = ¢ before sepa-
ration (upper equality), and then describes the distance
between the separated loops © = R (lower equality). The
effective potential for the growing loops increases linearly
with loop size up to the final loop size ¢y and then de-
creases linearly due to the shortening of bundle. Taking
into account the change of the angle due to increasing
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FIG. 2. Dimensionless loop pair production rate with n ~
22.5, 7 = 0.1 (see Eq. 5)

torque leads to faster decrease of the potential, which
accelerates pair production. Here we present the calcula-
tion for the lower limit of the production rate, when the
angle is assumed to be constant, and consider the effect
a changing angle in the SI.

Treating pair production as a Kramers’ escape prob-
lem [13] in the potential Eq. 3, we compute the escape
rate r, the rate of loop pair production in thermal equi-
librium at a fixed compressive stress. We compute this
rate as the inverse of the mean time to escape using the
standard Kramers’ approach for an overdamped system:

L /‘TO dyefUW) /y eV, (4)
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where 1z is defined such that U(zg) = 0 and 8 = 1/kgT.
We introduce a loop diffusion constant D o kogAz? in
terms of kog the rate of cross-linker unbinding and the
distance between consecutive binding sites of those cross
linkers along the filament Ax.

Performing the integral in Eq. 4 in the limit of small
F/u and ¢ (see SI), we obtain
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where we introduce the dimensionless parameters 7 =
F/u,n= g1928\/kit, with go = 4.8 relating defect size to

\/gqﬁ (see SI). The pair

production rate r vanishes as ¢ goes to zero since the po-
tential barrier width diverges as 1/¢%. Conversely, very
large angle kink production is also suppressed (r — 0 as
¢ — 00) due to the increasing energy of the loop. The
rate of pair production has a maximum at a finite angle
— see Fig. 2. We obtain a prediction for the most com-
monly produced kink angles in z-bends as a function of
material parameters of the bundle and the applied com-
pressive load. In the limit of weak compression, the max-
imum loop pair production rate rpyax (z-bend formation
rate) occurs at angle ¢* (see SI for details):

the kink angle it produces: ¢ = g5
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The production rate of the z-bends increases as the com-
pressive force squared and is rather sharply peaked —
Fig. 2 — as a function of angle, suggesting that, for fixed
material parameters, including bundle sizes, one expects
to observe a narrow range of z-bending angles. The most
probable z-bend angle scales roughly as kgT'/\/kpi; the
binding energy of the linkers determines the typical ob-
served angles for bundles of a fixed number of filaments.
Finally, as the bundle size grows, the effective x increases,
driving the z-bend angles to zero.

We now examine the production of braid/anti-braid
pairs in a three-filament system. Within the lowest en-
ergy configuration of the braid, two of the filaments follow
the same trajectory, allowing us to reduce the problem
to that of studying two filaments in 2D. We call the case
of two filaments with equal bending moduli a pseudo-
braid, reserving the name braid for the more physical but
analytically less tractable case unequal bending moduli
K1 = 2. See Ref. [6] for further details.

Unlike in the case of loops, only the magnitude of the
kink angles produced by the braid pair must be equal.
The kink angles generated by braids thus do not have to
form z-bends; in fact, the lowest energy state will be a u-
bend as shown in Fig. 1B. This energy is minimized when
the two defects are close to each other and localized in
the middle of the bundle, since this provides the greatest
shortening in response to the force. We speculate that
braid defect co-localization is the primary reason for the
rarity of u-bend observations as compared to z-bends (see
Ref. [6]). U-bends could be easily misinterpreted as a
single defect with a larger kink angle.

To study braids, we introduce two dimensionless pa-

2
rameters: a material parameter ( = #*~ and an applied

force f = £82 <where a is the spacing between the cen-
terlines of the filaments enforced by the cross linkers. We
find that, up to a critical compression f*(¢), implicitly
determined by

[(SVRS LN
=V(¢/2, ()
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the minimum energy configuration of the braid/antibraid
pair remains that of an unkinked bundle as shown in
Fig. 1F. This is distinct from the case of loop pairs where
low-angle loops can form at any compressive load. For
f > [*(C), the defect pairs produce finite-angle kinks
making a u-bend — Fig. 1F.

Solving Eq. 8 numerically (which agrees with the nu-
merical minimization of the energy Eq. 1), we obtain a
phase diagram spanned by compressive loading f and ¢
shown in Fig. 3. The graph is the critical loading for u-
bend formation versus linker binding energy p at fixed s
and a. The non-monotonic behavior of the curve can be
understood as follows. For sufficiently large u, kinks ap-
pear at braids even at zero compressive stress, but as the
linker binding energy decreases, kink formation is ener-
getically unfavorable unless the shortening of the bundle
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FIG. 3. Numerical minimization of the energy (red dots)
and analytical prediction Eq. 8 for a symmetric pseudobraid
k1 = k2. The numerical solution of the more complex, three-
filament braid with k1 = 2k2 (green circles) shows that the
transition is shifted to higher compression.

under load produces a sufficient energy reduction. For
small enough linker binding energy, the defected regions
extend in arc length, thereby becoming more bending
compliant so that there is a re-entrant kinking regime at
small . The behavior of the more physical, asymmetric
case (green circles) is similar to that of the pseudobraid
(red circles and blue line), but the transition is shifted
to higher compressive loads due to the increased bending
rigidity of the system.

Upon increasing the compressive load, we predict that
bundles should first shorten by producing loop pair de-
fects creating z-bends, as found in the collagen bun-
dles seen in Fig. 1A. Assuming the size of the bundles
is known and controlled, the resulting z-bends will be
generated with reproducible angles, due to the peak in
stochastic defect production rate with angle as shown in
Fig. 2. The high polydispersity of typical biopolymer
filament bundles should spread out the distribution of z-
bend angles. But since the angle of maximum production
¢* ~ kgT'/ /K and for a bundle of N filaments x ~ NZ,
we expect d¢* ~ SNN~2. The peak in the z-bend an-
gle distribution may be hard to observe without some
bundle control unless N is large. If the cross-linking en-
ergy is sufficiently large, the z-bend angles will vanish
as ¢ ~ 1/ p'/2. However, as the distance R between the
two loops increases, we cannot continue to neglect the
increase of the equilibrium loop angle shown in Fig. 1E,
which may lead to observable angles at large R, even if
they were unobservably small angles at formation. As
shown in the SI, loop pairs will generically deform to
sharp angles — crumple — as they separate. Such large
angles have not been observed in collagen bundles [6].
This may be due to one of two possibilities. The bundles

may be short enough that z-bends would have to diffuse
off the ends to reach sufficient torque for crumpling, or
defect motion may be so slow that their equilibrium state
is not typically observed.

At higher compression, the u-bends seen in Fig. 1B will
also be created when braid pair production is reduced to
thermal energy. One may ask whether braids or loops are
preferentially generated under particular conditions of
fixed torque. Defect formation is an inherently stochastic
process, but we expect that, since there is a continuous
spectrum of low-energy, small stored length loops, these
should form preferentially at lower temperatures. To fur-
ther examine this point, we provide in the SI a phase dia-
gram showing that loops storing small amounts of excess
length leading to smaller kink angles ¢ are energetically
favored over braid pair production when the loop kink
angles remain below a threshold ¢(().

Using estimates of ¢ ~ 0.1 [6] for F-actin and colla-
gen, we predict uncompressed bundles support unkinked
braids. Braid pair production leading to u-bend forma-
tion should occur for compressive forces on the order of
10 pN based on the phase diagram shown in Fig. 3. DNA
condensed by polyvalent ions and cross-linked intermedi-
ate filaments have ¢ ~ 100 [6] suggesting that there will
be a number of kinked braids quenched into the bun-
dle. As a result, we expect these bundles to collapse by
bending at the preexisting braids, which introduce more
bending compliant regions via cross linker reduction. Fi-
nally, we note that under sufficiently large forces, Fuler
buckling can take over from braid-generated u-bend for-
mation. We estimate that Euler buckling should be found
for FRa/k ~ 5 (see SI) for ¢ = 0.1 (this value increases
with ¢) which is well above the region shown in the u-
bend phase diagram, Fig. 3.

The most direct test of the theory should be found in
compression experiments on individual bundles. For col-
lagen and F-actin, the necessary compressive forces are
on the order of 10pN, suggesting laser trapping experi-
ments as a probe. There remain a number of open ques-
tions about more complex defects and their interactions
on the bundle. More complex defects containing excess
length and braids may form and may exchange length via
the transport of pure loop defects between them. Finally,
since cytoskeletal bundles are often found in conjunction
with molecular motors, one may ask how motor-induced
forces drive defect dynamics.
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