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Quantum spin liquids are exotic states of matter which form when strongly frustrated mag-
netic interactions induce a highly entangled quantum paramagnet far below the energy scale of the
magnetic interactions. Three-dimensional cases are especially challenging due to the significant re-
duction of the influence of quantum fluctuations. Here, we report the magnetic characterization of
K2Ni2(SO4)3 forming a three dimensional network of Ni2+ spins. Using density functional theory
calculations we show that this network consists of two interconnected spin-1 trillium lattices. In the
absence of a magnetic field, magnetization, specific heat, neutron scattering and muon spin relax-
ation experiments demonstrate a highly correlated and dynamic state, coexisting with a peculiar,
very small static component exhibiting a strongly renormalized moment. A magnetic field B & 4 T
diminishes the ordered component and drives the system in a pure quantum spin liquid state. This
shows that a system of interconnected S = 1 trillium lattices exhibit a significantly elevated level of
geometrical frustration.

Strongly correlated systems are at the forefront of con-
densed matter research, exhibiting exotic phases and
nourishing novel theoretical concepts. In magnetism,
one of the most sought-after strongly correlated phase
is a quantum spin liquid (QSL), a state in which spins
avoid long-range order (LRO) and are considered entan-
gled on all spatial scales [1–3]. To realize a QSL, geomet-
rical frustration and reduced dimensionality of the mag-
netic subsystem have been considered vital. 1D Heisen-
berg chains exhibit QSL behavior even without frustra-
tion [4, 5] while 3D cases are rare due to the significant
reduction of quantum fluctuations. Nevertheless, it has
been found that 3D lattices like pyrochlore [6–8] and
hyper-hyperkagome [9, 10] support QSL behavior.

In this Letter we provide extensive experimental and
computational evidence that K2Ni2(SO4)3 exhibits QSL

behavior, based on a novel arrangement of spins forming
two interconnected trillium lattices. Previous work on
compounds featuring a single trillium lattice was mainly
driven by a pressure-induced quantum phase transition
(QPT) discovered in the itinerant helimagnet MnSi [11]
and evidence of non-Fermi liquid behavior above a criti-
cal pressure [12]. Later theoretical works [13, 14] showed
some degree of geometrical frustration in the trillium lat-
tice, nevertheless insufficient to prevent the onset of LRO.
From that perspective, K2Ni2(SO4)3 and other members
of the langbeinite family K2M2(SO4)3 (M = Fe, Co, Mn,
Cr) offer an arena for testing future theoretical develop-
ments on interconnected trillium lattices. Previous inves-
tigations of those compounds displayed ferroelectricity
and structural transitions but their magnetic properties
remain terra incognita.
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Label Type Distance (Å) Exchange (K)
J1 Ni(1)–Ni(2) 4.42877 0.42(1)
J2 Ni(1)–Ni(2) 4.90057 −0.16(1)
J3 Ni(2)–Ni(2) 6.08379 1.09(1)
J4 Ni(1)–Ni(2) 6.12050 5.38(1)
J5 Ni(1)–Ni(1) 6.12695 2.54(1)

TABLE I. K2Ni2(SO4)3 exchange energies obtained by DFT
energy mapping, with paths identified by Ni–Ni distance.

K2Ni2(SO4)3 crystallizes in a cubic unit cell (P213)
with a = 9.81866(12) Å determined from single-crystal
diffraction at 100 K [15]. It consists of a network of
trigonally-distorted NiO6 octahedra, coupled through
SO4 groups [Fig. 1(a)], with a Ni–O–S–O–Ni super-super-
exchange mechanism mediating magnetic interactions be-
tween S = 1 spins. There are two crystallographic Ni
sites, distinguished by their Ni–O distances [15], each
site forming a single trillium lattice.

Mapping the GGA+U total energies [15] onto a Heisen-
berg Hamiltonian for K2Ni2(SO4)3 Ĥ =

∑
i<j JijŜi · Ŝj

as shown in Fig. 1(c) yields the five non-zero exchange
couplings that are listed in Table I and shown in Fig. 1(b),
visualizing the exchange network. The couplings within
each TL are given by antiferromagnetic (AFM) J3 and J5,
respectively. On the other hand the strongest coupling is
found to be AFM J4 that inter-connects the two lattices.
Interestingly, if J4 was the only coupling in the system
it would support a Néel-type LRO. Thus, our calculation
shows that the physics of K2Ni2(SO4)3 is determined by
an interplay between J4 induced ordering tendencies and
J3 and J5 driven frustration.

Figure 2(a) displays the temperature dependence of dc
magnetic susceptibility χdc(T ) and its inverse in a wide
temperature range. The monotonic increase of χdc(T )
with decreasing T , without any noticeable features, sug-
gests the absence of LRO down to 2 K. The linear behav-
ior of 1/χdc(T ) above 50 K allows us to use the Curie-
Weiss law χ(T ) = C/(T−ΘCW), which gives C = 1.37(2)
emu K/mol and ΘCW = −18(1) K. The value of C cor-
responds to S = 1 with a slightly enhanced g-factor of
g = 2.34. ΘCW < 0 indicates predominant AFM in-
teractions, in accordance with density functional theory
(DFT) calculations. Additionally, measurements along
three orthogonal directions practically overlap, indicat-
ing no significant anisotropy.

Below 50 K, 1/χdc(T ) starts to deviate from the Curie-
Weiss law, following the build up of correlations between
magnetic moments. To emphasize this behavior, mag-
netization curves obtained at several temperatures are
plotted in Fig. 2(b), together with the curves of the
Brillouin function, which describe an assembly of non-
interacting S = 1 spins, at corresponding temperatures
(dashed lines). To approximate the magnetization be-
havior, classical Monte Carlo calculations employing the
DFT Hamiltonian have been performed. The resulting

curves (full lines) are closer to the experimental ones but
it is apparent that with decreasing T the deviation from
the classical prediction becomes more pronounced, sug-
gesting a sizeable influence of quantum fluctuations on
this 3D lattice.

Further evidence of strongly correlated spins can be
obtained from specific heat measurements. Fig. 2(c)
shows the T dependence of the total specific heat of
a single crystal of K2Ni2(SO4)3, together with a non-
magnetic analog K2Mg2(SO4)3. At temperatures above
20 K the two compounds show a very similar behav-
ior, indicating a dominant phonon contribution. Below
20 K, K2Ni2(SO4)3 exhibits a significant deviation, with
a broad maximum around 5 K and two features occur-
ring at T ∗ = 1.14 K and T ∗∗ = 0.74 K. Below T ∗∗, the
heat capacity behaves according to a power-law Cp ∼ Tn,
with n ≈ 2. This value of the exponent differs apprecia-
bly from n = 3 for classical AFM and has been observed
in several frustrated magnetic systems [8, 16–18].

To extract the magnetic specific heat Cm, the phonon
contribution using the data obtained on K2Mg2(SO4)3
has been subtracted. On the high T side the subtraction
works up to 50 K where K2Mg2(SO4)3 shows a kink [15],
associated to previously observed lattice related features
in the heat capacity [19]. On the low T side a polyno-
mial BT 3 + CT 5 has been used [15]. The error of the
total entropy S =

∫
(Cm/T )dT due to background sub-

traction is estimated to be a few percent. As can be
seen in Fig. 2(d), at 50 K more than 98% of the expected
entropy for S = 1 system is recovered, with more than
90% being released up to 20 K. The saturation towards
the R ln (2S + 1) value for S = 1 indicates that no resid-
ual entropy is present at T = 0 and that K2Ni2(SO4)3
exhibits a non-degenerate ground state.

Application of magnetic field along the [111] direction
induces little change in the overall behavior of the heat
capacity of K2Ni2(SO4)3. A small but noticeable redis-
tribution occurs for fields above B = 7 T [ Fig. 2(e)] but
even with fields up to 14 T the overall shape of the curve
remains unchanged. The power law Cp ∼ Tn observed
at low T for B = 0 is maintained for B > 0 without a
visible crossover towards the gapped polarized state, as
seen, for example, in YbMgGaO4 [20]. The value of the
extracted exponent remains field independent up to 14 T
[inset of Fig. 2(d)].

The order of transitions at T ∗ and T ∗∗ is revealed
through their overall shape. The feature at T ∗ resembles
a typical, asymmetric λ-shape, characteristic of second-
order phase transitions. On the other hand, at T ∗∗ a nar-
row, symmetrical peak is found, often seen in first-order
phase transitions. Although the entropy released at T ∗

amounts to only 1% of the total Rln3 [15], the sample
purity determined by single-crystal x-ray diffraction [15]
rules out any impurity-related scenario. Additionally, a
comparison with specific-heat measurements on a powder
sample reveals that T ∗ is significantly diminished while
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T ∗∗ is completely absent [15]. With a tentative assign-
ment of T ∗∗ as a first-order phase transition, its presence
in a single-crystal experiment suggests that it is intrin-
sically related to the low-temperature magnetic phase of
K2Ni2(SO4)3.

The magnetic field dependence of T ∗ and T ∗∗ is pre-
sented in Fig. 2(f). T ∗∗ is quickly diminished in ampli-
tude and for B > 1T it disappears completely. T ∗ is
practically unchanged up to B = 1 T with a subsequent
decrease and a reduction of the size of the anomaly [15].
By assuming a quadratic B-dependence of the second-
order phase transition the value of the critical magnetic
field Bc . 4 T can been estimated, above which a com-
pletely dynamic and fluctuating state exists down to the
lowest T .

To shed more light on the peculiar magnetic proper-
ties of K2Ni2(SO4)3, a series of neutron scattering exper-
iments have been performed. Fig. 3(a) shows the results
of polarized neutron scattering, in which a Q-dependence
of the scattering intensity at 0.5 K is presented. It ex-
hibits a broad maximum centered at Qmax ≈ 0.75 Å−1

followed by an attenuating oscillatory dependence. Such
a broad, liquid-like structure factor is typical for systems
with strong quantum fluctuations. This conclusion is
further supported by the fact that the diffuse scattering
pattern in Fig. 3(a) is well reproduced by pseudofermion
functional renormalization group (PFFRG) simulations
of the DFT Hamiltonian. Remarkably, despite the gen-
eral difficulties in simulating a strongly fluctuating 3D
spin system with complex frustrated interactions as re-
alized in K2Ni2(SO4)3, not only the positions of the ex-
trema are well reproduced but also the global amplitude
variations. Additionally, the oscillatory behavior is seen
to persist at least up to 17 K [15], clearly indicating its
connection to strong correlations developing below 20 K.

To investigate the system’s static component, a neu-
tron powder diffraction experiment has been performed
well above and well below T ∗. From a wide Q diffraction
pattern shown in Fig. 3(b) it is found that for Q > 1
Å−1 all peaks are present at both temperatures, indicat-
ing their lattice origin. On the other hand, a series of
very weak magnetic peaks can be found at T = 0.1 K for
Q < 1 Å−1 as seen in the upper half of Fig. 3(c). They
can all be assigned to satellites of the main nuclear Bragg
peaks (h, k, l) in the form qmagnetic = (h, k, l)±Qi, where
Q1 = ( 1

3 , 0, 0), Q2 = ( 1
3 ,

1
3 , 0) and Q3 = ( 1

3 ,
1
3 ,

1
3 ). The

existence of three propagation vectors indicates that even
LRO is heavily influenced by frustration, leaving several
possible structures with similar ground state energies.

Due to the complexity of the scattering pattern, includ-
ing several propagation vectors, tripling of the magnetic
unit cell and very weak amplitudes, it is not possible
to completely determine the magnetic structure nor to
extract the value of the ordered moment. Nevertheless,
utilizing a purely magnetic scattering pattern from po-
larized neutrons [Fig. 3(a)] one can estimate an upper

limit for the static component. To this end, we envisage
that the total intensity S(Q) is composed of two contri-
butions S(Q) = Sstatic(Q)+Sdynamic(Q), with the jagged
Sstatic(Q) roughly following the powder diffraction pro-
file and sitting on top of the smooth Sdynamic(Q). Al-
though the resultant ratio Sstatic(Q)/S(Q) ≈ 11% cannot
be directly related to the value of the ordered moment,
it serves as a supporting evidence that the ground state
in K2Ni2(SO4)3 is dominated by spin fluctuations.

In Fig. 3(d), we show time-of-flight (TOF) data ob-
tained as a direct subtraction of the background inten-
sity obtained at 80 K from a measured intensity at 0.5 K.
Streaks of intensity can be observed at the same positions
as maxima in S(Q) found with polarized neutrons. The
upper limit of spin excitations is found to be around 1.8
meV which agrees well with the temperature at which
specific heat starts to significantly deviate from a purely
phononic behavior. In Fig. 3(e), a narrow Q-integrated
energy dependence of intensity is shown, indicating a con-
tinuum of excitations down to the elastic line. Due to the
existence of the ordered component, it is not straight-
forward to assign this continuum to the QSL state. On
the other hand, the dominance of the dynamic compo-
nent, revealed by specific heat data and polarized neutron
scattering, renders this conclusion very plausible, which
would then support the hypothesis of a gapless nature
for the QSL.

To probe further the peculiar coexistence of static and
dynamic properties revealed in K2Ni2(SO4)3, muon spin
relaxation (µSR) experiments have been performed. As
shown in Fig. 4(a), no obvious wiggles are observed down
to lowest T . On a phenomenological level the relaxation
is often described by a stretched-exponential function

A(t) = A0e
−(λt)β +ABG, (1)

where A0 is the initial asymmetry, ABG a constant back-
ground, λ is the relaxation rate and β is the stretching
exponent that in an ideal case of β = 1 leads to a simple
exponential relaxation. β < 1 has usually been associ-
ated with either a distribution of relaxation times, multi-
ple muon stopping sites, or with intrinsic disorder in the
magnetic system. As is evident from Fig. 4(b), at low
T the observed time dependence of the asymmetry can-
not be satisfactorily described by a single contribution.
Thus, we have extended Eq. (1) with an additional term

A(t) = A0(fe−(λ1t)
β1

+ (1− f)e−(λ2t)
β2

) +ABG. (2)

and fixed f = 0.5 and β1 = 1 to avoid over-
parametrization. We find that it is necessary to use
Eq. (2) up to 3 K while for T > 3 K Eq. (1) is sufficient
(for the discussion of the overlapping region see [15]). In
Fig. 4(c), we present the temperature evolution of re-
laxation rates and exponents (see inset) extracted using
Eq. (2) (green symbols) and Eq. (1) (blue symbols).



4

Below T ∼ 1 K, the extracted parameters attain a con-
stant value, a feature often associated with a highly dy-
namic nature of QSLs [21–23]. We point out that the
value of the exponent β ' 2 is indicative of a specific type
of a correlated spin system based on spin-singlets [24].
Within this scenario, the Gaussian shape of the relax-
ation profile develops from a sporadic appearance of un-
paired spins. The time interval of their existence is much
shorter than a life-time of a muon, so for the majority
of time muons experience very small fields related to the
short-lived but very distant unpaired spins. Such a sce-
nario is in accordance with a practically field-independent
magnetic specific heat seen in Fig. 2(e) [16]. Within this
framework the strong relaxation at low temperatures de-
scribed by λ1 can be associated with a partial but ho-
mogeneous order while the remaining dynamics is due to
the sporadic unpaired-spin appearances. The absence of
oscillations can then be associated with a spread of lo-
cal fields originating from complex magnetic structures
given by propagation vectors Q1, Q2 and Q3. Addition-
ally, the coherent regions giving rise to magnetic peaks
in neutron diffraction are probed on much shorter time
scales (∼ 10−14 s), allowing for local fluctuations between
different magnetic structures on the time scale of muons.

We find two possible scenarios that could encompass
a small value of the static component existing alongside
the dominant, fluctuating component. The first scenario
assumes the existence of a quantum critical point (QCP)
between an ordered phase and a quantum-fluctuation-
dominant phase, with K2Ni2(SO4)3 being on the or-
dered side of QCP but “accidentally” close to it. In
this case, the ordered moment ms is strongly renormal-
ized due to the prevalence of quantum fluctuations close
to a QCP, as has been demonstrated in TlCuCl3 where
a pressure-controlled QPT between a LRO AFM state
and a non-magnetic dimer phase is arbitrarily decreased
(ms ∼

√
p− pc) close to a QCP [25]. In this context,

a possible control parameter could be the ratio of intra-
(J3, J5) and inter-trillium lattice couplings (J1, J2, J4).
Given that Ni(1) and Ni(2) sites form a bipartite lattice,
the limit of dominant J1, J2, J4 results in a semiclassi-
cal AFM phase. With J3, J5 dominant, the system is
in the limit of two weakly coupled trillium lattices. As
demonstrated theoretically for a single trillium lattice, it
is expected to form a variant of the 120° order [13, 14].
The case of two interconnected trillium lattices repre-
sents a novel research direction with many members of
the langbeinite family providing ample opportunity for
comparison with theory.

The second scenario dismisses the “fortuitous” constel-
lation of parameters describing K2Ni2(SO4)3 and con-
siders it positioned well within the QSL phase. Due
to the presence of antisymmetric exchange coupling (the
Dzyaloshinskii-Moriya interaction (DMI)) allowed by the
non-centrosymmetric space group, the ground state gets
“dressed” with a small ordered component due to the

admixing of higher lying states, similar to the admix-
ture of triplet wave-functions into the ground state sin-
glet of an AFM dimer. An exciting consequence of
this scenario arises from topological aspects imposed on
the QSL state. Magnetic structures forming in non-
centrosymmetric space groups are shown to support
skyrmions, topologically protected spin textures [26, 27].
Fractional wave-numbers Q1, Q2 and Q3 revealed in the
diffraction experiment do indicate a potential role of DMI
in the formation of LRO.

In either case, the observed coexistence between fluc-
tuating spins and a small static component which van-
ishes in a magnetic field could be linked to already de-
veloped concepts like field-induced spin liquids in Kitaev-
type honeycomb models featuring non-Abelian fractional
quasiparticles [28]. The ability to tune its behavior across
QCP with magnetic field into a pristine QSL state is an
exciting opportunity which should stimulate further ex-
perimental and theoretical studies.
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FIG. 1. (a) Unit cell of K2Ni2(SO4)3. A Ni–O–S–O–Ni super-super-exchange path contributing to a trillium coupling is marked
by dashed lines. (b) Exchange network between nickel sites. A ten site loop formed by the strongest exchange J4 is marked
by arrows. (c) Exchange couplings determined by DFT energy mapping. The vertical line indicates the U value where the
calculated Curie-Weiss temperature matches the experimental value.
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