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We theoretically demonstrate the possibility of inversion of solvent migration in charged mem-
branes, opposing osmosis. Solvent migration inversion is ascribed to the finite volume of ions in the
solution permeating the membrane, a quantity that has been neglected in the literature so far. We
propose a model of the electrochemistry in the proximity of an electrode, illustrating the range of
molar volume of ions that can yield solvent migration inversion. This study poses the basis for novel
applications in micro/nanofluidics and electrochemistry, along with new inquiries in biology.

Introduction.– Charged membranes are common across
natural processes and technological applications [1–3].
The presence of fixed charges on biological cell mem-
branes has been long hypothesized by pioneering physiol-
ogy studies [4], before experimental validation [5]. Their
fixed charges affect the transport of solute and solvent
molecules from and to the cell [6, 7], which occurs via
passive diffusion across the membrane and transporter-
mediated transfer [8]. On the one hand, water and other
small molecules are passively transported through spe-
cial protein membranes called aquaporins [9]. On the
other hand, ions are exchanged through ion channels and
pumps, which are at the basis of cell volume regulation
[10], neural signaling [11], and muscle contraction [12].

The mechanisms underpinning the function of cell
membranes have attracted the attention of physicists
and material scientists, who started developing new ar-
tificial nano-structures that mimic biological membranes
[13–15]. Bio-inspiration is not the sole design approach
for charged membranes, whereby considerable effort has
been placed over the last seventy years in the study of
ionic membranes [2, 3]. In these porous membranes,
coions are covalently bonded to the polymeric backbone
[2]. A solution composed by counterions and solvent
molecules saturates the membrane and neutralizes the
fixed charge of the coions [3]. The high permselectivity
and conductivity of ionic membranes [16] promoted their
widespread use as selectively-permeable membranes in
fuel cells [17], electrodialysis and desalinization systems
[18], and micro/nanofluidics devices [19].

Despite the importance of charged membranes in bi-
ological and industrial processes, the coupling between
membrane electrochemistry and mechanics is still poorly
understood [20]. In cell membranes, the main instance
in which this coupling is considered is the study of
mechanosensitive ion channels [21], which are activated
or deactivated by the mechanical deformation of the
membrane. However, most of the literature neglects the

stress induced by transport across the membrane and
the effect of mechanical deformations on electrochem-
istry [22]. In ionic membranes, the coupling between me-
chanics and electrochemistry is better understood due to
the extensive literature on ionic polymer-based actuators
driven by ionic transport [23]. Electrochemomechanical
treatments of ionic membranes are typically based on ho-
mogenized approaches [24–27], adapted from soft biolog-
ical materials [28] and porous media [29]. The starting
point of these theories is the assumption that the volume
of the ions in the membrane is negligible compared to
the volume of the other constituents (polymeric backbone
and solvent) [25, 28, 30, 31], thereby leading to simpli-
fied coupling between electrochemistry and mechanics.
To date, the validity of this hypothesis has never been
challenged.

Here, we demonstrate a counter-intuitive effect in
charged membranes due to the bidirectional coupling be-
tween mechanics and electrochemistry. Specifically, we
predict the possibility of an inversion of the migration of
solvent inside charged membranes, from higher to lower
ion concentration regions, opposite to osmosis. We at-
tribute such an inversion to the finite volume of ions in
the solution permeating the membrane. Starting from a
uniform, electroneutral equilibrium condition, the appli-
cation of an external electric field causes electromigration
of the ions, thereby generating a region with a higher ion
concentration in the membrane. Accumulation of ions
elicits an increase in the hydraulic pressure, which con-
trasts osmosis and can ultimately reverse the migration
of solvent.

Model.– We consider a semi-infinite electrode, perpen-
dicular to the x-axis of our reference frame (Fig. 1).
The electrode is in contact with a semi-infinite, perfectly
permselective [32] charged membrane. Without loss of
generality, we consider a uniformly, negatively charged
membrane, representing either a cation-exchange mem-
brane or a rough model of the lipid bilayer [1, 2]. For
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a semi-infinite membrane, symmetry and translational
invariance require variables to vary only along the x di-
rection, normal to the electrode.

Electrode Membrane

x

J0x(0) = 0

J+x
(0) = 0

φ(0) = V

C0(x→ ∞) = 1

C+(x→ ∞) = 1

φ(x→ ∞) = 0

C+

C0

FIG. 1. Schematics of the model problem and boundary
conditions, with an example of profiles of concentrations of
cations (C+, blue) and solvent (C0, red) in the case of inver-
sion of solvent migration.

We impose incompressibility of the individual con-
stituents of the mixture (solid polymeric backbone,
cations, and solvent molecules). We explicitly consider
the finite volume of cations in the incompressibility con-
straint, which reads

1 + V0

(
C0 − C̄0

)
+ V+

(
C+ − C̄+

)
= J, (1)

where V0 and V+ are the molar volumes of solvent and
cations, C0 and C+ are the concentrations of solvent and
cations, C̄0 and C̄+ are the concentrations of solvent and
cations in the reference electroneutral configuration, and
J is the volumetric deformation of the mixture.

In the literature, the volume of cations is typically
neglected (V+=0) [25, 30, 31], following historical prac-
tice in biomechanics and geomechanics [28, 33]. Such
an assumption is accurate when considering absorption
phenomena, which involve much higher uptake of sol-
vent molecules than cations (C̄0 = C̄+ = 0, C0 � C+)
[34]. By challenging the very foundation of the field,
we argue that this is not the case when studying sat-
urated media where pores are completely filled by the
solution, since volume changes associated with solvent
and ions could be on the same order of magnitude,
|V0(C0 − C̄0)| ≈ |V+(C+ − C̄+)|. Neglecting volume
changes associated with ions could lead to qualitatively
inaccurate predictions, even for commercial ionic mem-
branes that constitute industry standard [35, 36].

We consider a static problem. Under the assumptions
of univalent cations and a non-permeable electrode, such
that the normal fluxes of solvent J0x and cations J+x are
zero, the (electro)chemical potentials of solvent (µ0) and
cations (µ+) [37] are constant values independent of the
x coordinate (µ

0
and µ

+
, respectively),

µ0(x) = RT ln

(
C0

C0 + C+

)
+ V0π ≡ µ0

, (2a)

µ+(x) = RT ln

(
C+

C0 + C+

)
+ V+π + Fφ ≡ µ

+
. (2b)

Here, R is the universal gas constant, T is the tem-
perature, F is the Faraday constant, π is the hydraulic
pressure necessary to maintain the incompressibility con-
straint in Eq. (1), and φ is the electric potential. The
hydraulic pressure is defined up to an additive constant
[38], which we set to zero so that the reference configu-
ration is stress-free.

Neglecting electrodynamic phenomena, the motion of
cations in the membrane is dictated by Gauss law [39].
Assuming that the system behaves as a linear dielectric,
we find the Poisson equation

−εφ′′ = F (C+ − C−) , (3)

where ε is the dielectric constant, C− is the concentra-
tion of fixed negative charges, assumed equal to the refer-
ence concentration of cations C̄+, and a prime indicates
a derivative with respect to x.

Equations (1), (2), and (3) represent a differential-
algebraic second-order system in the variables C0(x),
C+(x), φ(x), and π(x), for which we need to specify
boundary conditions. At the electrode (x = 0), we im-
pose a voltage V , along with zero fluxes of solvent and
cations. At infinity, we require zero electric potential,
along with concentrations of solvent and cations equal
to the reference configuration. By taking the limit of
Eq. (2) at infinity, we find µ

0
= RT ln (1/(1 + γ)) and

µ
+

= RT ln (γ/(1 + γ)), where γ = C̄+/C̄0 is the ratio of

the concentrations of cations and solvent in the reference
configuration.

The effect of the volumetric deformation J on elec-
trochemistry is determined by mechanical equilibrium,
which in the absence of body forces at steady-state re-
quires the stress tensor to be divergence free [40]. Fol-
lowing common practice in the literature of ionic mem-
branes [26, 31], we assume an additive decomposition of
the stress tensor into three contributions: the mechanical
stress, the eigenstress associated with hydraulic pressure,
and the eigenstress related to Maxwell stress. We hy-
pothesize that the mixture behaves as a linear isotropic
material with Lamé parameters µmec and λmec [41], and
we neglect the deformability of the electrode. Due to
symmetry, the only non-zero component of the strain
tensor is εxx. Thus, under the assumption of small de-
formations, we write J = 1 + εxx [40].

Equilibrium requires σxx to be constant,

σxx(x) = (λmec + 2µmec)εxx − π +
ε

2
(φ′)2 ≡ σxx. (4)

Here, (λmec + 2µmec)εxx is the mechanical stress, −π is
the eigenstress generated by the hydraulic pressure, and
ε(φ′)2/2 is the eigenstress related to Maxwell stress. At
infinity, the membrane is stress-free, so that σxx = 0.
Thus, from Eq. (4) we can express the strain εxx(x) as a
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function of π(x) and φ(x), obtaining the incompressibil-
ity constraint in Eq. (1) as a function of C+(x), C0(x),
φ(x), and π(x) only,

V0

(
C0 − C̄0

)
+V+

(
C+ − C̄+

)
=

1

λmec + 2µmec

(
π − ε

2
(φ′)2

)
. (5)

The solution of Eqs. (2), (3), and (5) with the appropri-
ate boundary conditions can be reduced to a nonlinear
second-order differential equation for the pressure π(x),
see Supplemental Material [42].

Results.– We focus on the linear regime, where we ap-
ply a voltage V � Vth to the electrode, with Vth =
RT /F being the thermal voltage. We linearize the non-
linear second-order differential equation for the pressure
around π(x) = 0, corresponding to the initial equilib-
rium with C0 = C̄0, C+ = C̄+, and φ = 0. We obtain
the following ordinary differential equation:

π′′ − β2

λ2
D

π = 0, (6)

where λD = 1
F

√
εRT
C̄+

is the Debye screening length [43,

44], and

β =

√
RT C̄+ + (1 + γ)(λmec + 2µmec)C̄2

0V2
0

(λmec + 2µmec)(C̄0V0 + C̄+V+)2
(7)

is a positive nondimensional parameter that scales the
size of the double layer. This parameter is on the order
of 1 for typical ionic membranes with water solvent. The
solution of Eq. (6) is the sum of two exponential func-
tions. By neglecting the diverging exponential at x→∞,
we find

π(x) = RT C̄+Πe−βx/λD , (8)

where Π = −FV/(RT (C̄0V0 + C̄+V+)) is a constant
whose value is determined by matching the voltage at
the electrode surface (φ(0) = V ).

The voltage profile is retrieved as

φ(x) = V e−βx/λD , (9)

whereas the concentration of cations reads

C+(x) = C̄+

(
1− β2FV

RT e
−βx/λD

)
. (10)

These expressions ensure that φ(x) and C+(x) have
boundary layers with opposite trend, whereby a positive
(negative) voltage applied to the electrode induces a re-
duction (increase) in the concentration of cations, as one
would expect from a classical Poisson-Nernst-Planck sys-
tem [45–47].
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FIG. 2. Profile of differences in concentration of cations (a)
and solvent (b) with respect to the reference configuration in
the vicinity of the electrode, per unit applied voltage. Concen-
trations are defined per unit volume of undeformed mixture.
The blue solid line, red dash-dotted line, and black dashed line
indicate V+ = 0, V+ = Vthr

+ , and V+ = 10Vthr
+ , respectively.

Concentrations are nondimensionalized by the corresponding
value in the reference configuration, while the distance from
the electrodes and the applied voltage are scaled by the De-
bye screening length and the thermal voltage, respectively. In
these plots, γ = 1/15, (λmec + 2µmec)/(RT C̄+) = 190, and
V0C̄0 = 0.32, which are typical of an ionic membrane with
water solvent, see Supplemental Material [42].

The profile of solvent concentration shows an interest-
ing dependence on the parameters of the problem. Specif-
ically, we obtain

C0(x) = C̄0

(
1− δFVRT e

−βx/λD

)
, (11)

where

δ =
RT C̄+ − (1 + γ)(λmec + 2µmec)C̄0C̄+V0V+

(λmec + 2µmec)(C̄0V0 + C̄+V+)2
(12)

is a nondimensional parameter that modulates the redis-
tribution of solvent near the electrode. For δ > 0, sol-
vent migration is concurrent to that of cations, whereby
the concentration of solvent decreases for positive applied
voltages and increases for negative applied voltages. This
phenomenon is associated with osmotic effects within
the membrane and is well-documented in the literature
[24, 48]. However, if δ < 0, solvent concentration follows
the opposite trend of the concentration of cations. This
inversion determines migration of solvent from higher to
lower cation concentration regions, opposite to osmosis.

We attribute the inversion of solvent migration to fi-
nite volume effects of cations in the solution permeating
the ionic membrane. In fact, imposing V+ = 0 yields
δ > 0 for any combination of parameters, thus making
solvent migration inversion impossible. On the contrary,
by increasing V+, we register a progressive decrease in the
motion of solvent concurrent with cations (Fig. 2), due
to the more significant effect of the hydraulic pressure in
the cation pile-up region.

Solvent migration is completely inhibited (δ = 0, see
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Fig. 2) for

Vthr
+ =

RT
(C̄0 + C̄+)(λmec + 2µmec)V0

. (13)

For values of V+ over this threshold, we record δ < 0,
corresponding to the solvent migration inversion regime
(Fig. 2). Interestingly, for typical parameters of an ionic
membrane with water as a solvent [49], this threshold is
Vthr

+ ≈ 1.3×10−5 m3/mol, which is slightly above the mo-
lar volume of potassium ions [50]. Thus, when an ionic
membrane is neutralized by a solution of ions with a mo-
lar volume lower than this threshold, such as sodium, wa-
ter migrates as one would expect from osmosis. For neu-
tralizing solutions of ions larger than potassium, such as
cesium, we expect an inversion in the direction of solvent
migration. An indirect evidence of this behavior could
be drawn from actuators based on ionic membranes [23].
For the same applied voltage, actuators neutralized by
small ions show steady-state curvatures of opposite sign
compared to actuators neutralized by large ions [51]. In
the Supplemental Material [42], we demonstrate that an
extension of our model to actuators based on ionic mem-
branes can predict the change in steady-state curvature
observed in experiments.

Equation (13) highlights the material and electrochem-
ical characteristics that favor the inversion of solvent mi-
gration. We find that membranes with higher charge and
solvent densities and higher stiffness facilitate the inver-
sion of migration of solvent molecules, which could occur
with cations with a smaller molar volume. Interestingly,
we observe that Eq. (12) depends symmetrically on the
molar volume of solvent and of cations. Thus, solvent
migration inversion will be more significant for solvents
with higher molar volume, for which the threshold in Eq.
(13) decreases.

Solvent migration inversion is accompanied by a mod-
est reduction of the modulus of the eigenstress due to the
pressure π [52]. In fact, the presence of non-zero volume
of cations causes a decrease of the constant Π in Eq. (8).
Figure 3(a) shows a parametric analysis of the pressure
at the electrode for varying V0 and V+. For a positive
applied voltage, we always record a negative pressure,
which decreases for higher values of either V0 or V+. In
this case, a negative pressure indicates a pressure smaller
than the one at infinity. The pressure has a singularity
at V0 = V+ = 0, corresponding to infinitesimal solution
volume.

Our results are not an artifact from the definition of
concentrations per unit reference volume of mixture, in
place of the concentrations of solvent C0 and cations C+
per unit volume of solution permeating the membrane
that are typically used in the electrochemistry literature
[28] [53]. These quantities are found from their counter-
parts C0 and C+ by dividing by the referential volume
fraction of solution V0C0 + V+C+. We define the varia-
tions ∆C0 and ∆C+ of the concentrations of solvent and

cations per unit volume of solution with respect to their
values in the reference configuration, C̄0/(V0C̄0 +V+C̄+)
and C̄+/(V0C̄0 + V+C̄+), respectively. In addition, we
consider the solution volume fractions of solvent and
cations, which are defined as χ0 = V0C0 and χ+ = V+C+,
along with their variations ∆χ0 and ∆χ+ from their val-
ues in the reference configuration, V0C̄0/(V0C̄0 + V+C̄+)
and V+C̄+/(V0C̄0 + V+C̄+), respectively.

In the linear regime, we find

∆C0 =
C̄0C̄+V0V+

(V0C̄0 + V+C̄+)3
(C̄0 + C̄+)

FV
RT e

−βx/λD , (14a)

∆C+ = − C̄0C̄+V2
0

(V0C̄0 + V+C̄+)3
(C̄0 + C̄+)

FV
RT e

−βx/λD ,

(14b)
and

∆χ0 = −∆χ+ =
C̄0C̄+V2

0V+

(V0C̄0 + V+C̄+)3
(C̄0+C̄+)

FV
RT e

−βx/λD .

(15)
In Fig. 3(b), we show a parametric analysis of ∆χ0

at the electrode, as a function of V0 and V+. ∆C0 and
∆χ0 only differ by a factor V0, and in particular they
have the same sign. Since ∆χ0 ≥ 0, the concentration
of solvent and its volumetric fraction per unit volume of
solution both increase for a positive voltage. While ∆C0
is dominated by a singularity for V0 = V+ = 0, similar to
the pressure in Fig. 3(a), the variation in the volumet-
ric fraction of solvent is free of singularity. In this case,
the symmetry in the contributions of the molar volumes
breaks down, as evidenced by Eq. (15) and Fig. 3(b).
Independent on the definition of concentrations, let them
be per unit reference volume of mixture or per unit vol-
ume of solution, we register the possibility of migration
of solvent in the direction opposite to that expected from
osmosis.

Our formulation encompasses excluded volume effects
necessary to contain the packing of solute and solvent
molecules, especially for large solute molecules [54–56].
From their definition, C0 and C+ are bound by 1/V0 and
1/V+, corresponding to the number of moles per unit vol-
ume of solvent and cations, respectively. Interestingly,
the boundedness of these quantities does not prevent the
concentrations of solvent C0 and cations C+ per unit vol-
ume of mixture to grow unbounded, as the volume of the
mixture increases according to Eq. (1). In the Supple-
mental Material [42], we prove that, for a rigid mem-
brane, our formulation reduces to a modified Poisson-
Boltzmann equation that accounts for the finite volume
of cations [57].

The role of steric effects becomes prominent in the non-
linear regime. For positive applied voltages, we observe
depletion of cations near the electrode, with inversion
of solvent migration for values of V+ higher than in the
linear case. For negative applied voltages, we register re-
markable pile-up of cations, with a significant depletion
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FIG. 3. Contour plots of (a) the pressure at the electrode and
(b) the difference in volume fraction of solvent with respect
to the reference configuration at the electrode, as a function
of the molar volumes of cations and solvent, per unit ap-
plied voltage. Volume fractions are defined per unit volume
of solution. Pressures are nondimensionalized with respect
to RT C̄+, while the applied voltage is scaled by the thermal
voltage. Note that in (a) the maximum absolute value of π(0)
(which diverges for V0 = V+ = 0) has been limited for illus-
tration purposes. In these plots, γ = 1/15, which is typical
of an ionic membrane with water solvent, see Supplemental
Material [42].

of solvent. Predictably, the concentration of cations is at
most 1/V+. More details on the nonlinear solution are in
the Supplemental Material [42].

Conclusions.– The inclusion of the molar volume of
ions in the incompressibility constraint in Eq. (1), sys-
tematically neglected in the literature [25, 30, 31], can
significantly affect transport within charged membranes.
In this Letter, we demonstrate the existence of a thresh-
old for the molar volume of ions above which we record an
inversion of solvent migration, in the direction opposite
to that expected from osmosis. While this phenomenon
shares similarities with reverse osmosis and analogous
separation processes [58], it is fundamentally different as
it occurs within the membrane and not across. Solvent
migration inversion is linear in nature, whereby it occurs
even for infinitesimal variations in solute concentration.

The results of our study have direct implications in the
field of separation processes and electrochemistry. We en-
vision new filtration and particle concentration processes
in microfluidics and nanofluidics [59], due to the possi-
bility of localizing the inversion of solvent migration [60].
These fields constitute the ideal test-bed for an experi-
mental validation of our results, building upon previous
studies that experimentally demonstrated the emergence
of solvent migration from high to low concentrations of
solute in nanochannels [61].

Although our model is only a rough approximation of
the lipid bilayer, our results pave the way for new in-
quiries on biological membranes, toward the inclusion of
bidirectional coupling between membrane mechanics and

electrochemistry. Similar investigations are needed to
verify the effect of membrane deformations on the trans-
port of ions, macromolecules, and water across the mem-
brane through extended continuum or molecular dynam-
ics simulations [22]. We anticipate that solvent migra-
tion inversion could interact with cell volume regulation
mechanisms [10]. To study such interaction, one could
modify the classical Goldman-Hodgkin-Katz system [1]
to account for mechanical deformations of the membrane
during ionic transport.

While making analytical solution feasible, the simplic-
ity of our model warrants future efforts to extend the
validity of our results. Non-idealities in the behavior of
solutions in porous media [62], which were not considered
herein, could potentially affect the motion of solvent and
solute. For ions, polar molecules, and macromolecules,
solvation could play a significant role by affecting solvent
co-transport [50, 63]. Finally, further studies are required
to assess the consequences of solvent migration inversion
on multiphase flows [64].

The authors acknowledge financial support from the
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