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Temporal interfaces introduced by abrupt switching of the constitutive parameters of unbounded 

media enable unusual wave phenomena. So far, their explorations have been mostly limited to 

lossless media. Yet, non-Hermitian phenomena leveraging material loss and gain, and their 

balanced combination in parity-time (PT)-symmetric systems, have been opening new vistas in 

photonics. Here, we unveil the role that temporal interfaces offer in non-Hermitian physics, 

introducing the dual of PT symmetry for temporal boundaries. Our findings reveal unexplored 

interference mechanisms enabling extreme energy manipulation, and open new scenarios for time-

switched metamaterials, connecting them with the broad opportunities offered by non-Hermitian 

phenomena. 

 

Time-varying media exhibit great potential for extreme wave manipulation and for next-generation 

technologies, drawing in recent years significant attention from the engineering and physics 
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communities. These systems exploit temporal degrees of freedom to build higher-dimensional 

metamaterials [1], and enable intriguing opportunities such as Floquet topological insulators for 

both classical and quantum waves [2]-[10], modulation-induced non-reciprocity [11]-[17], 

multifunctional metasurfaces [18], spectral causality [19], and overcoming several limitations of 

static media [20]-[28]. As an important subclass, abrupt changes in time of material properties 

produce temporal boundaries at which a wave can experience reflection and refraction, enabling a 

dual phenomenon to a spatial interface [29]-[32]. For the past few years, the effects of temporal 

boundaries and their application opportunities have been intensively investigated [33]-[42]. 

Nevertheless, with the exception of a recent study [42], the vast majority of these works have been 

limited to lossless media, in which their permittivity or permeability changes in time. 

A parallel line of research holding significant promise in the context of exotic wave-matter 

interactions involves non-Hermitian systems, which capitalize on the interplay between gain and 

loss to enable a wealth of opportunities to control and transmit waves, realizing unconventional 

phenomena, most notably when gain and loss are balanced and the system obeys parity-time (PT) 

symmetry [43]. Unidirectional invisibility [44]-[46], laser-absorber pairs [47]-[48] and chiral state 

transfer [49]-[53] leverage PT symmetry and non-Hermitian singularities, leading to exotic 

phenomena that have no counterparts in Hermitian systems. Here, we unveil the untapped 

opportunities enabled by non-Hermitian temporal slabs, in which the material conductivity is 

abruptly changed in time. In this quest, we forge a link between the field of non-Hermitian systems 

and the one of time-metamaterials, enabling novel interference phenomena for extreme energy 

manipulation, based on the interaction of non-orthogonal counter-propagating waves for which the 

carried power is decoupled from the total stored energy. Of particular interest is the scenario in 

which paired temporal slabs obey temporal parity-time (TPT) symmetry, exhibiting a phenomenon 



3 

 

dual to laser-absorber pairs [47]-[48] for which waves can be largely amplified or attenuated over 

a broad dynamical range of output power levels. 

Non-Hermitian temporal slabs — We begin by considering wave propagation in a uniform and 

isotropic non-magnetic medium characterized by a real-valued (dispersion-less) relative 

permittivity 𝜀 and electrical conductivity 𝜎. Without loss of generality, we assume the presence of 

two counter-propagating waves in the 𝑧-direction, sharing the same wavenumber 𝑘𝑧 > 0, so that 

the total transverse electric and magnetic field components are 

with 𝐸+(𝑡) = 𝐸+𝑒𝑗𝜔𝑡 and 𝐸−(𝑡) = 𝐸−
∗ 𝑒−𝑗𝜔∗𝑡 being the time-dependent amplitudes of the forward 

and backward wave at the complex (angular) frequency 𝜔 = 𝑘𝑧𝑐0/𝑛, and 𝑐0 = 1 √𝜇0𝜀0⁄ , 𝜂0 =

√𝜇0/𝜀0  being the speed of light and characteristic impedance in free space, 𝜇0 (𝜀0) being its 

permeability (permittivity). The complex refractive index 𝑛 ≡ √𝜀 + 𝜎/(𝑗𝜔𝜀0) = 𝑛′ − 𝑗𝑛′′ with 

its real (imaginary) part 𝑛′ = √𝜀 − 𝜎̂2  (𝑛′′ = 𝜎̂) where 𝜎̂ ≡ 𝜎/(2𝜀0𝑘𝑧𝑐0), and 𝑐. 𝑐. stands for 

complex conjugate. After averaging in space over one spatial period 2𝜋/𝑘𝑧, the energy density 

𝑤𝑒𝑚(𝑡) at time 𝑡 can be written as [54] 

where 𝑈𝑖(𝑡) ≡ 2𝜀0𝜀[|𝐸+(𝑡)|2 + |𝐸−(𝑡)|2]  is the average energy stored in the two individual 

waves, and 𝑈𝑐(𝑡) ≡ 2𝜀0Re[𝐶(𝑡)]  with 𝐶(𝑡) = 𝑛(𝑛∗ − 𝑛)𝐸+(𝑡)𝐸−(𝑡)∗  represents the 

contribution to stored energy stemming from the interference between the two waves. 𝑈𝑖(𝑡) is 

directly proportional to the (spatially averaged) total power flow carried by the two waves 

𝑃𝑡𝑜𝑡(𝑡) = 𝑃+(𝑡) + 𝑃−(𝑡)  with 𝑃±(𝑡) = (2𝑛′/𝜂0)|𝐸±(𝑡)|2  [55], i.e., 𝑃𝑡𝑜𝑡(𝑡) = 𝑈𝑖(𝑡)𝑐0𝑛′/𝜀 , 

 
𝐸𝑥(𝑧, 𝑡) = 𝑒−𝑗𝑘𝑧𝑧[𝐸+(𝑡) + 𝐸−(𝑡)] + 𝑐. 𝑐. ;  

𝜂0𝐻𝑦(𝑧, 𝑡) = 𝑒−𝑗𝑘𝑧𝑧[𝑛𝐸+(𝑡) − 𝑛∗𝐸−(𝑡)] + 𝑐. 𝑐., 
(1) 

 𝑤𝑒𝑚(𝑡) = 𝑈𝑖(𝑡) + 𝑈𝑐(𝑡), (2) 
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while 𝑈𝑐(𝑡) emerges only in non-Hermitian media (𝜎 ≠ 0) where the two counter-propagating 

waves are non-orthogonal. In non-Hermitian media the interference between counter-propagating 

waves with real-wavenumber and complex frequency is different from the most commonly studied 

scenario of interference of real-frequency waves, which has been explored in connection with 

Anderson localization [56]-[64], and for which the time-average power flow of the individual 

waves is not physically meaningful [65]. 

 Non-Hermitian time boundaries arise when the conductivity is switched in time, offering 

unexplored avenues to control these quantities. Upon switching of the relative permittivity 𝜀 and 

conductivity 𝜎 of the unbounded medium, momentum 𝑘𝑧 instead of frequency is conserved. In 

addition, at the temporal boundary at time 𝑡𝑠 for which the material properties transition abruptly 

from (𝜀1, 𝜎1) to (𝜀2, 𝜎2), or equivalently from 𝑛1 to 𝑛2  for the complex refractive index 𝑛, the 

time-dependent amplitudes 𝐸±(𝑡) of forward and backward waves vary as 

where 𝜓𝐸(𝑡) ≡ (𝐸+(𝑡), 𝐸−(𝑡))𝑇 (the superscript 𝑇 indicates the transpose),  𝐽2,1 is the matching 

matrix ensuring that the displacement field 𝐷𝑥 = 𝜀𝐸𝑥 and magnetic field 𝐻𝑦 are conserved. The 

temporal transmission and reflection coefficients are 𝜏2,1 = [𝑛1(𝑛1
∗ + 𝑛2)]/[𝑛2(𝑛2 + 𝑛2

∗)]  and 

𝜌2,1 = [𝑛1(𝑛1
∗ − 𝑛2

∗ )]/[𝑛2
∗(𝑛2 + 𝑛2

∗ )]. In the limiting case 𝜎1 = 𝜎2 = 0, these coefficients revert 

to well-known results for Hermitian time boundaries [29]-[30],[66]-[67]. Due to wave interference, 

a non-Hermitian temporal boundary can produce intriguing scattering events, including the 

nontrivial decoupling of total power flow and total stored energy. Consider first the special 

scenario when 𝜀2 = 𝜀1 and 𝜎2 ≠ 𝜎1 = 0, i.e., the time boundary involves only an abrupt change in 

conductivity. The temporal transmittance 𝑇+  and reflectance 𝑇−  are 𝑇± ≡ 𝑃±(𝑡𝑠
+)/𝑃+(𝑡𝑠

−) =

 𝜓𝐸(𝑡𝑠
+) = 𝐽2,1𝜓𝐸(𝑡𝑠

−), 𝐽2,1 = (
𝜏2,1 𝜌2,1

∗

𝜌2,1 𝜏2,1
∗ ), (3) 



5 

 

(1 ± √1 − 𝜎̂2
2/𝜀1) / (2√1 − 𝜎̂2

2/𝜀1) , and thus the total power flow 𝑇+ + 𝑇− =
1

√1−𝜎̂2
2 𝜀1⁄

≠ 1 

changes after the switching, even though the total stored energy in the waves does not, 𝑤𝑒𝑚(𝑡𝑠
+) =

𝑤𝑒𝑚(𝑡𝑠
−), since the permittivity is continuous across the temporal boundary. As shown later, this 

counterintuitive result can be explained by the exotic wave interference emerging in non-

Hermitian temporal slabs and, when combined with TPT symmetry, it enables extreme 

manipulation of the total power flow. We define TPT symmetry here as the dual in time domain 

of spatial PT-symmetry, in which we replace the conventional parity and time reversal operators 

with their temporal analogues 𝒫𝑡 and 𝒯𝑡. The parity 𝒫𝑡 operation is defined as a reversal along the 

time axis 𝑡 → −𝑡, while the 𝒯𝑡 operation sets 𝑧 → −𝑧 and it performs complex conjugation via the 

operator 𝑇. 

Temporal scattering formalism and TPT-symmetric slabs — Before analyzing TPT-symmetric 

bilayers, we need to introduce a temporal scattering formalism accounting for the evolution of 

𝜓𝐸(𝑡) in non-Hermitian temporal slabs. Using Eq. (1), 𝜓𝐸(𝑡) in medium 𝑙 evolves from time 𝑡1 

to 𝑡2 = 𝑡1 + Δ𝑡21 as 

where 𝐹𝑙(Δ𝑡21)  is the propagation matrix and the frequency 𝜔𝑙 = 𝑘𝑧𝑐0/𝑛𝑙  generally assumes 

complex values. For non-Hermitian temporal slabs involving multiple switching events, the 

matching matrix 𝐽2,1 in Eq. (3) and the propagation matrix 𝐹𝑙 in Eq. (4) constitute the building 

blocks of the temporal transfer matrix 𝑀 connecting the state 𝜓𝐸(𝑡) at two different times. We 

consider the general scenario in Fig. 1(a), based on which an unbounded medium switches abruptly 

at time 𝑡𝑖 = 0, 𝛥𝑡 and 𝑡𝑓 = 2𝛥𝑡 from medium 𝑙 to 𝑙 + 1, with 𝑙 = 1, 2, 3. We assume that media 

1 and 4 are Hermitian (𝜎1 = 𝜎4 = 0) with same permittivity 𝜀1 = 𝜀4 > 0, while media 2 and 3 

 𝜓𝐸(𝑡2) = 𝐹𝑙(Δ𝑡21)𝜓𝐸(𝑡1), 𝐹𝑙(Δ𝑡21) = (𝑒𝑗𝜔𝑙Δ𝑡21 0

0 𝑒−𝑗𝜔𝑙
∗Δ𝑡21

),  (4) 
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have equal relative permittivity 𝜀2 = 𝜀3 > 0 but balanced loss and gain, i.e., 𝜎2 = −𝜎3 > 0, and 

thus TPT-symmetric. On average, we expect these media to compensate each other in terms of 

energy decay or amplification, in a way dual to PT-symmetric slabs in their symmetric phase [44]-

[45]. Following Eqs. (3) and (4), the total transfer matrix 𝑀𝑡𝑜𝑡  in this geometry, defined via 

𝜓𝐸(𝑡𝑓
+) = 𝑀𝑡𝑜𝑡𝜓𝐸(𝑡𝑖

−), reads 

which consists of the propagation matrices 𝐹𝑙(𝛥𝑡) in media 𝑙 = 2, 3, and the matching matrices 

𝐽𝑙+1,𝑙  between different media, and it determines the full evolution of the counter-propagating 

plane waves right before the first switching event at 𝑡𝑖 = 0. 

Alternatively, the scenario of Fig. 1(a) can be described by the temporal scattering matrix 

𝑆 = (
𝑟𝐿 𝑡𝑅

𝑡𝐿 𝑟𝑅
), which obeys the relation |𝑠−(𝑡𝑓

+)⟩ = 𝑆|𝑠+(𝑡𝑖
−)⟩ with the input |𝑠+(𝑡𝑖

−)⟩ = 𝜓𝐸(𝑡𝑖
−) 

and output |𝑠−(𝑡𝑓
+)⟩ = 𝑃𝜓𝐸(𝑡𝑓

+), 𝑃 ≡ (
0 1
1 0

), and it is related to 𝑀𝑡𝑜𝑡 via the relation 𝑆 = 𝑃𝑀𝑡𝑜𝑡. 

Interestingly, we find that the dynamics of non-Hermitian temporal slabs are always invariant 

under the 𝒯𝑡  operation, leading to the universal constraint 𝑃𝑇𝑆𝑃𝑇 = 𝑆, or equivalently 𝑟𝑅 = 𝑟𝐿
∗ 

and 𝑡𝑅 = 𝑡𝐿
∗ [68]. It follows that the dynamics of any TPT-symmetric structure, defined as above, 

are necessarily invariant under both 𝒫𝑡  and combined 𝒫𝑡𝒯𝑡  operations, and the corresponding 

temporal 𝑆 matrix obeys the fundamental relationship 𝑃𝑇𝑆𝑃𝑇 = 𝑆−1, i.e., the time analogue of 

conventional PT-symmetric scattering systems. Nevertheless, due to the constraint imposed by the 

symmetry under the 𝒯𝑡 operation, we parametrize the 𝑆 matrix of TPT-symmetric structures as 

 𝑀𝑡𝑜𝑡 = 𝐽4,3𝐹3(𝛥𝑡)𝐽3,2𝐹2(𝛥𝑡)𝐽2,1, (5) 

 𝑆 = (
𝑗𝑏 𝑎∗

𝑎 −𝑗𝑏
) , |𝑎|2 − 𝑏2 = 1, 𝑏 ∈ ℛ, 𝑎 ∈ 𝒞. (6) 
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This result ensures that the eigenvalues are ±1: different from conventional PT-symmetry, TPT-

symmetric structures are always in their symmetric phase, and the temporal S matrix in Eq. (6) and 

the 𝑃𝑇  operator share the same set of eigenvectors. Eq. (6) also implies that TPT-symmetric 

structures cannot attenuate a single input wave, since the temporal transmittance 𝑇+ = |𝑎|2 ≥ 1. 

Extreme energy transformations in TPT-symmetric temporal bilayers — Despite the fact that 

TPT-symmetric systems are always in their symmetric phase with unimodular eigenvalues, highly 

nontrivial energy manipulation is possible exploiting wave non-orthogonality. To demonstrate 

these opportunities, we consider equal-intensity counter-propagating input waves with a variable 

relative phase 𝜙  at time 𝑡𝑖
− = 0−  [see Fig. 1(a)], i.e., |𝑠+(𝑡𝑖

−)⟩ = (1/√2, 𝑒𝑗𝜙/√2)
𝑇

, and 

investigate the normalized total output power flow 𝑃̂𝑡𝑜𝑡 ≡ 𝑃𝑡𝑜𝑡(𝑡𝑓
+)/𝑃𝑡𝑜𝑡(𝑡𝑖

−) at time 𝑡𝑓
+ = (2𝛥𝑡)+. 

In our scenario, 𝑃̂𝑡𝑜𝑡 depends on four dimensionless real-valued parameters: the relative phase 𝜙, 

the (normalized) temporal slab duration Δ𝑓 ≡ 2Δ𝑡𝜔1, and the real and imaginary parts 𝑛̂2
′  and 𝑛̂2

′′ 

of the refractive index ratio 𝑛̂2 ≡ 𝑛2/𝑛1 = 𝑛̂2
′ − 𝑗𝑛̂2

′′. In addition, 𝑃̂𝑡𝑜𝑡 is a periodic function of 𝜙 

and Δ𝑓 for fixed 𝑛̂2, i.e., 𝑃̂𝑡𝑜𝑡(𝜙 + 2𝜋, Δ𝑓) = 𝑃̂𝑡𝑜𝑡(𝜙, Δ𝑓 + 2𝜋|𝑛̂2|2/𝑛̂2
′ ) = 𝑃̂𝑡𝑜𝑡(𝜙, Δ𝑓). 

In analogy to laser-absorber pairs in PT-symmetric systems, we explore the global 

minimum 𝑃̂𝑡𝑜𝑡
𝑚𝑖𝑛 and maximum 𝑃̂𝑡𝑜𝑡

𝑚𝑎𝑥 of the total normalized output power 𝑃̂𝑡𝑜𝑡(𝜙, Δ𝑓) as we vary 

the relative phase between the input waves 𝜙 and the temporal slab thickness Δ𝑓. Remarkably, a 

critical-point analysis of 𝑃̂𝑡𝑜𝑡 (see below) indicates that the global minimum 𝑃̂𝑡𝑜𝑡
𝑚𝑖𝑛 and maximum 

𝑃̂𝑡𝑜𝑡
𝑚𝑎𝑥 are achieved for the same value Δ𝑓

𝑚𝑖𝑛 = Δ𝑓
𝑚𝑎𝑥. Since 𝑃̂𝑡𝑜𝑡(𝜙, Δ𝑓) is a continuous function, 

the maximum dynamical range between 𝑃̂𝑡𝑜𝑡
𝑚𝑎𝑥 and 𝑃̂𝑡𝑜𝑡

𝑚𝑖𝑛 can be reached for this value of Δ𝑓 by 

modulating the relative phase 𝜙 . Next we study the variation of these extreme values as the 

imaginary part 𝑛̂2
′′ changes. 
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 Assuming a fixed value of 𝑛̂2
′ > 1, a perturbation analysis with 𝑛̂2

′′ → 0+ sheds light on the 

extreme values that 𝑃̂𝑡𝑜𝑡 can attain. When 𝑛̂2
′′ = 0, the TPT-symmetric temporal bilayer in Fig. 1(a) 

is a uniform Hermitian temporal slab, and 𝑃̂𝑡𝑜𝑡  changes at times 𝑡𝑖 = 0 and 𝑡𝑓 = 2𝛥𝑡, together 

with the stored energy in the system. Owing to the equal-intensity inputs |𝑠+(𝑡𝑖
−)⟩  and the 

symmetry of matching and propagation matrices in Eqs. (3) and (4), the intensities of the counter-

propagating waves within each slab are equal. This observation together with Eq. (3) allows us to 

obtain the optimal relative phase 0  and 𝜋  (or 𝜋  and 0) of the two waves at time 𝑡𝑖
−  and 𝑡𝑓

− 

respectively in order to achieve maximum (or minimum) energy extraction from the waves, 

yielding 𝑃̂𝑡𝑜𝑡
𝑚𝑖𝑛 = 1/𝑛̂2

′ 2
 for 𝜙𝑚𝑖𝑛 = 0 and Δ𝑓

𝑚𝑖𝑛 = 𝑛̂2
′ 𝜋/2 for the global minimum, and 𝑃̂𝑡𝑜𝑡

𝑚𝑎𝑥 =

𝑛̂2
′ 2

 for 𝜙𝑚𝑎𝑥 = 𝜋 and Δ𝑓
𝑚𝑎𝑥 = Δ𝑓

𝑚𝑖𝑛 for the global maximum. For TPT-symmetric slabs, we can 

now write a perturbation series in 𝑛̂2
′′  for Δ𝑓

𝑚𝑎𝑥 = Δ𝑓
𝑚𝑖𝑛 = 𝑛̂2

′ 𝜋/2 + 𝑛̂2
′′(𝑛̂2

′ 2
+ 1)/(𝑛̂2

′ 2
− 1) +

𝑛̂2
′′2

𝜋/(2𝑛̂2
′ ) + 𝑂(𝑛̂2

′′3
) and 𝜙𝑚𝑎𝑥 − 𝜋 = 𝜙𝑚𝑖𝑛 = 2𝑛̂2

′′/(𝑛̂2
′ 2

− 1) + 𝑂(𝑛̂2
′′3

), yielding the global 

extreme values 

In Fig. 1(b), the extreme values of 𝑃̂𝑡𝑜𝑡 when 𝑛̂2
′ = 2, i.e., 𝑃̂𝑡𝑜𝑡

𝑚𝑖𝑛 (blue down-pointing triangles) and 

𝑃̂𝑡𝑜𝑡
𝑚𝑎𝑥  (red up-pointing triangles) in Eq. (7), versus 𝑛̂2

′′ ∈ (0, 0.4)  are plotted against rigorous 

numerical calculations (blue and red solid lines), showing good agreement. The non-Hermitian 

nature of the TPT-symmetric bilayer drastically enhances the dynamical range of achievable 

minimum and maximum power after the switching events. To explain this phenomenon, we 

evaluate the time-dependent evolution of the (normalized) stored energy density 𝑤̂𝑒𝑚(𝑡) ≡

𝑤𝑒𝑚(𝑡)/𝑤𝑒𝑚(0−) and its two components 𝑈̂𝑖(𝑡) ≡ 𝑈𝑖(𝑡)/𝑤𝑒𝑚(0−) and 𝑈̂𝑐(𝑡) ≡ 𝑈𝑐(𝑡)/𝑤𝑒𝑚(0−), 

 
1

𝑃̂𝑡𝑜𝑡
𝑚𝑎𝑥

= 𝑃̂𝑡𝑜𝑡
𝑚𝑖𝑛 =

1

𝑛̂2
′ 2 −

2𝑛̂2
′′

𝑛̂2
′ 3 +

2𝑛̂2
′′2

𝑛̂2
′ 4

(1 − 𝑛̂2
′ 2

)
+ 𝑂(𝑛̂2

′′3
). (7) 
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plotting them as a function of time for 𝑛̂2
′ = 2 and 𝑛̂2

′′ = 0.2 in Fig. 2(a) for the configuration 

providing 𝑃̂𝑡𝑜𝑡
𝑚𝑖𝑛 , and in Fig. 2(b) for 𝑃̂𝑡𝑜𝑡

𝑚𝑎𝑥 . The stored energy density 𝑤̂𝑒𝑚(𝑡) (solid lines) is 

discontinuous at time 𝑡𝑖 and 𝑡𝑓, since we pump or subtract energy from the material as we switch 

its permittivity 𝜀 = |𝑛|2, but it is continuous in the middle switching event because here we only 

switch the conductivity. 𝑈̂𝑖(𝑡) (dashed lines) and 𝑈̂𝑐(𝑡) (empty circles) are discontinuous in the 

middle switching event, compensating each other. The TPT bilayer largely absorbs [Fig. 2(a)] or 

amplifies [Fig. 2(b)] the input waves by simply changing their relative phase, leading to a largely 

manipulated total power flow with 𝑃̂𝑡𝑜𝑡 = 𝑤̂𝑒𝑚(𝑡𝑓
+). 

 We now explore the extreme scenario in which we only switch the conductivity, such that, 

as we change 𝑛̂2
′′, we also vary 𝑛̂2

′ = √1 − 𝑛̂2
′′2

< 1 correspondingly. This scenario is particularly 

interesting since we cannot expect any variation in stored energy across any of the switching events. 

Yet, as anticipated above, it is actually possible to largely modify the power flow even in this 

regime, and the extreme values of 𝑃̂𝑡𝑜𝑡 read 

reached for 𝜙𝑚𝑖𝑛 = 𝜋/2, Δ𝑓
𝑚𝑖𝑛 = 𝜋/√1 − 𝑛̂2

′′2
 and 𝜙𝑚𝑎𝑥 = 3𝜋/2, Δ𝑓

𝑚𝑎𝑥 = Δ𝑓
𝑚𝑖𝑛 . Interestingly, 

the optimal phases do not depend on 𝑛̂2
′′ in this case. In Fig. 1(b), blue and red dashed lines show 

the range of available 𝑃̂𝑡𝑜𝑡 at its extreme values as a function of 𝑛̂2
′′. As expected, they both start 

from unity for small 𝑛̂2
′′, but as 𝑛̂2

′′ approaches 1, they converge to 0 and ∞ dual to a laser-absorber 

pair in PT-symmetric systems [see Eq. (8)], despite the fact that all switching events preserve the 

stored energy, and that the TPT-symmetric bilayers operate in their symmetric phase. The drastic 

variations of 𝑃̂𝑡𝑜𝑡 emerge here as the waves become non-orthogonal in non-Hermitian temporal 

 𝑃̂𝑡𝑜𝑡
𝑚𝑖𝑛 =

(𝑛̂2
′′ − 1)2

(𝑛̂2
′′ + 1)2

, 𝑃̂𝑡𝑜𝑡
𝑚𝑎𝑥 =  

1

𝑃̂𝑡𝑜𝑡
𝑚𝑖𝑛

 (8) 
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slabs. In Fig. 3, we show the two extreme scenarios for 𝑛̂2
′′ = 0.2 and 𝑛̂2

′ = √1 − 𝑛̂2
′′2

≈ 0.98, 

studying the evolution of normalized energies as in Fig. 2. As expected, the energy density 𝑤̂𝑒𝑚(𝑡) 

is continuous across every switching event, but 𝑈̂𝑖(𝑡) and 𝑃𝑡𝑜𝑡(𝑡) are largely modified. For 𝑃̂𝑡𝑜𝑡
𝑚𝑖𝑛, 

both temporal slabs start from a maximum 𝑈̂𝑐(𝑡), thanks to the proper phase of the incident waves, 

and end at the point of its maximum decay, minimizing the overall residual energy in the waves 

and corresponding power flows [Fig. 3(a)]. In the dual scenario of 𝑃̂𝑡𝑜𝑡
𝑚𝑎𝑥  [Fig. 3(b)], on the 

contrary, 𝑈̂𝑐(𝑡) in each temporal slab starts at a minimum and grows, maximizing the overall 

power flow at the output. 

 For both Figs. 2 and 3, we performed COMSOL simulations to validate our analysis. As 

shown in each inset, two counter-propagating pulses with equal intensity travel against each other 

in a homogeneous Hermitian medium, meet and overlap at time 𝑡 = 0 with a prescribed relative 

phase, experience three switching events, following the color code in the figure, and separate once 

they are again in the Hermitian medium. The simulations match well our model, which ignores the 

finite spatial extent of the wave trains. The inset of each subfigure shows time snapshots of the 

total 𝐸𝑥(𝑧, 𝑡) distribution of the counter-propagating waves at times 𝑡 = −16𝜋/𝜔1, Δ𝑡/2, 3Δ𝑡/2 

and 16𝜋/𝜔1, and movies of the wave evolution are provided in [69]. 

Conclusions — In this Letter, we introduced a rigorous temporal scattering formalism for non-

Hermitian temporal slabs, highlighting unexplored opportunities enabled by non-Hermiticity in 

time metamaterials based on nontrivial wave interference. Based on this formulation, we have 

introduced the analogue of PT-symmetry for temporal slabs, showcasing highly nontrivial energy 

manipulation features. TPT-symmetric systems are always in the symmetric phase, yet they 

support the dual phenomenon of laser-absorber pairs, enabling an extreme dynamical range of 

output power levels tuning the relative phase between input counter-propagating waves. These 
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results may be further enhanced by exploring these wave interference phenomena in non-

instantaneous materials [70] and/or in open resonators with large quality factors, providing new 

strategies for the design of time-metamaterial devices for extreme wave manipulation. By 

generalizing our approach to incorporate also spatial boundaries, it may be possible to enable other 

PT-symmetric phenomena, like phase transitions, in combination with the interference-driven 

phenomena unveiled here. 
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Figures 

 

Fig. 1. (a) Schematic of TPT-symmetric temporal slabs. (b) 𝑃̂𝑡𝑜𝑡
𝑚𝑖𝑛 [solid (or dashed) blue line] and 

𝑃̂𝑡𝑜𝑡
𝑚𝑎𝑥 [solid (or dashed) red line] in the case of fixed 𝑛̂2

′ = 2 (or varying 𝑛̂2
′ = √1 − 𝑛̂2

′′2
) as a 

function of 𝑛̂2
′′. Blue down-pointing (red up-pointing) triangles represent the perturbative result for 

𝑃̂𝑡𝑜𝑡
𝑚𝑖𝑛 (𝑃̂𝑡𝑜𝑡

𝑚𝑎𝑥) in Eq. (7). 
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Fig. 2. Normalized energy 𝑤̂𝑒𝑚(𝑡) (solid lines), 𝑈̂𝑖(𝑡) (dashed lines) and 𝑈̂𝑐(𝑡) (dotted lines) as a 

function of time when (a) 𝜙𝑚𝑖𝑛 = 0.13, Δ𝑓
𝑚𝑖𝑛 = 3.5 and (b) 𝜙𝑚𝑎𝑥 = 3.27, Δ𝑓

𝑚𝑎𝑥 = Δ𝑓
𝑚𝑖𝑛 for the 

extreme values of 𝑃̂𝑡𝑜𝑡  [see Fig. 1(b)] in the case of 𝑛̂2
′ = 2  and 𝑛̂2

′′ = 0.2. Insets: snapshots 

obtained with COMSOL of 𝐸𝑥(𝑧, 𝑡)  versus position 𝑧  (in units of 2π/𝑘𝑧 ) at time 𝑡 =

−16π/𝜔1(1st row), Δ𝑡/2 (2nd row), 3Δ𝑡/2 (3rd row) and 16π/𝜔1 (4th row) for finite pulses 

traveling in the medium. Other free parameters are 𝑛1 = 1 and 𝜔1/(2𝜋) = 1 GHz, and the colored 

backgrounds indicate the material properties over time. The amplitude of the two input waves is 

√2 V/m. 
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Fig. 3. Same as Fig. 2 for the minimum (a) and the maximum (b) of 𝑃̂𝑡𝑜𝑡 when 𝑛̂2
′′ = 0.2 and 𝑛̂2

′ ≈

0.98, such that we switch only the material conductivity. 

 

 

 

 

 

 

 

 

 

 

 

 


