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We present results from an analysis of all data taken by the BICEP2, Keck Array and BI-
CEP3 CMB polarization experiments up to and including the 2018 observing season. We add
additional Keck Array observations at 220 GHz and BICEP3 observations at 95 GHz to the previ-
ous 95/150/220 GHz data set. The Q/U maps now reach depths of 2.8, 2.8 and 8.8µKcmb arcmin
at 95, 150 and 220 GHz respectively over an effective area of ≈ 600 square degrees at 95 GHz and
≈ 400 square degrees at 150 & 220 GHz. The 220 GHz maps now achieve a signal-to-noise on
polarized dust emission exceeding that of Planck at 353 GHz. We take auto- and cross-spectra
between these maps and publicly available WMAP and Planck maps at frequencies from 23 to
353 GHz and evaluate the joint likelihood of the spectra versus a multicomponent model of lensed-
ΛCDM+r+dust+synchrotron+noise. The foreground model has seven parameters, and no longer
requires a prior on the frequency spectral index of the dust emission taken from measurements on
other regions of the sky. This model is an adequate description of the data at the current noise levels.
The likelihood analysis yields the constraint r0.05 < 0.036 at 95% confidence. Running maximum
likelihood search on simulations we obtain unbiased results and find that σ(r) = 0.009. These are
the strongest constraints to date on primordial gravitational waves.

PACS numbers: 98.70.Vc, 04.80.Nn, 95.85.Bh, 98.80.Es

Introduction.—The ΛCDM standard model of cosmol- ogy is able to describe the observable universe in a sta-
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tistical manner using only six free parameters. Measure-
ments of the cosmic microwave background (CMB) [1]
are one the key pillars of this model and now constrain
its parameters with percent-level precision (see most re-
cently Ref. [2]).

The ΛCDM model describes how the universe evolved
from an initial high energy state (T � 1012 K), and the
conditions at that time can be inferred from observa-
tions: fractionally small, Gaussian, adiabatic perturba-
tions with a slightly red power law spectrum (ns <∼ 1).
Inflationary theories naturally explain such conditions as
the outcome of a pre-phase of exponential expansion dur-
ing which the scale of the proto-universe increased by a
factor of ∼ e60. Inflation makes an additional predic-
tion which has not yet been observed—a background of
tensor perturbations, also known as gravitational waves
(see Ref. [3] for a review and citations to the original
literature). There are many specific inflationary models
and classes thereof. If we can detect or set limits on pri-
mordial gravitational waves we can set limits on these
models [4], and probe physics at energy scales far higher
than can ever be accessed in laboratory experiments.

A polarization pattern can be decomposed into E-
mode (gradient) and B-mode (curl) components. Un-
der the ΛCDM standard model the CMB polarization
pattern is mostly E-mode, with a much smaller B-mode
component which arises due to gravitational deflections
(lensing) of the CMB photons after their last scatter-
ing [5]. Since primordial gravitational waves will produce
E-modes and B-modes approximately equally it was re-
alized in the late 1990’s that the best way to search for
them is to look for an excess B-mode signal [6–8]. Ad-
ditional non-primordial B-modes are produced by astro-
physical foreground emissions, primarily from our own
galaxy, but these have different frequency spectra than
the CMB, and can be separated from it using multi fre-
quency measurements.

Our BICEP/Keck program first reported detection
of an excess over the lensing B-mode expectation at
150 GHz in Ref. [9]. In a joint analysis using multi-
frequency data from the Planck experiment it was shown
that most or all of this is due to polarized emission from
dust in our own galaxy [10, hereafter BKP]. In Ref. [11,
hereafter BK14] we improved the constraint using Keck
Array data at 95 GHz taken during the 2014 season, and
in Ref. [12, hereafter BK15] we improved again adding
Keck Array data at 95 GHz and 220 GHz taken during the
2015 season. In this letter [hereafter BK18] we add large
amounts of new data taken by Keck Array at 220 GHz
and BICEP3 at 95 GHz during the 2016, 2017 and 2018
observing seasons. This paper follows BK15 very closely
in the methods, structure, and, in places, even the word-
ing, mainly just adding additional experimental data.
This improves the constraint on primordial gravitational
waves parameterized by the tensor-to-scalar ratio r by
more than a factor of two over our previous result to

r0.05 < 0.036 at 95% confidence, setting important addi-
tional limits on inflationary models.

Instrument and observations.—The BICEP2 receiver
observed at 150 GHz from 2010–2012 [13]. The Keck Ar-
ray was essentially five copies of BICEP2 running in par-
allel from 2012–2019, initially at 150 GHz but switching
over time to 95 and 220 GHz [14]. BICEP3 is a single
similar, but scaled up, receiver which commenced sci-
ence observations in the 2016 Austral winter season [15].
Whereas the BICEP2 and Keck 150 & 220 GHz receivers
each contained ≈ 500 bolometric detectors BICEP3 con-
tains ≈ 2500 detectors. The aperture size is also in-
creased from ≈ 0.25 m to ≈ 0.5 m. The Keck receivers
were mounted on a single telescope mount (movable plat-
form), while BICEP3 occupies a separate mount previ-
ously used for BICEP2 on a nearby building. All of
these telescopes are located at the South Pole Station in
Antarctica. The mounts scan the receivers across the sky,
and the cryogenic detectors track the intensity of the in-
coming microwave radiation. The detectors are arranged
as interleaved orthogonally polarized pairs in the focal
planes and the pair difference timestreams are thus mea-
sures of the polarized emission from the sky [16]. At the
South Pole the atmosphere is exceptionally transparent
and stable at the observation frequencies [17, Fig. 5].

BICEP2 and Keck Array both mapped a region of sky
centered at RA 0h, Dec. −57.5◦ with an effective area of
≈ 400 square degrees. BICEP3 has a larger instanta-
neous field of view and hence naturally maps a larger
sky area with an effective area of ≈ 600 square degrees.
We have perturbed the center of the BICEP3 scan region
such that most of this additional area falls on the higher
declination side of the sky patch in an attempt to stay
away from regions where the Planck data indicates polar-
ized dust contamination may be higher. The BK15 data
set consisted of 4/17/2 receiver-years at 95/150/220 GHz
respectively. BICEP3 is equivalent to about eight of the
Keck Array 95 GHz receivers [15] so the BK18 data set
is equivalent to about 28/18/14 Keck receiver-years at
95/150/220 GHz respectively.

Maps and Power Spectra—We make maps and power
spectra using the same procedures as in our previous se-
ries of papers. The timestream data are binned into pix-
els on the sky using knowledge of the pointing direction
of the telescope at each moment in time, together with
the relative angles from the telescope boresight to each
individual detector pair. By taking data with the re-
ceivers rotated at a range of angles, maps of the Stokes
parameters Q and U can be constructed.

The maps at each observing frequency are subjected
to a matrix purification operation [9, 18] such that they
contain only structures sourced by B-modes of the un-
derlying sky pattern. This allows us to measure the
B-modes in the presence of the much brighter ΛCDM
E-modes. The maps are then inverse noise variance
apodized, Fourier transformed and rotated from the
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Q/U to the E/B basis. In this paper we use our own
maps at 95, 150 and 220 GHz plus the 23 & 33 GHz
bands of WMAP [19][20] and the 30, 44, 143, 217 and
353 GHz maps from the NPIPE processing of the Planck
data [21][22]. For illustration purposes we can inverse
Fourier transform to form E/B maps. Fig. 1 shows E-
and B-mode maps at 95, 150 and 220 GHz. (See Ap-
pendix A for the full set of T/Q/U maps [23].)

We take the variance within annuli of the Fourier plane
to estimate the angular power spectra. Fig. 2 shows the
EE and BB auto- and cross-spectra for the BICEP/Keck
bands plus the Planck 353 GHz band which remains im-
portant for constraining the polarized dust contribution.
Comparing this plot to Fig. 2 of BK15 we can see that
the uncertainties are dramatically reduced for the auto-
and cross-spectra of the 95 and 220 GHz bands. The
model plotted is a “baseline” lensed-ΛCDM+dust model
from our previous BK15 analysis, which remains a good
description of the data. The EE spectra were not used
to derive the model but agree well with it under the as-
sumption that EE/BB = 2 for dust, as is known to be
close to the case [24, 25].

To test for systematic contamination we carry out our
usual “jackknife” internal consistency (null) tests on the
new 95 GHz and 220 GHz data as described in Appen-
dices B and C. Fig. 3 upper shows the noise spectra for
the three main BK18 bands after correction for the filter
and beam suppression. In an auto-spectrum the quantity
which determines the ability to constrain r is the fluctua-
tion of the noise bandpowers rather than their mean. The
lower panel therefore shows the effective sky fraction as
inferred from the fractional noise fluctuation. Together,
these panels provide a useful synoptic measure of the loss
of information due to noise, filtering, and EE/BB sepa-
ration in the lowest bandpowers (and we are glad to see
taken up by others as e.g. Fig. 6 of Ref. [26]).

Likelihood Analysis.—We perform likelihood analysis
using the methods introduced in BKP and refined in
BK14 & BK15. We use the Hamimeche-Lewis approx-
imation [27] to the joint likelihood of the ensemble of
66 BB auto- and cross-spectra taken between the BI-
CEP/Keck, WMAP and Planck maps. We compare the
observed bandpower values for 20 < ` < 330 (9 bandpow-
ers per spectrum) to an eight parameter model of lensed-
ΛCDM+r+dust+synchrotron+noise and explore the pa-
rameter space using COSMOMC [28] (which implements a
Markov chain Monte Carlo). As in our previous anal-
yses the bandpower covariance matrix is derived from
499 simulations of signal and noise, explicitly setting to
zero terms such as the covariance of signal-only band-
powers with noise-only bandpowers or covariance of BI-
CEP/Keck noise bandpowers with WMAP/Planck noise
bandpowers (see Appendix H of BK15 and Appendix B
of Ref. [29] for details). We deal with the differing sky
coverage of the BICEP3 and BICEP2/Keck maps as
described in Appendix D. The tensor/scalar power ratio

r is evaluated at a pivot scale of 0.05 Mpc−1, and we
fix the tensor spectral index nt = 0. A COSMOMC module
containing the data and model is available for download
at http://bicepkeck.org. The following paragraphs
briefly summarize the foreground model.

We include dust with amplitude Ad,353 evaluated at
353 GHz and ` = 80. The frequency spectral behav-
ior is taken as a modified black body spectrum with
Td = 19.6 K and frequency spectral index βd. In a signif-
icant change from the baseline analysis choices of BK15,
we remove the prior on the dust frequency spectral in-
dex which was previously applied based on Planck data
in other regions of sky—with the improvement in the
Keck 220 GHz sensitivity this prior is no longer needed.
The spatial power spectrum is taken as a power law
D` ∝ `αd marginalizing uniformly over the (generous)
range −1 < αd < 0 (where D` ≡ ` (`+ 1)C`/2π). Planck
analysis consistently finds approximate power law behav-
ior of both the EE and BB dust spectra with exponents
≈ −0.4 [24, 25].

We include synchrotron with amplitude Async,23 eval-
uated at 23 GHz (the lowest WMAP band) and ` = 80,
assuming a simple power law for the frequency spec-
tral behavior Async ∝ νβs , and using a Gaussian prior
βs = −3.1± 0.3 taken from the analysis of WMAP 23
and 33 GHz data in Ref [30]. We note that analysis of
2.3 GHz data from S-PASS in conjunction with WMAP
and Planck finds βs = −3.2 with no detected trends with
galactic latitude or angular scale [31], and that Ref. [32]
analyzed the S-PASS and WMAP 23 GHz data and found
βs = −3.22 ± 0.06 in the BICEP2 sky patch. The spa-
tial power spectrum is taken as a power law D` ∝ `αs

marginalizing over the range −1 < αs < 0 [33]. Ref. [31]
finds a value at the bottom end of this range (≈ −1) from
the S-PASS data for BB at high galactic latitude.

Finally we include sync/dust correlation parameter ε
(called ρ in some other papers [25, 31, 34]). As in BK15
we marginalize over the full possible range −1 < ε < 1.

We hold the lensing B-mode spectrum fixed at that
predicted for the Planck 2018 cosmological parameters [2,
Table 2]. Results of our baseline analysis are shown
in Fig. 4 and yield the following statistics: r0.05 =
0.014+0.010

−0.011 (r0.05 < 0.036 at 95% confidence), Ad,353 =

4.4+0.8
−0.7 µK2, Async,23 < 1.4µK2 at 95% confidence, and

βd = 1.49+0.13
−0.12. For r, the zero-to-peak likelihood ratio is

0.46. Taking 1
2 (1− f (−2 logL0/Lpeak)), where f is the

χ2 CDF (for one degree of freedom), we estimate that
the probability to get a likelihood ratio smaller than this
is 11% if, in fact, r = 0. As compared to the previous
BK15 analysis, the likelihood curve for r tightens con-
siderably with the peak position shifting down slightly,
and the Ad curve tightens slightly. In addition the Async

curve now peaks at zero—the weak evidence for syn-
chrotron we saw in BK15 is no longer present. (Using
the S-PASS data [31] we estimate that the expectation

http://bicepkeck.org
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FIG. 1. E-mode (left column) and B-mode (right column) maps at 95, 150 and 220 GHz in CMB units, and filtered to degree
angular scales (50 < ` < 120). Note the differing color ranges left and right. The E maps are dominated by ΛCDM signal, and
hence are highly correlated across all three bands. The 95 GHz B map is approximately equal parts lensed-ΛCDM signal and
noise. At 150 and 220 GHz the B maps are dominated by polarized dust emission.

is Async,23 ≈ 0.4µK2 in the BICEP/Keck field, which is
consistent with our Async likelihood curve.) In the BK15
analysis the constraint on βd was prior dominated, but
for BK18 we see that the data is able to constrain this
parameter almost as well as the prior previously did. In-
terestingly the peak value selected is very close to the
mean value from Planck 2018 analysis of larger regions
of sky βd = 1.53 [25].

The maximum likelihood model has parameters r0.05 =
0.011, Ad,353 = 4.4µK2, Async,23 = 0.6µK2, βd = 1.5,
βs = −3.0, αd = −0.66, αs = 0.00, and ε = −0.11. This
model is an acceptable fit to the data with the PTE of
the observed value of χ2 being 0.94. Thus, while the dust
spectrum might in general be expected to exhibit fluctu-

ations about power law spatial spectral behavior greater
than that expected for a Gaussian random field, for the
present the model continues to be an adequate descrip-
tion of the data—see Appendix D for further details.

In Appendix E we explore variation and validation of
the likelihood. In Appendix E 2 we vary the baseline
analysis choices and data selection, finding that these do
not significantly alter the results, and that the data do
not prefer allowing decorrelation of the dust pattern in
the model. We also find that the value of Ad is very
similar when evaluated over the larger BICEP3 sky cov-
erage region and the smaller BICEP2/Keck sky region.
Freeing the amplitude of the lensing power we obtain
ABB

L = 1.03+0.08
−0.09, and the r constraint hardly changes.
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FIG. 2. EE (green) and BB (blue) auto- and cross-spectra calculated using the BICEP3 95 GHz map, the BICEP2/Keck
150 GHz map, the Keck 220 GHz map, and the Planck 353 GHz map (with the auto-spectra in darker colors). The BICEP/Keck
maps use all data taken up to and including the 2018 observing season—we refer to these as BK18. The black lines show the
model expectation values for lensed-ΛCDM, while the red lines show the expectation values of a baseline lensed-ΛCDM+dust
model from our previous BK15 analysis (r = 0, Ad,353 = 4.7µK2, βd = 1.6, αd = −0.4). Note that the model shown was
fit to BB only and did not use the BICEP3 95 GHz points shown (which are entirely new). The agreement with the spectra
involving 95 GHz and all the EE spectra (under the assumption that EE/BB = 2 for dust) is therefore a validation of the
model.

In Appendix E 3 we verify that the likelihood analysis is
unbiased, and in Appendix E 4 we explore a suite of al-
ternate foreground models. As part of our standard data
reduction we “deproject” leading order temperature to
polarization leakage [9, 35]—in Appendix F we quantify
possible residual leakage and some other possible system-
atics.

Fig. 5 shows the constraints in the r vs. ns plane for
the Planck 2018 baseline analysis [2] and when adding
in BK18 & BAO. The BK18 data shrinks the contours
in the vertical (r) direction while the BAO data shrinks

the contours in the horizontal (ns) direction and shifts
the centroid slightly to the right. The φ2/3 model now
lies outside the 95% contour as does the band of natural
inflation models.

Conclusions.—The BKP analysis yielded a 95% confi-
dence constraint r0.05 < 0.12, which BK14 improved to
r0.05 < 0.09, and BK15 improved to r0.05 < 0.07. The
BK18 result described in this letter, r0.05 < 0.036, rep-
resents a fractional improvement equivalent to the two
previous steps combined. The BK18 simulations have a
median 95% upper limit of r0.05 < 0.019.
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FIG. 3. Upper: The noise spectra of the BICEP3 95 GHz
map (red), the BICEP2/Keck 150 GHz map (green) and the
Keck 220 GHz maps (blue). The spectra are shown after cor-
rection for the filtering of signal which occurs due to the beam
roll-off, timestream filtering, and B-mode purification. (Note
that no `2 scaling is applied.) Lower: The effective sky frac-
tion as calculated from the ratio of the mean noise realization

bandpowers to their fluctuation fsky(`) = 1
2`∆`

(√
2N̄b

σ(Nb)

)2

, i.e.

the observed number of B-mode degrees of freedom divided
by the nominal full-sky number. The turn-down at low ` is
due to mode loss to the timestream filtering and matrix pu-
rification.

The distributions of maximum likelihood r values
in simulations where the true value of r is zero gave
σ(r0.05) = 0.020 for BK15 which is reduced to σ(r0.05) =
0.009 for BK18 (see Appendix E 3 for details). Such sim-
ulations can also be used to investigate the degree to
which the analysis is limited by foregrounds and lens-
ing. Running the baseline BK18 analysis on simulations
which contain no lensing B-modes gives σ(r0.05) = 0.004,
while running without foreground parameters on sim-
ulations which contain no dust gives σ(r0.05) = 0.007.
Running without foreground parameters on simulations
which contain neither lensing or dust gives σ(r0.05) =
0.002.

Fig. 6 shows the BK18 noise uncertainties in the ` ≈
80 bandpowers as compared to the signal levels. The
signal-to-noise on polarized dust emission of our 220 GHz
band is now considerably higher than that of the Planck
353 GHz band—i.e. the 220 × 220 noise point is much
further below the dust band than the P353×P353 point.
Additional BICEP3 data taken during 2019–2021 will
reduce the noise by a factor greater than 2 and

√
2

for 95 × 95 and 95×W23 respectively, and we have also
recorded additional data at 220 and 270 GHz.

Fig. 7 shows the estimated CMB-only component of
the BK18 B-mode bandpowers versus measurements
from other experiments. See Appendix D for a descrip-

tion of how the CMB-only power spectrum estimate is
calculated.

Figure 2 shows that the BK18 data is consistent with
ΛCDM plus a remarkably simple dust only foreground
model. Nevertheless as we move forward to even higher
levels of sensitivity dust decorrelation, and foreground
complexity more generally, will remain a serious concern.
In addition, we are already in the regime where the sam-
ple variance of the lensing component dominates σ(r).
However, the lensing B-modes can be spatially separated
from a primordial component and in this regard we have
recently demonstrated a path forward by adding a “lens-
ing template” derived from SPTpol and Planck data to
the BK14 analysis, resulting in an improved constraint
on r [50].

The Keck Array mount has now been replaced by a
larger, more capable machine and we are in the pro-
cess of upgrading to a new system we call BICEP Ar-
ray [51, 52]. A BICEP3 class receiver is now operating in
the 30/40 GHz band and in the coming years additional
receivers will be installed at 95, 150 and 220/270 GHz.
The system is projected to reach σ(r) ∼ 0.003 within
five years with delensing in conjunction with SPT3G.
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