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Current quantum simulation experiments are starting to explore non-equilibrium many-body dy-
namics in previously inaccessible regimes in terms of system sizes and time scales. Therefore, the
question emerges which observables are best suited to study the dynamics in such quantum many-
body systems. Using machine learning techniques, we investigate the dynamics and in particular
the thermalization behavior of an interacting quantum system which undergoes a non-equilibrium
phase transition from an ergodic to a many-body localized phase. We employ supervised and unsu-
pervised training methods to distinguish non-equilibrium from equilibrium data, using the network
performance as a probe for the thermalization behavior of the system. We test our methods with
experimental snapshots of ultracold atoms taken with a quantum gas microscope. Our results pro-
vide a path to analyze highly-entangled large-scale quantum states for system sizes where numerical
calculations of conventional observables become challenging.

Introduction.– After a global quench in a thermaliz-
ing system, local observables approach a value which
corresponds to their expectation value in a typical mi-
crocanonical many-body eigenstate of the system [1–3].
Depending on the properties of the system and the ini-
tial state, the path to thermal equilibrium can vary. For
example, conserved quantities can slow down the equi-
libration process [4–6] or a quasi-stationary prethermal
state can form, which exhibits properties different from
the true thermal equilibrium state [7].
Quantum simulation experiments can enable the obser-
vation of the time-evolution of a quantum many-body
system starting from a non-equilibrium state with al-
most perfect isolation from the environment. In the past
decade, a variety of non-equilibrium phenomena has been
observed with examples ranging from exotic phases real-
ized through Floquet driving [8–10] to many-body local-
ization [11] and prethermalization [12].
In many cases, theory can provide a clear prediction
which observables should be studied, such as a given or-
der parameter for a well-known phase transition. For
some problems, however, it is not as clear which observ-
able to look at, and by making a choice for one spe-
cific quantity, valuable information might be discarded.
In many platforms with microscopic readout, Fock space
snapshots of the quantum many-body state are the mea-
sured data set. Fock space snapshots provide a wealth
of information about the quantum many-body state by
providing access to both local observables and non-local,
high-order correlations.

In order to address the challenge of finding suit-
able observables, artificial neural networks have recently
emerged as a valuable tool in quantum many-body
physics [13–17], and in nonequilibrium statistical me-

chanics [18]. Previous machine learning approaches to
study non-equilibrium systems have focused on quanti-
ties such as the entanglement spectrum [19–21] or full
eigenstates [22], which are, however, experimentally in-
accessible.
In this work we study the dynamics of an interacting
quantum many-body system in terms of experimental
Fock space snapshots with the help of neural networks,
Fig. 1a). We find this analysis to have two main ad-
vantages: (i) these snapshots are directly measured in
many quantum simulation platforms, and large numbers
of snapshots can be routinely obtained. (ii) Raw data is
used, where no analysis for specific quantities has taken
place and all available information can be used with-
out any bias. We consider the one-dimensional Bose-
Hubbard model
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Here, â
(†)
i annihilates (creates) a boson on site i and

n̂i = â†i âi is the particle number operator. The first term
corresponds to hopping between neighboring sites, the
second term is the interaction, here fixed at U/J = 2.9,
and the last term is the quasi-periodic potential mim-
icking on-site disorder with amplitude W , which can be
created in a cold atom setup with an incommensurate
lattice as hi = cos(2πβi + φ). In this work, we consider
1/β = 1.618.
This system exhibits a many-body localized (MBL)
phase, where thermalization breaks down as the disor-
der strength is increased beyond a critical value. The
transition from an ergodic to a many-body localized
phase is fundamentally different from the well-studied
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FIG. 1. Machine learning many-body localization. The
Bose-Hubbard model with a quasi-periodic disorder potential
exhibits a many-body localized (MBL) phase, where thermal-
ization breaks down, as the disorder strength is increased be-
yond a critical value. a) We study the dynamics of the system
after a quench for different disorder strengths by evaluating
snapshots from a quantum gas microscope with neural net-
works. b) A neural network is trained to distinguish exact
diagonalization snapshots at W/J = 0.3 and W/J = 11 for
U/J = 2.9 and a system with 8 and 12 sites at time tJ = 100
after a global quench. After the training process is finished,
snapshots at intermediate values of the disorder strength are
used as input. The plot shows the resulting classification for
numerical data (shaded band) as well as experimental snap-
shots (symbols). As the system size is increased, the fraction
of snapshots classified as MBL begins to increase at larger
values of W , indicating the transition in the finite size sys-
tem. The accuracies are averaged over two independent runs
and the errors denote one s.e.m.

case of equilibrium phase transitions, as it describes a
non-equilibrium setting [23–31]. Finding the transition
point is numerically challenging, because it is usually ob-
tained from entanglement properties or the level statis-
tics, which can only be obtained for small system sizes
where full diagonalization of the Hamiltonian is possible.
Here, we focus on Fock space snapshots of the many-
body quantum state as input data, which are the direct
output of quantum gas microscopy experiments and thus
experimentally readily accessible for the systems of inter-
est. This approach has the advantage that significantly
bigger system sizes can be reached experimentally.
We consider the dynamics of two one-dimensional sys-

tems of 8 and 12 sites, which are initialized in a Mott-
insulating state with exactly one particle per site. In
Fig. 1, we first train the network to distinguish snapshots
of the many-body quantum state, obtained from exact
diagonalization calculations, for low (W/J = 0.3) and
high (W/J = 11.0) disorder strength for an interaction
strength of U/J = 2.9 in the comparatively long-time
limit at time tJ = 100. We average over ten different
disorder realizations, obtained by varying the phase φ
in the potential. After the network has learned to la-
bel the extremal cases correctly with sufficiently high
accuracy (> 90%), we input snapshots for intermedi-
ate values of the disorder strength. After training the
neural network on numerically simulated snapshots, we
use experimental data as input, where each snapshot
stems from a different disorder realization. As output,
for each disorder strength we obtain the fraction of snap-
shots labeled as many-body localized and thermalizing,
see Fig. 1. Based on these results, we conclude that the
many-body localization transition is located within the
range of W/J ≈ 4− 8 with strong finite-size drifts. This
result is in agreement with previous experiments [32, 33],
which considered conventional observables such as the lo-
cal entropy. Notably, the local entropy exhibits volume
law scaling both in the thermal and the MBL phase and is
thus by itself not sufficient to locate the transition with-
out exact numerics [32]. Our results, in contrast, are
able to distinguish the two phases without any theoreti-
cal input, which suggests that the network learned a more
suitable observable to distinguish the two phases. In [34],
we show the level statistics for system sizes L = 6, 7, 8 for
comparison. Similar to the machine learning analysis of
a disordered spin chain based on the entanglement spec-
trum in [19], the transition found by the neural network
is as sharp as the level statistics, but exhibits a small
shift to larger disorder strengths.

While we have only compared two extremal disorder
strengths in the long-time limit, the full dynamics of the
system contain much more information. We proceed by
analyzing the time- and disorder-strength dependence of
the system after the global quench.

Learning thermalization.– We now investigate the
system’s approach to thermal equilibrium by comparing
each time step to a thermal state of the same Hamilto-
nian. The performance of the network in distinguishing
dynamics from equilibrium can then be used as a probe
of thermalization.
In order to compare the time evolved state to thermal
equilibrium, all conserved quantities of the model should
be considered [3]. In our experiment, both the energy
density and the particle number are conserved during
the many-body evolution. The energy density of the
initial state is matched by choosing the temperature of
the thermal state accordingly. We take the conservation
of the total particle number into account by calculating
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FIG. 2. Learning thermalization. A system with 8 sites and U/J = 2.9 is initialized in a Mott-insulating state of one
particle per site and the ensuing time evolution is investigated. In each time step, the neural network is trained to distinguish
snapshots from the current time step from snapshots from a thermal state with the same energy density, both obtained from
exact diagonalization. A high accuracy indicates that the current time step can be easily distinguished from the thermal
state. a) The resulting classification as dynamics versus equilibrium for W/J = 1.0 and W/J = 7.3, averaged over 12 different
disorder realizations (shaded line). Experimental data from the dynamics after the quench is used as input at selected time
steps (symbols). b) Exact diagonalization results for disorder strengths between W/J = 1 and W/J = 10 for the full dynamics.
c) Classification as dynamics versus equilibrium at time tJ = 100 for disorder strengths between W/J = 1 and W/J = 10. The
results are averaged over 10 independent runs and the error bars correspond to the s.e.m.

the thermal state within a fixed particle number sector.
We numerically generate snapshots from such a state
in thermal equilibrium as well as from the time-evolved
state for each time step under consideration.
For each time step, we train the network to label the
snapshots from the thermal equilibrium distribution as
equilibrium, and the snapshots from the numerically
time-evolved initial state as dynamics. The neural net-
work parameters optimized for each time step seperately.
We then test the network’s performance by inputting
experimental data with different evolution times. In
Fig. 2a) the resulting classification into the categories
dynamics versus equilibrium is shown as a function
of time. Here, we average over 12 different disorder
realizations and take snapshots at the corresponding
effective temperatures.
For small W/J , the system thermalizes comparably fast:
for times tJ > 10, the network reaches an accuracy of
50%, equivalent to guessing between the two classes.
This means the network fails to distinguish snapshots
from the time-evolved state from the corresponding
thermal state. For high values of W/J the system fails
to thermalize on the time-scales accessed here, and the
network is able to distinguish the current timestep from
the thermal equilibrium state with a high accuracy.
Using an interpretable network architecture [45], we find
that for intermediate disorder strengths, higher order
correlations play a role in the classification task, see [34].
We study the long time limit at tJ = 100 for a range of
values of the disorder strength. As shown in Fig. 2c),
the fraction of snapshots classified as dynamics rises
strongly between W/J ≈ 4 and W/J ≈ 8 and reaches

values close to 1, indicating that the system has not
reached thermal equilibrium.
We benchmark our experimental results by testing the
network with theoretical snapshots not used during
training and find good agreement throughout the range
of the covered parameters.
This procedure has the advantage that the features used
to make the classification can vary for different time
steps and the network specifically searches for differences
between the current time and thermal equilibrium. It
is therefore in principle capable of identifying specific
observables that have not yet reached their thermal
equilibrium value and thus find, for example, (almost-)
conserved quantities. Indeed, with this method we find
deviations from thermal equilibrium already in the range
of W/J ≈ 2− 5, in contrast to the results from the clas-
sification scheme in Fig. 1b). This indicates an improved
sensitivity of our method. Here we consider a system
which exhibits a transition from thermalizing behavior
to many-body localization, which constitutes a canonical
example in the study of non-equilibrium phenomena.
Note, however, that our scheme is not limited to the
system considered here and can be applied to a variety of
models. This method also allows to detect, for example,
prethermal behavior and the existence of conserved
quantities that keep their value during the dynamics
and therefore never reach a generic thermal equilibrium
value. Another canonical model to study equilibration
behavior is the transverse field Ising model, which has
an extensive number of conserved quantities. In [34],
we show that a neural network performs significantly
worse in distinguishing the time-evolved state from an
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approximative generalized Gibbs ensemble, where a few
conserved quantities are taken into account, than the
simple thermal state discussed above, where only the en-
ergy density is considered. This highlights the capability
of our approach to identify conserved quantities, which
can drastically alter the thermalization process. Our
method comes at the expense that one needs snapshots
from the thermal density matrix for training, which –
especially in the case of a non-thermalizing phase such
as MBL – may need to be generated numerically. In the
following, we overcome this limitation by analyzing the
transition in the dynamics with an unsupervised scheme
that, in principle, does not rely on theory data.

Confusion learning.– Several unsupervised learning
schemes that use the network performance to probe
whether and where a phase transition or more general, a
qualitative change in the data, exists have been proposed
[37–39]. Here, we adapt a scheme termed “confusion
learning” introduced in Ref. [37]. In brief, the scheme
works as follows: We have a dataset of snapshots for
values of the disorder strength 0.3 ≤ W/J ≤ 11.0. The
goal is to test whether a value W ∗ exists at which the
data changes qualitatively. We start with a guess for
W ∗ and label all snapshots for W ≤W ∗ as phase A and
correspondingly all snapshots with W > W ∗ as phase
B. Assuming the snapshots are qualitatively different
for W ≤ W ∗ as compared to W > W ∗, the network
should achieve a high accuracy in assigning the correct
labels. However, if there is no qualitative change at the
W ∗ under consideration, there will be confusion about
the correct labels and the accuracy will thus be lower.
Therefore, if there is a qualitative change in the data,
the accuracy as a function of W ∗ will be maximal if
W ∗ corresponds to the transition point. Trivially, the
test accuracy is expected to approach unity when the
guessed W ∗ corresponds to the minimum or maximum
value of W , because all data are labelled equally and no
confusion occurs. In total, the presence of a critical point
is therefore signalled by a characteristic W -shape of the
test accuracy as a function of the control parameter.
We train the neural network with numerical snapshots
in the long-time limit (tJ = 100) in order to test for
the presence of a phase transition. Subsequently, we use
experimental data as input to the network, Fig. 3a). The
data shows the onset of a maximum around W ∗/J = 7,
indicating the presence of a critical point in agreement
with Fig. 1b). The contrast in the W -shape achieved
here is comparable to the signal seen for a spin model in
[37], where instead of snapshots the entanglement spec-
trum is used as input to the neural network. In order to
isolate the signal of the phase transition from the trivial
part of the W -shape, we subtract the accuracy obtained
when training on randomly labeled data. The resulting
difference, shown in the inset of Fig. 3a), exhibits a
clear peak at W ∗/J = 7, that indicates the transition

a)

b) accuracy

a)

b)

FIG. 3. Confusion learning. Snapshots of the many-body
quantum state of a system with 12 sites, U/J = 2.9, and var-
ious disorder strengths W/J are analyzed using the confusion
learning scheme. A neural network is trained to label all snap-
shots with W < W ∗ as phase A and the remainder as phase
B. If a qualitative change in the data occurs, the accuracy will
peak at an intermediate value of W ∗. a) The resulting accu-
racy at time tJ = 100 after the global quench for training on
numerically simulated data (shaded line) and sorting exper-
imental data (symbols). Inset: same data after subtracting
the accuracy for randomly labeled data. b) The accuracy for
repeating the training process for different time points during
the dynamics after the quench using numerically simulated
data. The results are averaged over 10 independent runs and
the error bars correspond to the error based on one s.e.m.

between the different dynamical phases. We also check
with theoretical snapshots not used during training and
find qualitatively similar behaviour. We attribute the
slight deviation in the maximum to the coarse resolution
in the disorder strength for the experimental data.
Since differences in the thermalization behavior only
present themselves in the course of the dynamics, we
expect the phase transition to remain hidden at short
evolution times. In order to reveal this effect, we perform
the same method with theoretical snapshots at different
evolution times. In Fig. 3b), the resulting accuracy
achieved by the network is shown as a function of W ∗.
These results have several advantages compared to the
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previous methods: as opposed to Fig. 1b), we do not a
priori assume that there is a transition. Moreover, we
specifically train the network to find differences between
the snapshots at all available values of the disorder
strength, thus avoiding bias from the choice of training
data.

Summary and Outlook.– In this work, we used ma-
chine learning techniques to study the non-equilibrium
dynamics after a global quench in the one-dimensional
Bose-Hubbard model with a quasi-periodic disorder
potential. We used supervised as well as unsupervised
machine learning methods to probe for a qualitative
change in experimental snapshots as the disorder
strength is tuned. Comparing the results for systems
with 8 and 12 sites, we find that the critical value of the
disorder strength increases with the system size, proving
the need for methods applicable in large – experimentally
accessible – systems. In contrast to standard tools to
locate the MBL transition, the methods used here can
be directly applied to experimental data taken with a
quantum gas microscope and are not limited to small
system sizes. We furthermore studied the approach to
thermal equilibrium – or lack thereof – by training a
neural network to distinguish snapshots from the current
time step from snapshots from a thermal ensemble at
the same energy and particle density. The accuracy
achieved by the network indicates how non-thermal the
time-dependent quantum many-body state is.
An exciting future research direction consists of applying
the same scheme to identify conserved or almost-
conserved quantities in experimentally accessible data,
for example by using a generalized Gibbs ensemble for
comparison. Apart from the concrete system studied
here, it would be interesting to consider other models
and phenomena, for example quantum scars [40, 41]
and Hilbert space fragmentation [42–44]. In order to
gain additional physical insights, interpretability is an
extremely important direction for future work and it
would be interesting to study which observables the
network uses to make the classifications considered here
[45], and how those observables change during the time
evolution of the many-body system.
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Greiner. Quantum critical behaviour at the many-body
localization transition. Nature, 573(7774):385–389, 2019.

[34] See supplementary online material for more details, in
particular results on interpretability and the transverse
field Ising model, taking into account conserved quanti-
ties of the model, including Refs .[35, 36].

[35] Michael Grady. Infinite set of conserved charges in the
ising model. Phys. Rev. D, 25:1103–1113, Feb 1982.

[36] Tomaz Prosen. A new class of completely integrable
quantum spin chains. Journal of Physics A: Mathemati-
cal and General, 31(21):L397–L403, may 1998.

[37] Evert P. L. van Nieuwenburg, Ye-Hua Liu, and Sebas-
tian D. Huber. Learning phase transitions by confusion.
Nature Physics, 13:435–439, 02 2017.
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