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Counter-diabatic driving (CD) is a technique in quantum control theory designed to counteract
nonadiabatic excitations and guide the system to follow its instantaneous energy eigenstates, and
hence has applications in state preparation, quantum annealing, and quantum thermodynamics.
However, in many practical situations, the effect of the environment cannot be neglected, and
the performance of the CD is expected to degrade. To arrive at general bounds on the resulting
error of CD in this situation we consider a driven spin-boson model as a prototypical setup. The
inequalities we obtain, in terms of either the Bures angle or the fidelity, allow us to estimate the
maximum error solely characterized by the parameters of the system and the bath. By utilizing the
analytical form of the upper bound, we demonstrate that the error can be systematically reduced
through optimization of the external driving protocol of the system. We also show that if we allow a
time-dependent system-bath coupling angle, the obtained bound can be saturated and realizes unit
fidelity.

Introduction.— Counter-diabatic driving (CD) is a
method to guide the system along a given adiabatic
trajectory [1–8] and to reproduce the target state ex-
pected from quantum adiabatic protocols in finite time,
hence realizing Shortcuts To Adiabaticity (STA) [1, 2].
With the correct CD, one can speedup a desired quan-
tum operation with unit fidelity, a result which is ex-
tremely useful in many applications that require fast
high-performance quantum operations, such as quan-
tum gate operations [10–12], quantum annealing [13–
15], state preparation [16–20], transport [21, 22] inter-
ferometory [23], geometric pumping [24, 25], and heat
engines [26–31].

The rapid theoretical progress and promise of STA in
such applications has motivated experimental implemen-
tations [17–22], most of which are designed to control the
system quickly enough such that the effect of the envi-
ronment is suppressed. However, environmental effects
cannot be completely neglected, and the performance of
the CD technique, which was originally designed for iso-
lated systems, is expected to degrade in realistic condi-
tions. Motivated by this, several studies focused on the
robustness of the CD under decoherence and noise [32–
34], whereas others attempt to generalize the STA and
CD to open systems [35–39], hoping to find optimal drives
in the presence of noise. However, a systematic way of un-
derstanding the controllability of open quantum systems
has not been established yet, since limitations arise from
the inevitable approximations in the analytical methods
or numerical calculations used to study these complex
situations. An exact analytical approach is needed to
clarify the controllability set by the CD acting on the
system only, and gain physical intuition about how we
can decrease the error due to the environment as much
as possible.

It is expected that if one wishes to fully control the
state of the system, engineering the system-environment
coupling or the properties of the environment itself will
become necessary [see Fig. 1. (a)]. This opens up a con-
nection to another interesting topic, the controllability of
many-body systems, with possible applications to quan-
tum adiabatic computing. It is known that constructing
the CD requires precise knowledge about all instanta-
neous energy eigenstates. Even if this is possible, the re-
sulting CD typically requires non-local interactions. To
circumvent these points, recent studies aim to obtain ap-
proximate CD protocols [40–43], akin to that needed for
the open quantum systems we study in this work, and a
method to estimate the error of the control would also
be important in those approaches.

In this Letter, we develop a general bound on the per-
formance of the CD under the influence of a heat bath by
considering a driven spin-boson model [see Fig. 1. (b)].
The spin-boson model is a prototypical minimal model
describing a two-level system interacting with a contin-
uum of bosonic bath modes, and is relevant for describ-
ing quantum information processing devices in a range of
parameter regimes, from weak memory-less noise [44, 45]
to the non-Markovian, strong-coupling and non-rotating
wave approximation regimes [46–50]. It is worth noting
that even in the simplest case of the single-mode spin-
boson (Rabi) model, integrability was a long standing
issue and the exact solution was obtained only a decade
ago [51]. Therefore, one typically has to rely on numer-
ical calculations, and apart from the seminal works in
[52, 53], little is known about exact analytical results for
nonequilibrium dynamics in arbitrary parameter regimes.
However, here we overcome this difficulty (for solving the
spin-boson model) by utilizing powerful analytical tools
such as the parallel transport via CD [7] and quantum
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FIG. 1. Schematic diagrams of (a) the concept of levels of
controllability and (b) the setup. (a.1) Controllability of a
general many-body system. (a.2) Controllability of the spin-
boson model. Unit fidelity is achieved by the exact STA pro-
tocol (3) which requires a time-dependent control of the in-
teraction. The lower bound on the fidelity F set by the CD
on the system alone is characterized by cos2 lBD via inequal-
ity (9). (b) We consider the spin-boson model to study the
controllable limit of the spin system via CD under the influ-
ence of the environment. Here, controllability is measured by
the ground state fidelity of the system.

speed limits (QSL) [54–56]. We first show that by al-
lowing a time-dependent system-bath coupling angle, we
can construct a unit fidelity protocol for obtaining the
ground state of the system, realizing an exact STA. We
find that it is not necessary to have a full control of the
environment in order to achieve the desired unit fidelity
[see Fig. 1. (b.2)]. We next consider a more experimen-
tally relevant situation where the system-bath coupling is
static, and obtain a lower bound on the fidelity when the
system alone is controlled by the CD, which is the main
result of our work. Our result is general in the sense that
the result holds for arbitrary system Hamiltonian and
bath spectral density.

Counter-diabatic driving.— To begin with, we consider
an isolated Landau-Zener (LZ) model with CD. The total
Hamiltonian is given by Hcd(t) = H0(t) +H1(t), where

H0(t) =
q(t)

2
σz +

∆

2
σx, H1(t) = θ̇tσy, (1)

and θt = (1/2) cot−1(q/∆), θ̇t = −q̇∆/[2(∆2+q2)]. Here,
H0 is the LZ Hamiltonian [57], where ∆ characterizes the
minimum gap, q(t) describes the external driving, and
σi is the i-th component of the Pauli matrix. The CD
Hamiltonian H1 cancels non-adiabatic excitations and
controls the system to stay in the instantaneous ground
state |ψg(t)〉 = cos θt |↓〉 − sin θt |↑〉 of H0 during the uni-

tary time-evolution generated by Hcd.

The mechanism of CD can be elegantly understood by
the parallel transport argument [7], but for later con-
venience, we explain the CD in terms of the unitary
rotation Rt = exp(−iθtσy). After the unitary rota-

tion, the CD Hamiltonian reads R†tHcd(t)Rt−iR†t∂tRt =
1
2

√
∆2 + q2σz. Therefore, it is obvious that the system

stays in the ground state |↓〉 during the time-evolution in
the rotated frame, which corresponds to |ψg(t)〉 = Rt |↓〉
in the original frame, allowing the CD to parallel trans-
port the system along |ψg(t)〉.

Influence of the environment.— We now analyze the
influence of the environment on the CD by considering
the spin-boson model, given by

Hϕ(t) = Hcd(t) +Hϕ
int +HB . (2)

Here, HB =
∑
j ωkb

†
kbk is the bath Hamiltonian describ-

ing a collection of harmonic oscillators, and ωk and bk are
the frequency and the annihilation operator of the k-th
mode of the bath. The system-bath interaction Hamil-
tonian reads Hϕ

int = (cos 2ϕσz + sin 2ϕσx) ⊗ B, where
ϕ is a coupling angle that determines in which direc-
tion the system-bath interaction mainly acts on, and
B =

∑
k gkxk shows that the system is linearly coupled

to the “position” quadrature of the bath, where gk and
xk = (bk + b†k)/

√
2ωk are the coupling strength and the

position operator of the k-th mode of the bath. The in-
fluence of the bath is fully characterized by the spectral
density J(ω) = π

∑
k(g2k/2ωk)δ(ω − ωk), and we empha-

size that our main result holds for arbitrary J(ω).

We assume that the initial state of the composite sys-
tem is given by the product state of the system ground
state and the bath Gibbs state at inverse temperature β,
i.e., ρ(0) = |ψg(0)〉〈ψg(0)| ⊗ ρβB . Denoting the unitary
time-evolution operator by Uτ = T exp

[
−i
∫ τ
0
dtHϕ(t)

]
,

the final state of the composite system is given by ρ(τ) =
Uτρ(0)U†τ . Since we are interested in the performance
of the CD under the influence of the bath, we con-
sider the fidelity F = 〈ψg(τ)|ρS(τ)|ψg(τ)〉 between the
target ground state |ψg(τ)〉 and the time-evolved state
ρS(τ) = TrB [ρ(τ)]. Note that for an isolated system, the
CD is designed to obtain unit fidelity F = 1, but this is
no longer true when the system is influenced by the heat
bath.

Exact STA via time-dependent coupling angle.— Be-
fore deriving a bound on the fidelity, we discuss an inter-
esting observation by using the unitary rotation Rt that
we introduced to explain the CD. Suppose that we allow
a time-dependent rotation of the coupling angle ϕ = θt
of the Hamiltonian (2), and denote it as Hθt(t). Then,

in the rotated frame, we have R†tHθt(t)Rt − iR
†
t∂tRt =

1
2

√
∆2 + q2σz+σz⊗B+HB . Note that this Hamiltonian

in the rotated frame simply describes a pure dephasing
effect from the bath, and the ground state of the system
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is unaffected during the time-evolution. In fact, we can
obtain an explicit form of the time-evolved density ma-
trix in the original frame, which is parallel transported
along the ground state:

ρsta(τ) = Ustaρ(0)U†sta = |ψg(τ)〉〈ψg(τ)| ⊗ ρ−B(τ). (3)

Here, Usta = T exp[−i
∫ τ
0
dtHθt(t)] is the time-evolution

operator with ϕ = θt, and ρ−B(τ) = e−iH
−
B τρβBe

iH−
B τ is

the time-evolved bath density matrix with respect to the
position-shifted bath Hamiltonian H−B = HB − B. In
summary, the Hamiltonian (2) with the choice of ϕ = θt
realizes an exact STA under the influence of the heat
bath, i.e., the Hamiltonian transports the state of the
system along its instantaneous ground state (3) and re-
alizes unit fidelity F = 1.

It is interesting to note that controlling all of the bath
degrees of freedom is unnecessary to achieve unit fidelity.
Only a precise control of the coupling angle ϕ = θt is
needed. Theoretically, this observation is important and
has several advantages since the protocol and the time-
evolved state have simple analytical expressions. In par-
ticular, we make use of this explicit form of the exact
STA protocol to derive bounds on the performance of the
CD on the system alone, i.e., with uncontrolled coupling
angle ϕ, which is more relevant for most experimental sit-
uations where the coupling cannot be controlled directly.

General bounds on the dissipative Landau-Zener CD.—
We now derive a lower bound on the fidelity of obtaining
the target ground state for the CD under the influence of
the heat bath. We first map the fidelity into the Bures
angle defined as L(ρ, σ) = arccos

√
F (ρ, σ) [58, 59]. Here,

the relation between F and L is flipped: the Bures angle
takes the minimal value L = 0 (the maximal value L =
π/2) when the fidelity takes the maximal value F = 1
(the minimal value F = 0). In what follows, we derive an
upper bound on the Bures angle, which is later converted
into a lower bound on the fidelity.

We begin by using the contractivity of the Bures
angle under partial trace of the bath degrees of free-
dom [58]. Then, the Bures angle between the target
ground state and the CD-controlled state of the system
can be bounded from above as

L[|ψg(τ)〉, ρS(τ)] ≤ L[ρsta(τ), ρ(τ)], (4)

where ρsta is given in Eq. (3). We then apply the quan-
tum speed limit (QSL) inequality obtained by Suzuki and
Takahashi [56], which in our case reads

L[ρsta(τ), ρ(τ)] ≤
∫ τ

0

dt
√
Vρsta [Hθt −Hϕ], (5)

where Vσ[X] = Tr[σX2]− (Tr[σX])2 is the variance. By
following Ref. [56], the inequality (5) is obtained from
the standard QSL [54, 55] as follows. The QSL gives

an upper bound on the Bures angle between the ini-
tial and the final state in terms of the energy fluctu-
ation: L[σ(τ), σ(0)] ≤

∫ τ
0
dt
√
Vσ[H]. Here, the time-

evolution of σ(t) is generated by H(t). Now, let us define

X̃(t) = U†tX(t)Ut. Then, the unitary invariance of the
Bures angle reads L[ρsta(τ), ρ(τ)] = L[ρ̃sta(τ), ρ̃sta(0)], by
noting that ρ̃sta(0) = ρ(0). Moreover, the time-evolution
equation of ρ̃sta reads ∂tρ̃sta = −i[H̃θt−H̃ϕ, ρ̃sta]. There-

fore, by substituting σ = ρ̃sta and H = H̃θt − H̃ϕ inside

the QSL and noting Vσ̃[X̃] = Vσ[X], we obtain (5).

Note that Ref. [56] applied the QSL to obtain a bound
on the performance of adiabatic quantum computation,
whereas we are here interested in quantifying the perfor-
mance of the CD under the influence of the bath.

Now, the explicit and simple form of ρsta given in
Eq. (3) allows us to analytically calculate the right-hand
side of (5). First of all, Hθt − Hϕ = ∆HS

int ⊗ B with
∆HS

int = (cos 2θt−cos 2ϕ)σz+(sin 2θt−sin 2ϕ)σx. There-
fore, the variance in Eq. (5) reads

Vρsta [Hθt −Hϕ] = 〈ψg|(∆HS
int)

2|ψg〉Tr[B2ρ−B(t)]

−〈ψg|∆HS
int|ψg〉2(Tr[Bρ−B(t)])2. (6)

The system-dependent part in (6) can be easily obtained
as 〈ψg|(∆HS

int)
2|ψg〉 = 4 sin2(θt−ϕ) = −2〈ψg|∆HS

int|ψg〉.
The bath-dependent part reads [60] Tr[Bρ−B(t)] = Xt,
where Xt =

∫
dω(2/πω)J(ω)(1 − cosωt) quantifies the

expectation value of the (coupling-constant multiplied)
bath position that is shifted by H−B . Also, Tr[B2ρ−B(τ)] =
S+X2

t , where S =
∫
dω(J(ω)/π) coth(βω/2) is the bath

correlation function 〈B(t)B(0)〉 at t = 0. We further
note that S scales as O(β−1) in the high-temperature
limit, whereas it is the integrated spectral density in the
zero-temperature limit.

We now obtain our main result by combining (4), (5)
and (6), which gives an upper bound on the Bures angle
between the target ground state and the CD-controlled
state of the system:

L[|ψg(τ)〉, ρS(τ)] ≤ lBD (7)

with

lBD =

∫ τ

0

dt|2 sin(θt − ϕ)|
√
S + cos2(θt − ϕ)X2

t . (8)

Here, the left-hand side of (7) quantifies the error of
the CD, since a small value of L means that the CD-
controlled state ρS(τ) is close to the target ground state.
The bound lBD gives a general upper bound on the error,
in the sense that it does not require information about
the actual nonequilibrium dynamics of the system. As we
see from Eq. (8), lBD depends only on predefined quan-
tities, such as the driving protocol q(t) through θt, the
coupling angle ϕ, and the bath properties S and Xt. The
error becomes larger as either the system-bath coupling
strength (i.e., S and Xt) becomes larger or the driving
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protocol is unoptimized, such that θt deviates from ϕ.

Note that the bound (7) is tight and can be saturated
by the exact STA protocol (ϕ = θt) with Eq. (3). For
the general case, the analytical form of the upper bound
allows us to optimize the parameters through minimizing
lBD, and increase the performance of the CD. Later, in
the applications, we demonstrate the usefulness of the
bound (7) by optimizing the driving protocol q(t).

Since the maximum value of the Bures angle is given
by π/2, the bound (7) is meaningful when lBD ≤ π/2. In
such cases, we can convert the inequality (7) into a lower
bound on the fidelity, given by

F [|ψg(τ)〉, ρS(τ)] ≥ cos2 lBD. (9)

To summarize, both inequalities (7) and (9) quantify the
performance of the CD under the influence of the heat
bath. In the following, we give several additional com-
ments on our results. First, it is straightforward to gener-
alize the result to the case of obtaining the excited state,
or a classical mixture of the ground and excited states,
whereas we find that the upper bound (8) is unchanged
and (7) is still valid. Second, we discuss the dependence
of the system-bath coupling strength λ on the bound.
Since S = O(λ2) and X2

t = O(λ4), the inequality (9)
becomes F ≥ 1 − 4S[

∫ τ
0
dt| sin(θt − ϕ)|]2 + O(λ4) in the

weak-coupling limit, and the discrepancy from unit fi-
delity scales quadratically with λ. In addition, by using
reservoir engineering, one can in principle engineer the
bath spectral density to reduce S, suppressing the CD
error.

Applications.— We now consider finding a protocol
q(t) that would give better fidelity by reducing lBD (8).
We assume that the initial and final values of q(t) are
fixed, i.e., q(0) = qi and q(τ) = qf , but at intermediate
times, q(t) is unfixed. Then, the optimal drive q(t) that
minimizes lBD is given by q(0) = qi, q(t) = q∗ (0 < t < τ),
and q(τ) = qf , where q∗ = ∆ cot(2ϕ). To show this claim,
we discretize the time-integral in Eq. (8) with ∆t being
the time-duration of one step and N being the total num-
ber of steps, i.e., τ = N∆t, We denote f [q(t)] as the inte-
grand given in Eq. (8) and use the property f [q∗] = 0 to
obtain lBD = f [qi]∆t+ f [qf ]∆t+O(∆t2)→ 0 as ∆t→ 0,
and thus q(t) given above is optimal.

As a concrete example, we set qi = −1 and qf = 1 and
assume a σx coupling (ϕ = π/4). Note that the optimal
drive requires sudden changes of the drive at inital and
final times, causing the CD control field θ̇t ∝ q̇(t) to di-
verge. To circumvent this point, we consider the smooth
functional form q(t) = sinh(a(t − τ/2))/ sinh(aτ/2) to
approximate the optimal drive. For larger a, this be-
comes a better approximation to the the optimal drive,
and the lower bound on the fidelity cos2 lBD becomes
larger, as plotted by dashed curves in Fig. 2. It is
worth noting that the actual performance of the CD,
measured by the fidelity, becomes also better for large
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FIG. 2. Numerical demonstration of the bound (9) by vary-
ing ∆. The solid curves show the fidelity F [|ψg(τ), ρS(τ)] and
the dashed curves are the lower bound cos2 lBD (8) for differ-
ent values of a. The inset shows the functional form of the
external driving q(t) = sinh(a(t− τ/2))/ sinh(aτ/2), which is
designed to better approximate the optimal drive q(0) = −1,
q(t) = 0 (0 < t < τ), and q(τ) = 1, as a increases. There-
fore, the lower bound cos2 lBD and also the fidelity becomes
closer to unity as a becomes larger, demonstrating the effec-
tiveness of our inequality (9). The parameters are ϕ = π/4
(σx-coupling), β = 1, γ = 0.1, w0 = 1, λ = 0.1, τ = 2.

a (solid curves), suggesting the practical usefulness of
the bound (9). Here, the numerical calculation is per-
formed using the hierarchal equations of motion (HEOM)
method [61] implemented in the BoFiN extension [62, 63]
for QuTiP [64, 65], where the following under-damped
Brownian motion spectral density is used: J(ω) =
γλ2ω/[(ω2 − ω2

0)2 + γ2ω2]. Here, ω0, γ, and λ are the
resonance frequency, width, and system-bath coupling
strength, respectively.

Generalizations.— Finally, we discuss generalizations
of (7) to multiple heat baths HB =

∑
iH

i
B , an arbitrary

system Hamiltonian H0(t), and a system-bath interac-
tion Hint =

∑
iAi⊗Bi, where Ai is an arbitrary operator

acting on the system and Bi is the operator B defined
previously for the i-th bath. The total Hamiltonian is
given by H(t) = H0(t) +H1(t) +Hint +HB , where H1(t)
is the CD Hamiltonian for H0(t). We take the n-th en-
ergy eigenstate |ψn(0)〉 of H0(0) as the initial state of the
system. An exact STA can be constructed by choosing
the time-dependent system-bath interaction Hsta

int (t) =
−|ψn(t)〉〈ψn(t)| ⊗

∑
iBi. By following a derivation sim-

ilar to that for (7), we obtain an upper bound on the
Bures angle as L[|ψn(τ)〉, ρS(τ)] ≤ lBD =

∫ τ
0
dt
√
g, with

g =
∑
i

〈ψn|(Ai + I)2|ψn〉Si +
∑
i,j

Cov|ψn〉(Ai, Aj)X
i
tX

j
t .

(10)
Here I is the identity matrix of the system,
Cov|φ〉(A,B) := 〈φ|AB|φ〉−〈φ|A|φ〉〈φ|B|φ〉 is the covari-
ance, and Si and Xi

t are S and Xt defined previously for
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the i-th bath. Note that similar to (8), the generalized
bound depends solely on the system properties Ai and
|ψn(t)〉 and the bath properties Si and Xi

t . In addition,
we note that Eq. (10) reproduces the bound (8) for the
LZ model (2) with the target state being |ψg(t)〉.

Conclusions.— We have derived general bounds on the
performance of the CD under the influence of an environ-
ment by considering the spin-boson model. The upper
bound on the error of the CD does not depend on the
time-evolved state of the system, and is solely character-
ized by the parameters of the system and the bath. The
obtained bound is tight and can be saturated by allowing
a time-dependent system-bath coupling angle, realizing
unit fidelity, and we call this protocol as an exact STA
protocol. Our work clarifies the controllable limit via CD,
and has immediate impact on current quantum informa-
tion processing experiments by providing tools for error
estimation and parameter optimization. Generalizations
of our main result to arbitrary system Hamiltonian have
been discussed, and further extensions to characterize the
controllable bound and control error in generic many-
body systems via approximate CD protocols would be
an interesting direction of research.
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