
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Stress Overshoots in Simple Yield Stress Fluids
Roberto Benzi, Thibaut Divoux, Catherine Barentin, Sébastien Manneville, Mauro

Sbragaglia, and Federico Toschi
Phys. Rev. Lett. 127, 148003 — Published 27 September 2021

DOI: 10.1103/PhysRevLett.127.148003

https://dx.doi.org/10.1103/PhysRevLett.127.148003


Stress Overshoots in Simple Yield Stress Fluids

Roberto Benzi,1 Thibaut Divoux,2 Catherine Barentin,3
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Soft glassy materials such as mayonnaise, wet clays, or dense microgels display a solid-to-liquid
transition under external shear. Such a shear-induced transition is often associated with a non-
monotonic stress response, in the form of a stress maximum referred to as “stress overshoot”. This
ubiquitous phenomenon is characterized by the coordinates of the maximum in terms of stress σM

and strain γM that both increase as weak power laws of the applied shear rate. Here we rationalize
such power-law scalings using a continuum model that predicts two different regimes in the limit of
low and high applied shear rates. The corresponding exponents are directly linked to the steady-
state rheology and are both associated with the nucleation and growth dynamics of a fluidized
region. Our work offers a consistent framework for predicting the transient response of soft glassy
materials upon start-up of shear from the local flow behavior to the global rheological observables.

Introduction.- From dense suspensions and gels to
metallic alloys and composites, numerous materials dis-
play a non-monotonic stress response under external
shear. For a given applied shear rate γ̇, the stress in-
creases up to a maximum σM reached at a strain γM be-
fore decreasing towards its steady-state value, while the
sample yields (see Fig. 1). This sequence, also referred to
as the “stress overshoot”, is a complex process to model
as it depends on the applied shear rate as well as the
details of the sample microstructure through the sample
age, its thermal and shear history, etc. [1–6].

Soft Glassy Materials (SGMs) encompass soft amor-
phous systems such as gels and glasses. These materials
are characterized by a yield stress σy below which the
sample responds as a solid, and above which it flows like
a liquid [4]. Under external shear, most SGMs display a
stress overshoot, which results from the rearrangement of
the sample microstructure. The stress peak is correlated
to the maximum structural anisotropy [7, 8], while the
subsequent stress relaxation is dominated by nonaffine
displacements, and associated with either cage break-
ing and super-diffusive motion of particles in the case
of glasses [8–10], or strand failure in the case of gels [11–
13]. Concomitantly to the stress relaxation, the sample
may either flow homogeneously or show the formation of
transient or steady-state shear bands, or even fracture
[14–18].

Despite such complexity, the amplitude σM of the
stress overshoot consistently increases as a power law
of γ̇, with an exponent that varies from 0.1 to 0.5 as
reported in experiments on gels and repulsive glasses
[18–22]. Stress overshoots are well reproduced by vari-
ous theoretical approaches such as Brownian or molec-
ular dynamics simulations, micromechanical modelling
and Mode Coupling Theory, which have provided valu-
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FIG. 1: Phenomenology of the stress overshoot during start-
up of shear. Stress responses (a) σ as a function of time t
in experiments performed on a 1 % wt. Carbopol microgel
(adapted from Fig. 3 in Ref. [21]) under imposed shear rates
γ̇ = 10, 1, 0.1, and 0.01 s−1 from left to right and (b) the

present fluidity model for Γ̇ = 0.22, 2.9×10−2, 3.8×10−3 and
5.1× 10−4 with a fixed value of τ = 1 (see text for details).

able insights on the microscopic scenario associated with
the overshoot [18, 23–26]. However, the functional form
σM(γ̇) inferred from computations is most often either
logarithmic [27–30] in contradiction with experimental
results, or a power law with an exponent 0.5 [11, 12, 31],
which does not reflect the broad range of exponents re-
ported in the literature. A noticeable exception is the
seminal version of the fluidity model, which yields a
power-law scaling, with exponents lower than 0.5 [19].
However, to date, there is no consistent theoretical frame-
work offering a rationale for the multiplicity of power-law
exponents reported for stress overshoots in SGMs.

In this Letter, we tackle the case of “simple” Yield
Stress Fluids (YSFs), a subclass of SGMs whose steady-
state flow is homogeneous and described by a Herschel-
Bulkley rheology [4]. We use a model first introduced in
Ref. [32] based on a fluidity parameter, and successfully
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extended to capture the spatially-resolved yielding sce-
nario of SGMs [33, 34], to rationalize the effect of shear
on the coordinates (γM, σM) of the stress overshoot. We
show that the relevant variable to quantify the magni-
tude of the stress overshoot is σM/σy − 1, and that this
normalized parameter displays two asymptotic power-law
regimes as a function of the applied shear rate, namely,
a diffusive regime for low shear rates and an asymptotic
scaling at large shear rates. In both cases, the value of
the exponent is set by the power-law constitutive behav-
ior in steady-state flow. Finally, our approach allows us
to account not only for the shear dependence of the stress
overshoots but also for the local flow behavior upon start-
up of shear.
Fluidity model.- We consider a simple YSF whose

steady-state rheology follows the Herschel-Bulkley (HB)
model, which reads Σ = 1 + Γ̇n in dimensionless units,
where Σ = σ/σy is the shear stress normalized by the

yield stress, and Γ̇ = γ̇/(σy/A)
1/n is the shear rate

normalized by the natural frequency for the HB model,
σ = σy + Aγ̇n, with n the HB exponent and A the con-
sistency index. The fluid is sheared between two walls,
separated by a distance L and its dynamics is encoded
in the local dimensionless fluidity f(y), where y is the
spatial coordinate along the velocity gradient direction.
As originally introduced in Ref. [32], the fluidity is a dy-
namical coarse-graining parameter related to the rate of
plastic events. More intuitively, one can consider the flu-
idity as the inverse of the viscosity. We also define the
rescaled time t̃ ≡ γ̇t, which corresponds to the physical
strain. As discussed in Ref. [34], the fluid rheological re-
sponse is well described by the following equation for the
fluidity:

∂f

∂t̃
= f [ξ2∆f +mf − f3/2] , (1)

where ξ is the so-called cooperativity length and relates
to the extension of the region that is impacted by a neigh-
boring plastic rearrangement [32, 35–38], and m = m(Σ)
with m2 = (Σ− 1)1/n/Σ for Σ ≥ 1 and m = 0 for Σ < 1.
The latter parameter m essentially conveys the informa-
tion about the underlying steady-state HB rheology, as
f = m2 corresponds to the stationary homogeneous so-
lution of Eq. (1). Moreover, we assume a simple plane
shear flow and that Σ is spatially homogeneous and only
depends on t. To model the response to an imposed shear
rate Γ̇, Eq. (1) is coupled to the following evolution equa-
tion for the stress based on a Maxwell model:

dΣ

dt̃
=

G0

σy

(

1− 〈f〉Σ
Γ̇

)

, (2)

where G0 is the elastic modulus, and 〈f〉 is the spatial
average of the fluidity, which is a function of time. We
have shown that this approach successfully captures the
the long-time evolution of SGMs towards steady state
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FIG. 2: Analysis of the stress overshoots predicted by the
fluidity model for an HB exponent n = 1/2. (a) Stress max-

imum ΣM vs shear rate Γ̇. Inset: strain at maximum ΓM

normalized by the strain Γ1 that corresponds to Σ = 1 and
plotted against Γ̇. Colored symbols refer to different values
of τ = 0.1 ( ), 1 ( ), 10 ( ), and 100 ( ). (b) Rescaled stress

maximum (ΣM − 1)τ 0.4 vs Γ̇τ 0.7. Inset: ΓM/τ vs ΣM. The
red line is ΓM/τ = 1.3ΣM.

[33, 34]. Here we explore the short-time response of this
model during shear start-up. As a generic case, we solve
Eqs. (1) and (2) with n = 1/2, for fixed values of Γ̇
ranging between 10−4 and 102 with ξ/L = 0.04 and as-
suming f(y, 0) = 10−4 ≪ 1 for the initial solid-like state
and f(0, t̃) = m2(Σ(t̃)) and ∂yf(L, t̃) = 0 for boundary
conditions at the two different walls. In this framework,
we explore the behavior of a simple YSF with respect to
two parameters, i.e., the imposed shear rate Γ̇ and the
dimensionless relaxation time τ = σy/G0.

Theoretical scalings.- As illustrated in Fig. 1(b) for
four values of Γ̇, the model predicts stress overshoots
very similar to those reported in experiments, e.g., on
carbopol microgels [Fig. 1(a)]. More generally, extract-
ing the stress maximum ΣM(Γ̇) and the corresponding
strain ΓM(Γ̇) = t̃M for values of τ spanning three or-
ders of magnitude, we find that ΣM grows faster with
Γ̇ as τ decreases, i.e., when the elastic modulus G0 in-
creases relative to the yield stress σy [Fig. 2(a)]. As
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a central result of this Letter, we show that the en-
tire data set can be rescaled onto the master curve of
Fig. 2(b), which is composed of two power-law asymp-
totic limits, namely (ΣM − 1) ∼ Γ̇1/3 for Γ̇ ≪ 1, and
(ΣM − 1) ∼ Γ̇4/17 for Γ̇ ≫ 1. These two limits are
justified analytically in detail in the companion paper
[39] and can be understood qualitatively as the signa-
ture of two different dynamical regimes for the nucle-
ation and growth of a shear band of size ℓb(t̃) at the
moving wall. Indeed, upon shear start-up, the initial flu-
idity remains negligible and the stress Σ(t̃) grows roughly
linearly up to Σ(t̃M) = ΣM where the l.h.s. of Eq. (2)
must be zero, yielding Γ̇ = 〈f〉(t̃M)ΣM. Since the fluidity
〈f〉 is dominated by the fluidity in the shear band, we
may approximate f with the value of m2(t̃) for any ap-
plied shear rate, yielding 〈f〉(t̃) ∼ ℓb(t̃)m

2(t̃)/L, with
m2(t̃) ∼ Σ(t̃) ∼ Σ(t̃) − 1 under the assumption that
Σ(t̃) ≫ 1.
In the limit of large shear rates, the fluidity grows from

the moving wall, triggering the formation of a fluidized
front. Scaling arguments show that the characteristic
length and time in the system are ξ/

√
m and m−3 re-

spectively [34, 39]. Hence, the shear band is expected to
move with a velocity dℓb/dt̃ ∼ m3ξ/

√
m = ξm5/2(t̃). Us-

ing m(t̃) ∼ [Σ(t̃)− 1]1/2 and integrating over time yields
ℓb(t̃) ∼ ξτ [(t̃ − t̃1)/τ ]

9/4, where t̃1 is the time at which
the stress equals the yield stress, i.e., Σ(t̃1) = 1. Finally,
combining the expression of m(t̃) and ℓb(t̃) at t̃ = t̃M and
using ΣM−1 ∼ t̃M− t̃1 leads to an expression for 〈f〉(t̃M)
and to the following asymptotic scaling:

ΣM − 1 ∼
(

Γ̇

ξτ

)4/17

for Γ̇ ≫ 1. (3)

In the limit of low shear rates, the system reorganises
in the vicinity of the moving wall without any propa-
gating front solution. Plastic activity rather occurs via
diffusion effects, which are peculiar to the fluidity equa-
tion [Eq. (1)], so that the size of the shear band follows a

diffusive growth ℓb(t̃) ∼ ξm(t̃)
(

t̃− t̃1
)1/2

. Following the
same steps as in the high shear rate limit, we get:

ΣM − 1 ∼
(

Γ̇

ξτ1/2

)1/3

for Γ̇ ≪ 1. (4)

As shown in the inset of Fig. 2(b), the strain ΓM is simply
proportional to ΣM so that the two asymptotic scalings
also hold for ΓM/Γ1− 1. Finally, combining Eqs. (3) and
(4), we expect the transition between the two behaviors
to occur at Γ̇⋆ ∼ ξτ−0.7 and Σ⋆

M − 1 ∼ τ−0.4. As shown
in Fig. 2(b), the rescaled data (ΣM − 1)τ0.4 as function
of Γ̇τ0.7 indeed nicely collapse onto the predicted master
curve over the whole range of studied shear rates. As
detailed in the companion paper [39], the above approach
can be generalized to any value n of the HB exponent,
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FIG. 3: Analysis of the stress overshoots recorded in exper-
iments on Carbopol microgels with different concentrations
C = 0.5% ( ), 1% ( ), 2% ( ), and 3% wt ( ). (a) Stress
maximum σM as a function the applied shear rate γ̇. Inset:
corresponding strain γM vs γ̇. Data from Ref. [21]. The ex-
perimental uncertainty on these raw data is smaller than the
symbol size. (b) Rescaled stress maximum (σM/σy − 1)τµ

vs γ̇/γ̇⋆, where τ = σy/G0, with G0 the elastic modulus of
the microgel. The red solid line is a power law with expo-
nent ᾱ = 〈4n/(9−n)〉 = 0.27± 0.01 inferred from the fluidity
model in the asymptotic regime and averaged over the various
samples. The red dotted line shows the scaling predicted in
the diffusive regime with exponent β̄ = 〈2n/3〉 = 0.38± 0.01.
Lower inset: G0γM vs σM. The red line is G0γM = 1.3 σM+20.
See Supplemental Material Table S1 for the values of σy, n,
and G0 used in the rescaling. Error bars account for the ex-
perimental uncertainty on σy and G0. Upper inset: rescaling
factor γ̇⋆ used for the shear rate as a function of C and nor-
malized by γ̇0τ

−λ with γ̇0 = (σy/A)1/n so as to provide a
quantity that is predicted by the theory to be proportional
to the cooperativity length ξ. The red dotted line shows that
this quantity scales roughly as 1/C. The exponents λ and µ
are inferred from the HB exponent n, which depends weakly
on the Carbopol concentration [40].

leading to scalings with exponents α = 4n/(9−n) at large
shear rates and β = 2n/3 at small shear rates instead of
4/17 and 1/3 in Eqs. (3) and (4) respectively.

Discussion.- Let us now compare our theoretical find-
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ings against experimental data. We revisit the shear
start-up experiments of Ref. [21] performed on Carbopol
microgels for concentrations ranging between 0.5% and
3% wt. in a parallel-plate geometry connected to a stress-
controlled rheometer (see also Supplemental Material for
details which includes Refs. [21, 38, 41]). Such a sim-
ple YSF displays a stress overshoot upon shear start-
up [Fig. 1(a)]. As reported in Fig. 3(a), both the stress
maximum σM and the corresponding strain γM increase
weakly with the applied shear rate γ̇. When consider-
ing σM/σy − 1, the experimental data for the stress can
be further rescaled into a single master curve spanning
more than two decades [Fig. 3(b)], which displays two
asymptotic scalings in excellent agreement with the two
exponents α and β derived from the fluidity model for an
arbitrary value of n. Moreover, when multiplied by the
elastic modulus G0, the strain γM collapses onto a single
affine law of σM with the same prefactor as ΓM/τ in the
theory [lower inset of Fig. 3(b)]. Therefore, our theoret-
ical approach nicely captures the early stage response of
this SGM to shear, as well as its subsequent fluidization
[34].

Beyond the quantitative prediction of the locus of the
stress maximum, our theoretical approach allows us to
compute the local velocity profiles during shear start-
up. Figure 4 shows the velocity profiles at various times
along the stress response of the material predicted for
Γ̇ = 0.029 and τ = 1. The velocity profile is linear dur-
ing the initial growth of the stress, which is indicative of
affine displacement during the initial stage. Around the
stress maximum, the fluidity at the moving wall becomes
sufficiently large that the shear rate in the bulk decreases,
leading to an elastic recoil after which the velocity pro-
file flattens out. These results are in excellent agreement
with the experimental observations on carbopol micro-
gels, in which the formation of a thin lubrication layer at
the wall leads to a fast recoil followed by a total wall slip
regime (lower inset in Fig. 4) [21].

Our theoretical approach provides the following ratio-
nale for the observed phenomenology. When shear is
switched on, the fluidity at the wall and the thickness
ℓb of the shear band are small. At short times, and thus
for small ℓb, the second term on the r.h.s of Eq. (2) does
not play any significant role and the stress grows in time
almost linearly. Around the stress maximum, the system
enters a different dynamical regime where dΣ/dt̃ ≃ 0,
i.e., the instantaneous value of the stress is balanced by
the effective shear rate within the shear band Γ̇L/ℓb [39].
The clear-cut separation between these two different dy-
namical behaviours allows us to provide a distinctive the-
oretical prediction for the scaling of the stress maximum
as a function of the shear rate. Finally, note that the nar-
row fluidized band near the wall eventually grows into a
transient shear band, whose dynamics and lifespan have
been extensively discussed in Ref. [34].

To conclude, the present fluidity model encompassing
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FIG. 4: Rescaled stress response Σ/ΣM vs t̃/t̃M from the fluid-

ity model (blue solid line, Γ̇ = 0.029 and τ = 1) and σ/σM vs
t/tM from experiments on a carbopol microgel (brown dash-
dotted line, γ̇ = 0.1 s−1, C = 1% wt, adapted from Fig. 4
in Ref. [21]). t̃M (tM resp.) corresponds to the strain (time
resp.) at which the maximum stress ΣM (σM resp.) is reached.
Insets: velocity profiles v normalized by the velocity of the
moving plate v0 as a function of the distance y to the moving
plate normalized by the gap size L and taken at the various
times indicated by the symbols in the main graph. Lines on
the experimental profiles are guides for the eye.

non-local effects provides a comprehensive framework for
describing the stress overshoot that goes along with the
start-up of shear in simple YSFs. Our approach shows
that the relevant observables are ΣM − 1 and ΓM − 1
instead of the raw values of the stress maximum coordi-
nates. In that framework, our model yields a quantita-
tive prediction for the rate dependence of the overshoot
in the form of two power-law scalings in the limits of low
and high shear rates, which may apply to a vast amount
of data from the literature –see companion paper [39]
for additional comparisons with previous experimental
and numerical results [18, 20, 28, 42]. Non-local effects
play a key role in the predicted scalings by governing the
growth of the shear band nucleated in the vicinity of the
moving wall: depending on the strain rate, fluidization
is driven either by diffusive dynamics or by front propa-
gation. This scenario provides an alternative to existing
descriptions of the stress overshoot in terms of local re-
arrangements and cage dynamics [8, 26, 28] and to con-
tinuum viscoelastic models based on recoverable strain
measurements or mean-field elastoplastic models [6, 43–
45]. As also emphasized in the companion paper [39],
SGMs forming permanent shear bands can be captured
within a generalized version of our fluidity model. We
show that such a generalization does not affect the scal-
ing properties of the overshoot and that further including
long-range correlations into the model and playing with
boundary conditions can account for avalanche-like ef-
fects as well as brittle-like vs ductile-like response past
the overshoot. In that respect, our results should set a
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basis for predicting shear start-up flow in a wide variety
of SGMs.
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[38] B. Géraud, L. Jorgensen, C. Ybert, H. Delanoë-Ayari,
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