
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Exact Diagonalization for Magic-Angle Twisted Bilayer
Graphene

Pawel Potasz, Ming Xie, and A. H. MacDonald
Phys. Rev. Lett. 127, 147203 — Published 29 September 2021

DOI: 10.1103/PhysRevLett.127.147203

https://dx.doi.org/10.1103/PhysRevLett.127.147203


Exact Diagonalization for Magic-Angle Twisted Bilayer Graphene

Pawel Potasz
Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA and

Department of Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland

Ming Xie and A. H. MacDonald
Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA

(Dated: August 12, 2021)

We report on finite-size exact-diagonalization calculations in a Hilbert space defined by the
continuum-model flat moiré bands of magic angle twisted bilayer graphene (MATBG). For moiré
band filling 3 > |ν| > 2, where superconductivity is strongest, we obtain evidence that the ground
state is a spin ferromagnet. Near |ν| = 3, we find Chern insulator ground states that have sponta-
neous spin, valley, and sublattice polarization, and demonstrate that the anisotropy energy in this
order-parameter space is strongly band-filling-factor dependent. We emphasize that inclusion of the
remote band self-energy is necessary for a reliable description of MATBG flat band correlations.

Introduction:— Near a magic twist angle, the width of
bilayer graphene’s low energy moiré bands shrinks [1, 2]
by an order of magnitude or more, allowing interactions
to play a prominent role in shaping electronic properties.
The flat bands form an octet that is the direct product
of two-fold spin, valley, and band or sublattice degrees
of freedom and closely analogous to the spin/valley/layer
octet of Bernal bilayer graphene [3–6]. The recent discov-
ery of superconductivity and interaction-induced Chern
and trivial insulator states [7–25] in magic-angle twisted
bilayer graphene (MATBG) has motivated ongoing the-
oretical work [26–82], from which it is already clear that,
although MATBG states share properties with doped and
undoped Mott insulators in conventional crystals, they
also have a relationship to integer and fractional quan-
tum Hall (FQH) states [45, 61, 62].

Progress in understanding competitions between dif-
ferent low energy states and the sensitivity of the
ground state properties to particular model parameters
has been achieved using numerical mean-field theory
[11, 24, 31, 43, 44, 46, 48, 51, 69], and beyond, using
exact diagonalization [39, 75, 79], quantum Monte-Carlo
[32, 34, 80] and density matrix renormalization group
methods [50, 51, 79, 81, 82], and using both Hubbard-like
lattice [14, 15, 25–27, 31–35, 37–39, 41, 52, 61, 62, 78, 80]
and continuum models [11, 24, 43, 44, 46, 48, 51, 69–
75, 79, 81, 82]. In this Letter we use exact diagonalization
to describe correlations within flat bands that are iden-
tified by solving the single-particle problem [2] exactly.
The use of numerical flat bands in place of approximate
Wannier orbitals has the advantage that we account ac-
curately for crucial changes in the charge distribution of
flat band wavefunctions as a function of moiré Brillouin-
zone momentum. We use a systematic approach that
accounts fully for self-energies from remote bands, which
play a key role, to make further progress. Because the
MATBG octet enlarges finite Hilbert space sizes far be-
yond those of spinful single-band models, we are forced to
restrict our attention primarily to flat band filling factors

with |ν| ≥ 2; fortunately much of the strong correlation
physics seen experimentally occurs in this filling factor
regime.

Our calculations confirm [19–21, 24] that spin, valley,
and sublattice polarization is common in both insulat-
ing and metallic states, demonstrate that the anisotropy
energy associated with these generalized ferromagnetic
orders is strongly filling factor dependent, and provide
evidence for spin-polarized ground states for |ν| ∈ (2, 3)
- the range of filling factor that supports the strongest
superconductivity. This picture is revealed in ED finite-
size system results by signatures of macroscopic quan-
tum tunneling. Our main results are presented in Fig. 1
where panel (a) provides evidence that ground states are
maximally spin-polarizated for |ν| ∈ (2, 3), but valley-
polarized only near |ν| = 3. Panel (b) shows that the
ground at |ν| = 3 is a spin and valley polarized doublet
formed by states with opposite senses of spontaneous sub-
lattice polarization. These states are known to be Chern
insulators and are accurately approximated by Hartree-
Fock theory. The ground state of the system with one
charge added to (or removed from) the |ν = 3| ground
state (panel (c)) is still fully spin-polarized, but com-
pletely loses its K,K ′ valley polarization. As shown in
panel (d) these states nevertheless have precisely inte-
ger occupation numbers for all momenta, but only when
summed over valleys. We conclude that the states with
added and removed charge have easy-plane valley or-
der; we attribute the sudden change in anisotropy to the
strong band/sublattice dependence of the single-particle
Hamiltonian at momenta near the γ-point in the moiré
Brillouin zone. The sublattice polarization-properties
(panel (e)) of the ground states near |ν| = 3, discussed
further below, are revealed by the responses to sublat-
tice and valley dependent potentials illustrated in panels
(b,c).

Flat Band Projected Exact Diagonalization:— Because
of large Dirac velocities, the electronic density-of-states
of an isolated neutral graphene sheet has a minimum at
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FIG. 1: Spin, valley, and sublattice order vs. electron num-
ber Nel in finite-size MATBG with M = 9 moiré unit cells:
(a) ∆E1 = Emin(Smax) − Emin(S < Smax) (meV/unit cell),
where S = SK + SK′ is total spin and Smax = Nel/2 is its
maximal value. ∆E2 = Emin(Pv = 0)− Emin(Pv = 1) where
Pv = |NK −NK′ |/(NK + NK′). (b) Response of the ground
state energy of the valley polarized state at |ν| = 3 to an
external field that couples to sublattice polarization. (c) Re-
sponse of low energy states to a valley-odd sublattice field at
Nel = 10. The right panels in (b) and (c) schematically il-
lustrate the sublattice polarizations induced in states (1) and
(2) by the corresponding fields. (d) Ground state momentum
space occupation numbers projected to valley K (left), and
traced over valley (right) at Nel = 10. (e) Schematic illustra-
tion of macroscopic quantum tunneling of the sublattice pseu-
dospin collective coordinate, based on Nel = 10 ED results.
The ground state (1)(left) has the same sense of sublattice po-
larization in the two valleys, and at this system size, strong
hybridization between the sublattice polarization states la-
belled AA and BB, where first letter correspond to valley K
and the second to valley K′. The first excited state (2) (right)
has opposite sense of sublattice polarization in opposite val-
leys (AB) and (BA), and much weaker hybridization between
the two degenerate states at this system size.

neutrality and is small over a broad energy range, al-
lowing interaction effects to be described perturbatively.
When magic-angle moiré bands [2] are formed, strong
electronic correlations emerge and perturbative analy-
ses are less reliable. Exact-diagonalization (ED) of the
Hamiltonian is a powerful non-perturbative method to
study strong correlations, but, because the many-body
Hilbert space grows exponentially with system size, is
practical only when the single-particle Hamiltonian can
be truncated to a reasonably small dimension, typically

with at most several tens of single-particle states. In
MATBG the spectral isolation of the eight flat bands of
interest (flat conduction and valence bands for each of
four spin/valley flavors) motivates projection to an oc-
cupation number subspace in which all remote valence
bands in graphene’s negative-energy sea are fully occu-
pied, all remote conduction bands are empty, and occu-
pation numbers are allowed to fluctuate only within the
flat bands. This strategy leads to a low-energy effective
Hamiltonian that acts entirely in the flat-band Hilbert-
space:

Heff =
∑
i′,i

[εiδi′,i + Σi′,i] c
†
i′ci

+
1

2

∑
i′,i,j′,j

〈i′, j′|V |i, j〉 c†i′c
†
j′cjci, (1)

where 〈i′, j′|V |i, j〉 is a two-body Coulomb interaction
matrix element, i′, i, j′, j label flat band states, εi is an
eigenvalue of the single-particle twisted-bilayer graphene
Hamiltonian [2] including the interlayer tunneling contri-
bution that is responsible for flat band formation, and

Σi′,i =
∑
v

[〈i′, v|V |i, v〉 − 〈i′, v|V |v, i〉]

−
∑
v̄

[〈i′, v̄|V |i, v̄〉 − 〈i′, v̄|V |v̄, i〉], (2)

which we refer to the remote band self energy, accounts
for Hartree and exchange interactions with states v in
the frozen negative energy sea. In Eq. 2 the sum over
v̄ in the regularization term is over the frozen valence
bands of a neutral bilayer with no-interlayer tunneling
[43]. As we shall emphasize, the remote band self-energy
plays an essential role in MATBG physics and unlike in
the related case of Landau level physics, cannot be ne-
glected. Its importance derives from the fact that flat
valence band wavefunctions have strongly momentum-
dependent spatial distributions across the moiré unit cell,
even when averaged over the full band [36, 42]. This issue
is solved by appropriately renormalizing the flat bands
by adding self-energies from the remote valence bands.
Both Hartree and Fock terms are essential when consid-
ering the physics away from the neutrality point (fully
filled flat valence band) in effective Hamiltonians pro-
jected to flat band subspace. This self-energy accounts
for leading-order interactions between flat and remote
bands, and includes exchange interactions that enhance
intersubband layer-coupling as emphasized in a recent
perturbative renormalization group calculation by Kang
and Vafek [76]. At higher order, remote band polariza-
tion will screen the Coulomb interaction in Eq. 1, among
other less understood effects. We partially account for
these screening effect [77] by allowing the (in general q-
dependent) dielectric function used in constructing the
Coulomb matrix elements to be larger than the value
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that would be expected on the basis of dielectric and
gate screening alone.

The remote band self-energy reshapes the bands prin-
cipally by shifting energies near γ upward, relative to
those near κ, κ′. The relative shifts occur primarily be-
cause the Hartree potential from the remote bands is
attractive near the AA positions where states near γ
have less weight [36, 42, 43]. The sharp contrast be-
tween the conduction and valence band widths in these
empty-band dispersions does not imply strong particle-
hole asymmetry. Indeed the model we will study is very
nearly particle-hole symmetric, and the relative widths of
the bands is reversed when we describe flat band states
in terms of interacting holes instead of interacting elec-
trons [83]. Instead, the upward shift at γ works in concert
with weaker electron-electron repulsion matrix elements
for states near γ [83] that reduce their Coulomb energy
penalty as the flat bands are filled. The ED results in
this MS were calculated at twist angle θ = 1.1, interac-
tion strength parameter ε−1 = 0.05, for the M = 9 moire
unit cells system, which is sufficiently large to capture the
important distinction between states near γ and those in
the rest of the Brillouin-zone. Unlike the model we study,
experimental samples do exhibit clear particle-hole asym-
metry. For example, the Chern insulator states we dis-
cuss below tend to be more prominent at positive than at
negative filling factors. The asymmetry is thought [44]
to be due to non-local corrections to the interlayer tun-
neling model we employ. The relationship of our findings
to experiment is addressed more fully in the discussion
section below.

The many-body Hamiltonian separates into decoupled
blocks labelled by the number of electrons in each val-
ley NK and NK′ , valley-dependent total (SK and SK′)
and azimuthal spin (Sz

K and Sz
K′) quantum numbers, and

total crystal momentum (Kx,Ky). The separate spin
quantum numbers for the two valleys apply because the
model is invariant under independent valley-dependent
spin-rotations.

Numerical Results:— Our first important result is re-
lated to the regime in which |ν| ∈ (2, 3), where the ground
state is commonly observed to have two occupied flavors.
(Our ED calculations have little access to the |ν| < 2
region of filling factor, which fortunately are of lesser
interest because they tend to have relatively well under-
stood Fermi liquid ground state with no broken symme-
tries [14, 15, 44].) A key issue is whether these states
are fully spin-polarized, or fully valley-polarized, or in
some other more complicated two-flavor state. Our ED
calculations do not have access to the full Hilbert space
across the entire |ν| ∈ (2, 3) interval, which corresponds
to the Nel ∈ [10, 18] in our flat-band projected ED cal-
culation. For Nel = 10, 11, 12 full Hilbert space calcu-
lations confirm that the ground state is maximally spin-
polarized, as illustrated in Fig. 2. For larger Nel we can
show that the fully spin-polarized state is lower in en-

ergy than the corresponding fully valley-polarized state.
Some of these conclusions rest on extrapolations from
calculations performed in a selected subspace of the full
ED Hilbert space, as explained in the supplementary ma-
terial [83]. The conclusion that the ground state is fully
spin-polarized helps constrain and simplify potential the-
ories of superconductivity.
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FIG. 2: Ground state spin and valley quantum numbers as a
function of electron number Nel. Top: Total spin SK and SK′

in each valley. Bottom: Valley polarization Pv. Integer band
filling ν = −3 occurs at Nel = 9 highlighted by a dashed line.
S = SK + SK′ is total spin.

For Nel = 9 (|ν| = 3), we are able to fully explore
nearly all subspaces, including all with particles dis-
tributed over three flavors, and subspaces with particles
distributed over four flavors provided one of the flavors is
filled by at least five particles. We find that the ground
state is fully spin and valley polarized, and well approx-
imated by a single Slater determinant. For example, we
find that the maximum deviation from unit momentum-
state occupation across the Brillouin-zone is 0.04. The
ground state appears as a quartet with nearly degener-
ate doublets for each sense of valley polarization. By
studying the response of this doublet to a sublattice de-
pendent potential m0σz, where σz acts on the sublattice
degree-of-freedom in both layers, we see that for a given
valley polarization the doublet is formed by states with
opposite sublattice polarizations and that there is ob-
servable hybridization between these states. It is known
from Hartree-Fock theory that these states are Chern in-
sulators with Chern number magnitudes |C| = 1 and
signs determined by the sign of the product of the val-
ley and sublattice polarization. In Refs. [47, 48] the two
states with the same Chern number are described by a σ-
model in which only the orientation of the corresponding
pseudospin is retained as a relevant degree-of-freedom.
The Chern insulator at |ν| = 3 [45, 46, 64, 65] can be
viewed as a simple ferromagnet formed from these pseu-
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dospins. From Fig. 1(b) we conclude that 〈σz〉 ∼ 2.25,
implying that Psub = 〈σz〉/Nel ∼ 0.25, in agreements
with previous Hartree-Fock results [43, 46], and that the
Hamiltonian matrix element for collective tunneling be-
tween states with opposite senses of spontaneous sublat-
tice polarization (which is expected to fall exponentially
with system size) is ∼ 0.058 meV for Nel = M = 9
and (based on a separate calculation) ∼ 0.0094 meV for
Nel = M = 16 calculation.

Easy-Plane Valley Anisotropy:— In Fig. 1(c) and
Fig. 2 we see that valley polarization is completely lost
when we add or remove one electron from the Nel = 9
valley and spin polarized ferromagnet. We attribute this
behavior to the strong band splitting at γ, which has an
out-sized influence on valley anisotropy by suppressing
the band-mixing degree of freedom. An important el-
ement of our interpretation is the observation that our
system has only U(1) and not SU(2) valley symmetry.
In the language of magnetism our system has uniaxial
valley anisotropy, which allows easy axis or easy-plane
valley magnetism. Our conclusion that the state at γ
plays a crucial role is supported by the property that the
excitation spectra at N = 8, where the γ-state is empty,
and at N = 10, where the γ-state is doubly occupied, are
nearly identical. Our calculations confirm that easy axis
sublattice/band order is present for both easy-axis and
easy-plane valley anisotropy, with four degenerate classi-
cal states distinguished by the sublattice polarization of
K and K ′ valley components in the easy plane case. The
ground state responds most strongly to sublattice poten-
tials that are identical in the two valleys, demonstrat-
ing AA or BB sublattice polarizations (see SM). These
two classical states should have identical energies, and
we conclude from the ED spectra that the tunneling be-
tween them is large at this system size. We associate
the excited state doublets in Fig. 1(c) with AB and BA
sublattice polarizaiton for valleys KK’. This interpreta-
tion is supported by strong response to valley-odd sub-
lattice potentials. Our ED results demonstrate that the
many-particle tunneling matrix element between these
sublattice states is greatly reduced compared to tunnel-
ing between degenerate AA and BB states. In this case
the ED spectra exhibit resonant tunneling not only be-
tween ground states, but also between excited states of
the isolated AB and BA sectors.

Discussion:— Our calculations show that MATBG
ground state energies are generally speaking well approxi-
mated by unrestricted Hartree-Fock approximations that
allow spin, valley, and sublattice symmetries to be bro-
ken. In the top panel of Fig. 3 we show the dependence
of the correlation energy on electron number in the sub-
space with full spin and valley flavor polarization over the
full range of available filling factor for that flavor between
νf = −1 and νf = 1. The correlation energy, defined as
the difference between the ED ground state energy and
the minimum energy single-Slater determinant, vanishes
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FIG. 3: The correlation energy per moiré period as a function
of filling factor (top) and as a function of the twist angle for
Nel = 9 together with corresponding sublattice polarizations
(bottom). Within this range of angles, both exact diagonal-
ization and Hartree-Fock calculations predict full flavor po-
larization. Top: The green triangles correspond to one flavor
full-spin-polarization calculations and Ecorr = EPol

tot − EPol
HF ,

where EPol
tot is the ground state energy from exact diagonal-

ization calculations and EPol
HF is the mean-field energy from

self-consistent Hartree-Fock calculations. The black squares
show to the energy difference between the ground state en-
ergy and the lowest energy state in the full flavor polarization
sector. The black dashed line marks the filling factor ν = −3.
Bottom: The twist angle dependence at Nel = 9 with green
triangles for the correlation energy and black squares red cir-
cles for ED and HF sublattice polarizations.

when the orbital doublet is empty (νf = −1) and full
(νf = 1), and also reaches an extremely small value in
the insulating state at νf = 0. These results suggest in-
sulating states at all integer filling factors with a band
filling per flavor equal to -1, 0, or 1 are accurately ren-
dered by Hartree-Fock, even when symmetry is broken by
choosing different band filling factors for different flavors.
For a given total integer filling factor a variety of different
states, characterized by different flavor-dependent filling
factors and senses of sublattice polarization, are expected
to compete closely in energy. The states have different
total Chern numbers with |C| = 1 for |ν| = 3, 0 or 2 for
|ν| = 2, 1 or 3 for |ν| = 1, and 0, 2 or 4 for ν = 0. (The
|ν| = 1 and |ν| = 0 cases are outside of the reach of ED.)
In Fig. 3 we see that the correlation energy is larger away
from integer filling factors. We expect that this trend
will be stronger in sectors with less flavor polarization,
and that Hartree-Fock therefore overestimates the ten-
dency to break flavor symmetries. Insulating states at
|ν = 1|, will therefore compete with metallic states with
no broken flavor symmetries that have much larger cor-
relation energies. The difference in energy between the
true ground state and the ground state in the fully po-
larized sector increases quickly for Nel > 9, showing that
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the energy cost of valley polarization quickly increases.

The appearance of insulating states at integer filling
factors depends on screening environment, twist angle,
and band-structure details that we have not fully ex-
plored here. For example in the bottom panel of Fig. 3
we illustrate how the correlation energy of the |ν| = −3
Chern insulator state depends on twist angle. As ex-
pected the correlation energy is reduced as the twist an-
gle increases relative to the magic angle. Surprisingly
though, the sublattice polarization increases and is more
accurately estimated by Hartree-Fock as twist angle in-
creases [43]. Evidently the physics responsible for the
broken symmetries is basically that of exchange interac-
tions, which are captured by Hartree-Fock, with corre-
lations working against order. While finite size effects
are present in all ED calculations, a direct comparison
with HF results for the same system size (Fig. 3) and
results extrapolated to the thermodynamic limit shown
in the SM confirm this conclusion. Like twist angle θ,
the screening parameter ε used in our calculations in-
fluences quantitative conclusions. Interactions in the flat
bands of MATBG are screened by the surrounding hexag-
onal oron nitride (hBN) dielectric, by the nearby electri-
cal gates, and by transitions between the flat and re-
mote bands [77]. Strictly speaking, the latter two ef-
fects yield wavevector-dependent contributions to the di-
electric constant with gates dominating in importance at
small wavevectors and screening within the bilayer dom-
inating a larger wavevectors.
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