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We consider the non-equilibrium orbital dynamics of spin-polarized ultracold fermions in the first excited
band of an optical lattice. A specific lattice depth and filling configuration is designed to allow the px and
py excited orbital degrees of freedom to act as a pseudo-spin. Starting from the full Hamiltonian for p-wave
interactions in a periodic potential, we derive an extended Hubbard-type model that describes the anisotropic
lattice dynamics of the excited orbitals at low energy. We then show how dispersion engineering can provide a
viable route to realizing collective behavior driven by p-wave interactions. In particular, Bragg dressing and lat-
tice depth can reduce single-particle dispersion rates, such that a collective many-body gap is opened with only
moderate Feshbach enhancement of p-wave interactions. Physical insight into the emergent gap-protected col-
lective dynamics is gained by projecting the Hamiltonian into the Dicke manifold, yielding a one-axis twisting
model for the orbital pseudo-spin that can be probed using conventional Ramsey-style interferometry. Experi-
mentally realistic protocols to prepare and measure the many-body dynamics are discussed, including the effects
of band relaxation, particle loss, spin-orbit coupling, and doping.

Introduction. Ultracold quantum gases in optical lattices
are among the leading platforms for quantum simulation
of strongly correlated matter and non-equilibrium dynamics.
While there has been impressive experimental progress [1, 2],
most investigations thus far have been limited to s-wave in-
teracting systems in the lowest motional band. A fascinating
avenue yet to be explored experimentally is many-body lat-
tice physics with p-wave interactions [3, 4] in higher bands.
P-wave interacting systems can host long-sought phases in-
cluding topological superfluids, Majorana fermions [5–7], and
itinerant ferromagnetism [8–12]. At the same time, atoms in
higher bands are a unique resource [13] for emulating orbital
degrees of freedom in real materials [14] which give rise to
heavy fermions [15], RKKY interactions [16], and orbitally
ordered Mott phases [17, 18].

Despite these attractive features, control and manipulation
of p-wave interacting gases has remained a challenge for ultra-
cold atom experiments. The timescales on which p-wave in-
teractions contribute to dynamics tend to be slow compared to
coherence times [19] and lossy when increased by a Feshbach
resonance [20–22]. Moreover, collisions in higher bands suf-
fer from band relaxation [23, 24]. Important progress in mit-
igating relaxation has been made via designed lattice geome-
tries [25–27] and symmetry protection [28], but further ad-
vances are required to explore the full range of orbital physics
in optical lattices.

Here we consider the problem of non-equilibrium orbital
physics in an optical lattice, and identify a limit in which col-
lective dynamics emerge. Orbital dynamics in first excited
bands are stabilized via Pauli blocking by preparing a spin-
polarized system with a completely filled ground band, mim-
icking the conventional conduction-band configuration of ma-
terials. P-wave interactions are enabled by the orbitally an-
tisymmetric two-atom wavefunctions. We explore the use of
Bragg dressing to suppress orbital anisotropy, which allows
an accurate mapping of the p-wave Fermi-Hubbard model
to an XXZ spin model, in which the conventional magnetic
spin states are replaced by orbital states. We delineate a spe-

cific regime in which the collective dynamics can be further
mapped to a collective one-axis twisting (OAT) model thanks
to the opening of a many-body gap [29]. Dispersion engi-
neering lowers the demands on Feshbach-tuned interaction
strength, and thus elastic interactions can dominate over in-
elastic collisions and other decoherence processes. We further
discuss how the p-wave induced mean-field dynamics can be
observed with a Ramsey protocol.

The conceptual map that we develop offers new ways to
understand p-wave orbital physics in an experimentally ac-
cessible regime. We connect previously established real-space
pseudo-potential formulations to a tractable extended Fermi-
Hubbard model, and use laser driving as a tool to coordinate
interaction-driven dynamics. We show that a simple collective
model can explain the emergent gap-protected dynamics.

P-wave Fermi-Hubbard model. The scenario we consider
is a three-dimensional (3D) optical lattice loaded with spin-
polarized fermionic atoms in their ground electronic state.
The system Hamiltonian can be written in terms of field oper-
ators ψ̂(~R) acting in real space ~R = (X,Y, Z) as

Ĥ =

ˆ
d3 ~R ψ̂†

[
− ~2

2m
~∇2 +

∑
ν=X,Y,Z

VνEr sin2
(πν
a

)]
ψ̂

−
∑

ν=X,Y,Z

3π~2b3ν
2m

ˆ
d3 ~R Wν(ψ̂†, ψ̂†)Wν(ψ̂, ψ̂),

(1)
where Wν(Â, B̂) = (~∇νÂ)B̂ − Â(~∇νB̂). The first line in-
cludes the kinetic energy and lattice potential, where the lat-
tice depth along ν ∈ {X,Y, Z} is VνEr with Er the recoil
energy, a is the lattice spacing and m is the atomic mass. We
assume that VX = VY � VZ , confining the system to inde-
pendent 2D planes. The second line contains the collisional
interactions, which are p-wave since the s-wave channel is
blocked for a spin-polarized gas. We have used a pseudo-
potential approximation [30–33] with two different scattering
volumes due to dipole-dipole splitting of the closed channel,
b3X = b3Y ≡ b3XY and b3Z , controlled by a p-wave Feshbach
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FIG. 1. Conceptual schematic. (a) Fermi-Hubbard physics on a sin-
gle X-Y plane. The ⇑ (X-excited) and ⇓ (Y -excited) atoms tun-
nel at rates J0 and J1 along their ground and excited directions re-
spectively. There is an on-site p-wave interaction U⇑⇓ between ⇑, ⇓
atoms, as well as nearest-neighbour interactions Vee, V⇑⇓. (b) Bragg
dressing coupling ⇑, ⇓ can be implemented with beams (shown
in green) that co-propagate with the lattice beams (red), when the
Bragg-laser wavelength is half that of the lattice beams. The out-
of-plane lattice beam is not shown. (c) Effective Bloch sphere of the
Bragg-dressed spin states. The ⇑, ⇓ states are equal superpositions of
the two flavors of the dressed basis. Using standard coherent control
protocols, any direction of the Bloch vector can be initialized.

resonance. We assume a magnetic field pointed along the tight
confined direction Z; for such a field, we will show that only
the transverse volume b3XY is relevant for the interactions that
our specific configuration will exhibit. We also note that while
the p-wave scattering volume tends to have strong energy de-
pendence, we operate in the regime where the energy depen-
dence can be well approximated as an additional constant shift
in the position of the Feshbach resonance [34].

We seek to work in the ultracold regime where atoms only
occupy the ground band and the first-excited bands of the X
and Y directions, with orbitals φα~r (~R) given by

φg~r(
~R) = wX0 (X − ia)wY0 (Y − ja)wZ0 (Z),

φ⇑~r (~R) = wX1 (X − ia)wY0 (Y − ja)wZ0 (Z), and

φ⇓~r (~R) = wX0 (X − ia)wY1 (Y − ja)wZ0 (Z),

(2)

where ~r = {ia, ja} is the lattice position on the 2D plane and
wνn(ν − ia) is the n-th lattice Wannier function localized at
site i of direction ν. Our desired configuration is a filling of
N/L=2: each site will have one atom in the g orbital, filling
the ground band, and a second atom in the degenerate sub-
space of the excited orbitals {⇑,⇓} acting as a spin-1/2 degree
of freedom. The occupation of the ground state prevents col-
lisional relaxation since for any energy-conserving two-atom
process, leaving the excited subspace would require an atom
to move down to the ground band; here, this is forbidden by
Pauli exclusion.

The low-energy Hamiltonian can be written as an
anisotropic multi-orbital model by projecting Ĥ into the Wan-
nier basis defined by the three chosen orbital states, yielding

ĤFH = ĤJ + Ĥint. (3)

Here ĤJ describes the kinetic energy of the excited atoms,
which tunnel to nearest neighbour sites at rate J0 or J1 de-

pending on the tunneling direction and orbital: the ⇑ atoms
tunnel at rate J1 along X and rate J0 along Y , while the ⇓
atoms do the opposite [see Fig. 1(a)]. In general J1 � J0

since excited states have a larger spatial extent along their ex-
citation direction. Since the g atoms are in a filled band, they
are Pauli blocked and do not contribute to ĤJ . For the excited
atoms, the tunneling Hamiltonian can be written in momen-
tum space as

ĤJ =
∑
~k

ε~k

(
n̂~k,⇑ − n̂~k,⇓

)
+
∑
~k

Ē~k

(
n̂~k,⇑ + n̂~k,⇓

)
,

(4)
with ε~k = (J1 + J0)[cos(kXa) − cos(kY a)] and Ē~k =

(J1 − J0)[cos(kXa) + cos(kY a)]. Here n̂~k,γ = ĉ†~k,γ
ĉ~k,γ and

ĉ~k,γ = L−1/2
∑
~r e

i~r·~k ĉ~r,γ , with ~k = (kX , kY ) the lattice
quasi-momentum and ĉ~r,γ annihilating an atom on lattice site
~r in band state γ ∈ {⇑,⇓}.

The second term Ĥint contains the interactions. Using the
Wannier expansion these take the form of

Ĥint ≈
∑

~r,~r′,~r′′,~r′′′

∑
α,β,σ,γ

Uαβσγ~r,~r′,~r′′,~r′′′ ĉ
†
~r,αĉ

†
~r′,β ĉ~r′′,σ ĉ~r′′′,γ , (5)

Uαβσγ~r,~r′,~r′′,~r′′′ = GXY
∑

ν=X,Y

ˆ
d3 ~RWν(φα∗~r , φβ∗~r′ )Wν(φσ~r′′ , φ

γ
~r′′′),

where GXY = − 3π~2b3XY
2m , {~r, ~r′, ~r′′, ~r′′′} each run over all

lattice sites and {α, β, σ, γ} over band states {g,⇑,⇓}. Since
all included orbitals have the same wavefunction along the
Z direction and we assume tight confinement VZ restricting
the system to 2D planes, only contributions from the terms
proportional to the transverse volume b3XY are relevant.

We evaluate all these terms, and keep the ones that have
non-negligible coefficient Uαβσγ~r,~r′,~r′′,~r′′′ on realistic timescales
and are not inhibited by a band gap or another stronger inter-
action [34]. For a sufficiently deep lattice VX = VY � 1 the
relevant terms give rise to an extended Fermi-Hubbard model
which consists of on-site (OS) and nearest-neighbour (NN)
interactions, Ĥint = Ĥ

(OS)
int + Ĥ

(NN)
int . The on-site term is

Ĥ
(OS)
int ≈ U⇑⇓

∑
~r

n̂~r,⇑n̂~r,⇓, (6)

corresponding to a density-density interaction between ⇑ and
⇓ atoms with strength U⇑⇓ = 4U⇑⇓⇓⇑~r,~r,~r,~r. On-site interactions
between ⇑, g and between ⇓, g are also present, but amount
to a constant of motion for VX = VY and can be dropped.
The nearest-neighbour terms are anisotropic density-density
interactions given by

Ĥ
(NN)
int ≈Vee

∑
~r

(n̂~r,⇑n̂~r+~rX ,⇑ + n̂~r,⇓n̂~r+~rY ,⇓)

+V⇑⇓
∑

~r,ν=X,Y

(n̂~r,⇑n̂~r+~rν ,⇓ + n̂~r,⇓n̂~r+~rν ,⇑) .
(7)

Here ~rν is a lattice unit vector along the ν ∈ {X,Y } di-
rection. The interaction Vee = 4U⇑⇑⇑⇑~r,~r+~rX ,~r+~rX ,~r

is between
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nearest-neighbour pairs of atoms both in the same excited or-
bital along their excitation direction, as depicted in Fig. 1(a).
V⇑⇓ = 4U⇑⇓⇓⇑~r,~r+~rX⇓,~r+~rX⇓,~r

is an interaction between nearest
neighbour atoms in different excited orbitals. For a sample
atom choice of 40K and parameters of VX=VY =25, VZ=100,
bXY =292a0 with a0 the Bohr radius (a 20-fold increase
in background volume), we predict coefficients of J0=5Hz,
J1=130Hz, U⇑⇓=900Hz, Vee=0.3Hz, V⇑⇓=0.1Hz. These pa-
rameters are used in the following calculations, unless other-
wise specified.

Momentum-space spin model. The implementation of an
anisotropic extended Fermi-Hubbard model, Eq. (3) already
offers exciting opportunities for quantum simulation [37].
However, as a first step we are specifically interested in
regimes amenable for theoretical analysis, starting from a
fully polarized initial state, where nevertheless p-wave inter-
actions play a dominant role. For our p-wave system, how-
ever, the large spin dependent dispersion in ĤJ will induce
fast single particle dynamics that quickly depolarizes the ini-
tial state. To favor ordering of the orbital states, one can re-
duce competitive depolarization via the introduction of a laser
field that couples ⇑ and ⇓:

ĤΩ =
Ω

2

∑
~k

(
ĉ†~k,⇑

ĉ~k,⇓ + h.c.
)
. (8)

Experimentally, such a term can be generated by an optical
field whose Bragg grating is oriented along a diagonal re-
ciprocal lattice vector [see Fig. 1(b)]. We assume that the
drive couples only atoms with equal quasi-momentum, which
can be ensured with appropriate laser wavelengths and ori-
entation [34]. Dressed with this coupling, the single-particle
eigenenergies E±~k of the atoms change from E~k ± ε~k to

E~k ±
√
ε2~k

+ (Ω/2)2. When Ω/2 � |ε~k|, the anisotropic
part of the spectrum ε~k is flattened, which allows interactions
to play a more dominant role in the spin dynamics.

Under the assumption of a strong drive Ω/2 � |ε~k|,
the flattened spectrum suppresses quasi-momentum-changing
collisions between the atoms, which renders each atom frozen
in a given ~k-mode when evolving from a collective initial
product state. In this regime, also known as the collision-
less regime [38, 39], we can approximate the Fermi-Hubbard
model with a spin-1/2 model ĤFH + ĤΩ ≈ ĤS :

ĤS =
∑
~k,~k′

U~k,~k′~σ~k·~σ~k′+
∑
~k,~k′

V~k,~k′ σ̂
x
~k
σ̂x~k′+

∑
~k

(
ε~kσ̂

x
~k

+
Ω

2
σ̂z~k

)
,

with coefficients

U~k,~k′ = −U⇑⇓
4L
− V⇑⇓

2L

[
cos(kXa− k′Xa) + cos(kY a− k′Y a)

]
,

V~k,~k′ =
Vee − 2V⇑⇓

4L

[
2− cos(kXa− k′Xa)− cos(kY a− k′Y a)

]
.

Here we define spin operators σ̂α~k = â†~k,µ
σαµµ′ â~k,µ′ , with σν

the standard 2× 2 Pauli matrices for α ∈ {x, y, z}, summing

over new dressed atom flavors µ, µ′ ∈ {↑, ↓} that are eigen-
states of the drive [see Fig. 1(c)]:

â~k,↑ =
1√
2

(ĉ~k,⇑+ ĉ~k,⇓) and â~k,↓ =
1√
2

(ĉ~k,⇑− ĉ~k,⇓). (9)

The on-site contribution proportional to U⇑⇓ is SU(2) sym-
metric, because only the orbital singlet state of the two ex-
cited bands can interact, while the nearest-neighbour terms
yield XXZ-type anisotropicity.

Ramsey spectroscopy. To probe the system dynamics, we
consider time-evolution of a collective product state

|ψ0〉 = eiθŜ
y∏
~k

|→〉~k , (10)

where |→〉~k = (|↑〉~k + |↓〉~k)/
√

2 is an X-excited (⇑) band
state and Ŝα=x,y,z = 1

2

∑
~k σ̂

α=x,y,z
~k

are collective-spin oper-
ators. This state corresponds to either all spins pointing along
the x direction of the dressed Bloch sphere, or inclined at
some angle θ into the x − z plane [see Fig. 1(c)]. Such a
state can be prepared from a band insulator by using Raman
coupling schemes and control over the lattice depth [34]. We
still assume ideal filling of 2 atoms per site, although a small
hole fraction can be tolerated [34].

To probe the dynamics of this initial state we propose a
Ramsey-style protocol. The system is initialized and evolved
for a time t/2 under the full Hamiltonian. The sign of the
drive is then quenched from +Ω→ −Ω with e.g. a fast pulse
of the laser detuning, and the system is evolved for another
time t/2, undoing the drive’s single-particle rotation. Then
the collective observable 〈Ŝ+〉 = 〈Ŝx〉 + i〈Ŝy〉 ≡ C(t)eiφ(t)

is measured where C = (〈Ŝx〉2 + 〈Ŝy〉2)1/2 is the contrast,
and φ = arg〈Ŝ+〉 an interaction-induced phase shift.

Measurements of such collective spin observables are
straightforward to implement as the excited bands have dif-
ferent spatial distributions upon being released from the lat-
tice. Turning off both the drive and the lattice and measur-
ing the resulting gas cloud’s X-band population (⇑) via band-
mapping [40] allows measurements of 〈Ŝx〉. Leaving the
drive on for an additional time tΩ = π/2 after the Ramsey
protocol rotates y into x, allowing the measurement of 〈Ŝy〉
via an 〈Ŝx〉 measurement. While 〈Ŝz〉 is in principle con-
served for Ω/2 � |ε~k|, we can also measure it by advancing
the relative phase of the Bragg beams ahead by π/2, which
allows us to use the drive for a π/2 pulse that rotates z into x,
and then measuring 〈Ŝx〉 once more.

Figures 2(a-b) show the single-particle spectrum E±~k
and

representative time-evolution of the contrast for both the
driven Fermi-Hubbard model ĤFH + ĤΩ and the spin model
ĤS, starting from |ψ0〉 and setting θ = 0. Panel (a) cor-
responds to the case of a weak drive Ω/2 . |ε~k| and (b)
to the case of a strong drive Ω/2 � |ε~k|. We see a char-
acteristic crossover from fast single-particle dynamics to a
slow collective interaction-induced decay. To more clearly
identify these regimes and benchmark our spin model map-
ping, we compare the time evolution of the two models in
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FIG. 2. (a-b) Single-particle spectrum E±~k = E~k ±
√
ε2~k + (Ω/2)2

and characteristic contrast time-evolution for (a) a weak drive Ω/2 .
|ε~k| and (b) a strong drive Ω/2� |ε~k|, for the Fermi-Hubbard+drive
model ĤFH + ĤΩ (green) and spin model ĤS (purple). (c) Bench-
mark comparison of the two models’ agreement. Both models are
evolved from a product state |ψ0〉 with θ = 0 to a fixed time
tf = 50/J1, and their contrast C is compared with a root-mean-
square error ∆C = ( 1

tf

´ tf
0
dt| 2

L
(CS − CFH+Ω) |2)1/2, truncated

to min(∆C, 0.2) for clarity, using a small system L = 3 × 2. The
representative evolutions in panels (a-b) are indicated by the circle
and triangle respectively. The purple dashed line indicates the col-
lective regime explored further in Fig. 3.

Fig. 2(c) with a root mean square error of the contrast. The
spin model is valid when either the lattice depth is very shal-
low and single-particle tunneling dominates, or when the drive
is strong enough to flatten the spectrum and make the single
particle dispersion subdominant with respect to the p-wave ex-
change interactions. At this point a many-body gap energeti-
cally suppresses single-particle dynamics and keeps the spins
aligned, allowing for collective behaviour [29, 41].

One-axis twisting. When in the collective, gap-protected
regime, the dominant spin model terms are the Heisenberg
term −U⇑⇓

4L

∑
~k,~k′ ~σ~k · ~σ~k′ and the drive Ω

2

∑
~k σ̂

z
~k

. Both these

terms conserve the total spin S, defined by ~S · ~S |S,M〉 =

S(S + 1) |S,M〉 where ~S = (Ŝx, Ŝy, Ŝz), and |S,M〉 are
collective-spin eigenstates with non-negative S ∈ L

2 ,
L
2 −

1, . . . and projection M ∈ S, S − 1, . . . ,−S (satisfying
Ŝz |S,M〉 = M |S,M〉). A spin-polarize initial state in the
fully-symmetric Dicke manifold S = L/2 will be confined to
that manifold, as transitions to other manifolds induced by the
kinetic terms will be energetically suppressed by the many-
body gap [29, 41, 42]. This permits us to further simplify
the Hamiltonian by projecting it into the Dicke manifold [34],
yielding ĤS ≈ ĤOAT, where

ĤOAT = −(U⇑⇓/L)~S · ~S + χŜzŜz + ΩŜz. (11)

This is a one-axis twisting (OAT) model, which is well stud-
ied for its entanglement generation in the form of spin squeez-
ing [43]. The coefficient χ is

χ =
1

L− 1

2(J0 + J1)2U⇑⇓
Ω2 − U2

⇑⇓
− 1

L
(Vee − 2V⇑⇓) . (12)

The first term comes from the tunneling, and the second from
the nearest-neighbour interactions.
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FIG. 3. (a) Time evolution of 〈Ŝx〉 = C cos(φ) to measure the
density phase shift φ, comparing the Fermi-Hubbard model+drive,
ĤFH + ĤΩ, spin model ĤS and one-axis twisting model ĤOAT, for
system size L = 3× 3 and inclination angle θ = π/4. The parame-
ters used lie along the purple dashed line in the previous Fig. 2(c). (b)
Time-evolution of 〈Ŝx〉 for a larger system of L = 100, using only
the OAT model together with its predicted mean-field behaviour.

The coefficient χ can be measured using our Ramsey pro-
tocol through the phase shift φ. At the mean-field level, un-
der the OAT model the collective spin rotates about the z axis
of the Bloch sphere at a rate 〈Ŝ+〉 = L

2 e
iφ(t), with φ(t) =

2χ〈Ŝz〉t = χL sin(θ)t where 〈Ŝz〉 = L
2 sin(θ) is conserved.

Fig. 3(a) shows sample time-evolutions of 〈Ŝx〉 = Re[〈Ŝ+〉]
with a tilt angle θ = π/4 for both the OAT and the underlying
Fermi-Hubbard and spin models. We see the expected oscil-
lation with period set by 2χ〈Ŝz〉. In Fig. 3(b) we show the
same dynamics for a larger system using only the OAT. The
frequency of the oscillations is not very sensitive to system
size since χ ∼ 1/L and 〈Ŝz〉 ∼ L sin(θ). Since the ampli-
tude of the oscillations is proportional to the contrast, which
decays more slowly with increasing L, better visibility of the
oscillations is possible in larger systems.

Conclusions and Outlook. We have shown a robust and ex-
perimentally realistic protocol for observing long-sought p-
wave physics in optical lattices. Our specific band configu-
ration and laser dressing allows one to isolate the interaction
dynamics via collective enhancement, and see a signal on re-
alistic timescales without the usual challenges of band relax-
ation or losses due to strong Feshbach resonance. The system
can be reduced to a simple one-axis twisting model described
by a single interaction parameter χ, which is straightforward
to measure while capturing the dominant many-body p-wave
effects.

While in this work we focus on simple dynamics probed
via mean-field Ramsey spectroscopy, well controlled spin in-
teractions such as OAT provide avenues to useful many-body
entanglement generation and non-equilibrium quantum sim-
ulation. Further progress can realize more complex and in-
teresting extended Fermi-Hubbard models [44] that are theo-
retically challenging, and yet straightforward to implement in
experiment using extensions of our basic scheme. This system
also allows the exploration of non-collective physics, includ-
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ing pairing, the effects of vacancies, or local quantum corre-
lations, using tools such as quantum gas microscopes already
implemented in several state-of-the-art optical lattice experi-
ments [45–49].
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