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Periodically driven (Floquet) quantum systems have recently been a focus of non-equilibrium
physics by virtue of rich dynamics. Time-periodic systems not only exhibit symmetries that resem-
ble those in spatially-periodic systems, but also display novel behavior that arises from symmetry
breaking. Characterization of such dynamical symmetries is crucial, but often challenging due to
limited driving strength and lack of an experimentally-accessible characterization technique. Here,
we show how to reveal dynamical symmetries, namely parity, rotation, and particle-hole symmetries,
by observing symmetry-induced Floquet selection rules. Notably, we exploit modulated driving to
reach the strong light-matter coupling regime, and we introduce a protocol to experimentally ex-
tract the transition matrix elements between Floquet states from the system coherent evolution.
By using Nitrogen-Vacancy centers in diamond as an experimental testbed, we execute our protocol
to observe symmetry-protected dark states and dark bands, and coherent destruction of tunneling.
Our work shows how one can exploit the quantum control toolkit to study dynamical symmetries
that arise in the topological phases of strongly-driven Floquet systems.

Symmetries play an important role in determining sys-
tem properties: they can lead to intriguing physical phe-
nomena, such as topological phases [1–7], and univer-
sality classes [8]. As an example, different phases of
topological insulators have been arranged into a peri-
odic table [1]. Engineering novel quantum materials with
desired symmetry properties [2–5] can be challenging.
Time-periodic systems provide an alternative solution
with increased versatility, even enabling novel dynami-
cal phases which are absent in static systems [9–14] as
the periodic driving can force the system towards topo-
logical phases [15–17]. These dynamical time-symmetries
are described by Floquet theory [6], in analogy to the de-
scription of spatial symmetries by Bloch theory.

A hallmark of symmetries is the presence of induced
selection rules. Selection rules of transitions between Flo-
quet states have recently been analyzed theoretically [18],
but their experimental observation remains challenging.
First, although strong light-matter coupling is required
to generate high-order Floquet bands, this regime is dif-
ficult to reach in practice due to the finite strength of
the driving fields. Second, observing the selection rules
requires an experimental toolkit that enables an extrac-
tion of transition elements between Floquet states. In
this letter, we tackle both challenges and provide a fea-
sible solution by combining modulated driving with the
observation of the subsequent quantum coherent dynam-
ics, to experimentally detect symmetry-induced selection
rules – and their breaking.

Recent years have witnessed a rapid development of
exquisite quantum control techniques that can enable en-
gineered driving beyond hardware limitations [19]. For
example, concatenated continuous driving (CCD), origi-
nally introduced to counteract driving inhomogeneities in
dynamical decoupling [20–22], has recently been shown

to allow one to reach the strong-coupling regime and un-
cover phenomena such as high-order Mollow triplets [23]
that would be “invisible” in simple driving protocols.
Here we exploit modulated driving, not only to achieve an
effective strong-coupling regime even with limited driving
strength, but also to engineer driving transitions (such
as double-quantum transitions) that would otherwise not
be directly accessible. To extract transition elements be-
tween Floquet states, we further develop a protocol based
on monitoring the coherent state evolution by projective
measurements, which enacts a mapping of the dynamical
dipole matrix elements describing Floquet band transi-
tions to measurable Rabi oscillation amplitudes. We take
advantage of the controllability and long coherence times
achieved in qubit-like systems [24–26], avoiding the need
for dissipation and for traditional “pump-probe” method
in atomic and optical physics. Our method, also appli-
cable to general N-level quantum systems, is thus conve-
nient in many modern quantum platforms.

By exploiting these technical advances, we are able
to experimentally study parity and particle-hole sym-
metries by monitoring the evolution of two levels of a
Nitrogen-Vacancy (NV) center in diamond, under mod-
ulated driving. Our experiments reveal the emergence of
dark states and dark bands and their vanishing once the
corresponding symmetries are broken– as well as coherent
destruction of tunneling [27–30]. We further show that
modulated driving can engineer a rotationally-symmetric
Hamiltonian over the NV center three levels, further in-
dicating that our methods are broadly applicable, and
exemplify an important step toward exploring topologi-
cal phases that arise in Floquet systems [10].

Methods.—Spatially periodic Hamiltonians in solid-
state physics can be analyzed by Bloch theory, which
predicts a periodic structure in reciprocal space. Like-
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wise, the dynamics of a periodically-driven Hamilto-
nian H(t) = H(t + T ) is solved by Floquet theory,
yielding a series of equidistant energy bands (manifolds)
λµ + nωm (n ∈ Z) with Floquet eigenenergies λµ and
frequencies ωm = 2π/T [6, 31]. The time-dependent
Schrödinger equation is indeed equivalent to the eigen-
value problem for a time-independent Floquet matrix
[H(t) − i ∂∂t ] |Φ

µ(t)〉 = λµ |Φµ(t)〉. The Floquet eigen-
states |Φµ(t)〉 have the same period as the Hamiltonian
and can be decomposed into Fourier series as |Φµ(t)〉 =∑+∞
n=−∞ e−inωmt |Φµn〉 [31]. The evolved state is then a

superposition of Floquet eigenstates,

|Ψ(t)〉=
∑
µ

cµe-itλ
µ

|Φµ(t)〉=
∑
µ,n

cµ |Φµn〉 e-it(nωm+λ
µ), (1)

with the coefficients cµ set by initial conditions at t=0.
Consider a time-independent symmetry operator Ŝ

(rotation, parity, particle-hole, etc.) satisfying

Ŝ
[
H(βSt+ tS)− i d

dt

]
Ŝ−1 = αS

[
H(t)− i d

dt

]
, (2)

where {αS , βS} ∈ {1,−1} and tS define the de-
tailed parameters of the symmetry. Then the Floquet

eigenstates also have the same symmetry
∣∣∣Φµ′(t)〉 =

πSµ Ŝ |Φµ(βSt+ tS)〉, with |πµ| = 1, as derived in Ref. [18].
These symmetries can be probed by evaluating the sus-
ceptibility, e.g. in light scattering experiments of a probe
field V , in analogy with “pump-probe” schemes common
in atomic and optical physics. The susceptibility depends
on the dynamical dipole matrix elements associated with
the probing operator V

V (n)
µ,ν =

1

T

∫ T

0

〈Φµ(t)|V |Φν(t)〉e−inωmtdt, (3)

where n denotes the energy band order. When Ŝ†V Ŝ =
αV V , the dynamical symmetry gives rise to symmetry-
protected selection rules, including symmetry-protected

dark states (spDSs) for V
(n)
µ,ν = 0, symmetry-protected

dark bands (spDBs) for vanishing susceptibility of com-
plete bands, and symmetry-induced transparency (siT)
due to the destructive interference between non-zero ele-
ments [18, 32].

Rather than measuring the susceptibility in a pump-
probe experiment [18], here we establish a general ex-
perimental method to directly measure the dipole oper-
ator V . Specifically, we draw a correspondence between
the dipole matrix elements, typical of light scattering ex-
periments, and measurable Rabi oscillation amplitudes
arising in the context of coherent state evolution. We
show that in a coherent system, the amplitudes of the
Fourier components of 〈V (t)〉 display the desired prop-
erties (spDBs, spDSs, siT, etc.) associated with dipole

matrix elements V
(n)
µ,ν .

Bands{i,n} Rabi amplitudes a
(n)
µ,ν Expressed in V

(n)
µ,ν

{0,n} 2
∑
± |c
±|2
∑
k Φ±∗k+n,0jΦ

±
k,0j
|c+|2V (n)

+,+ + |c−|2V (n)
−,−

{-1,n} 2
∑
k c

+c−∗Φ+
k,0j

Φ−∗k+n,0j c+c−∗V
(n)
−,+

{+1,n} 2
∑
k c

+∗c−Φ+∗
k+n,0j

Φ−k,0j c+∗c−V
(n)
+,−

TABLE I. Correspondence between the Rabi amplitudes a
(n)
i

and dipole matrix element V
(n)
µ,ν for a TLS. Note that Φµp,0j =

〈0j
∣∣Φµp〉, and listed cases do not include i = n = 0 [23, 32].

We consider a generic N-level quantum system and in-
troduce the spectral decomposition V =

∑
k Vk |k〉 〈k|,

such that the dipole matrix elements in Eq. (3) can be
calculated as

V (n)
µ,ν = Vk

∑
p

〈
Φµp
∣∣ k〉〈k ∣∣Φνp−n〉 . (4)

From Eqs. (1,4) the expectation value of V (t) is then

〈V 〉 = 〈Ψ(t)|V |Ψ(t)〉 =
∑
µ,ν,n

cµ∗cνei(λ
µ−λν)teinωmtV (n)

µ,ν .

(5)
By considering the Fourier decomposition of 〈V 〉,

〈V 〉 =
∑
µ,ν,n

|A(n)
µ,ν | cos

(
ω(n)
µ,νt+ φ(n)µ,ν

)
, (6)

with frequencies ω
(n)
µ,ν = nωm + (λµ − λν), we find that

the Fourier amplitudes

A(n)
µ,ν = |A(n)

µ,ν | exp
(
iφ(n)µ,ν

)
= 2cµ∗cνV (n)

µ,ν (7)

can be used to extract the dipole matrix elements.
Since in general it might be difficult to directly measure

the operator V , one can rely on system preparation and
readout to separately monitor the overlap of the state
with the eigenstates of V , i.e., P|k〉(t) = | 〈k|Ψ(t)〉|2. We
can then analyze the “weighted Rabi” oscillations

P (t) =
∑
k

Vk
V
P|k〉(t) ≡

〈V 〉
V
, with V =

∑
k

|Vk|. (8)

The weighted Rabi oscillations can then be decom-

posed into frequency components with amplitudes a
(n)
µ,ν =

A
(n)
µ,ν/V, which can be used to investigate symmetry

properties. For example, consider a two-level system
(TLS). The probing operator V is then a combination
of Pauli operators σj with eigenvectors |0j〉 , |1j〉 and
normalized eigenvalues ±1. The weighted Rabi oscil-
lations have the form P (t) = (1/2)

[
P|0j〉(t)− P|1j〉(t)

]
which can be simplified to the typical Rabi oscillations
P (t) + 1/2 = P|0j〉(t), thus clarifying the connection of
our protocol with typical Rabi measurements.

In addition to using control of the readout state to
measure P|k〉, we can also control the initial state to ex-
tract information about selected dipole matrix elements,
by appropriately choosing the coefficients cµ.



3

Lab frame
(CCD)

Rotating frame
(𝐻𝐻𝐼𝐼)

x

z

y

𝜔𝜔0
2

CCD

2nd rotating frame
(mode control)

y

z

x

Ω
2

Initial state

RWA

y

z

x

𝜖𝜖𝑚𝑚
𝜙𝜙

(a)

(b)

𝜖𝜖𝑚𝑚

𝜖𝜖𝑚𝑚

Eigenstate

(c)

𝜖𝜖𝑚𝑚 sin 𝜔𝜔𝑚𝑚𝑡𝑡 + 𝜙𝜙

FIG. 1. (a) Sketch of the CCD technique for a TLS. (b) Rabi
oscillations of |0〉 state under different modulation phases φ
with other parameters (Ω, ωm, εm) = (2π)(3, 3, 0.75) MHz. (c)
The FFT spectra of Rabi oscillations in (b).

When µ = ν, all bands under the same order (n) are
degenerate with frequency nωm (centerbands), and the
observed Rabi component is their coherent interference

with an amplitude a
(n)
0 = 2

∑
µ |cµ|2V

(n)
µ,µ /V. Each band

V
(n)
µ,µ can also be observed individually by setting the ini-

tial condition |cµ| = 1 (this tuning is known as quantum
mode control) [23].

When µ 6= ν, the off-diagonal dipole matrix elements

V
(n)
µ,ν can be mapped to the Rabi amplitudes a

(n)
µ,ν corre-

sponding to the bands nωm + (λµ − λν) (sidebands). At
the degeneracy points (e.g., λµ = λν), different sidebands
interfere with each other, inducing phenomena such as
the siT, or more generally the Landau-Zener-Stückelberg
interferometry [33, 34] and coherence destruction of tun-
neling (CDT) [27–30].

Results.—To demonstrate the power of combining
modulated driving with weighted Rabi measurements we
characterize symmetries arising in two- and three-level
systems, experimentally realized using NV centers.

NV centers in diamond are atom-like solid-state de-
fects with a triplet ground state labelled by |ms = 0,±1〉
with long-coherence time that enables their applications
in quantum information science, including quantum sens-
ing [35–39] and quantum control [15, 22]. To truncate
the 3-level NV center to an effective TLS, we break the
|ms = ±1〉 degeneracy by applying an external magnetic
field with strength 239 Gauss, and selectively use the two
ground states |ms = 0〉 and |ms = −1〉 as logical |0〉 and
|1〉 [22, 23, 40]. We simultaneously address an ensemble
of non-interacting NV centers (∼ 1010 qubits) to increase
the signal-to-noise ratio. An arbitrary waveform genera-
tor (WX1284C) is used to generate the desired waveform
for Hamiltonian engineering.

To engineer strong driving on the NV centers, we rely
on the phase-modulated CCD technique [41], which has

been applied previously to approach the strong-coupling
regime even with limited driving fields [20–22]. As shown
in Fig. 1(a), we apply a phase-modulated waveform

H =
ω0

2
σz + Ω cos

(
ω0t+

2εm
ωm

cos(ωmt+ φ)

)
σx, (9)

where ω0 = (2π)2.20GHz is the qubit frequency, Ω the
microwave driving strength, and εm, ωm, φ are modula-
tion parameters. In the interaction picture defined by

U = exp
[
−i
(
ω0t
2 σz + εm

cos(ωmt+φ)
ωm

σz

)]
, the Hamilto-

nian HI = U†HU − U†i ddtU is

HI =
Ω

2
σx + εm sin(ωmt+ φ)σz. (10)

We thus obtain a time-periodic Hamiltonian HI with
T = 2π/ωm, where Ω and εm behave as the static and
driving fields, respectively, and their relative strength can
be easily tuned to approach the strong coupling regime,
without hardware limitations.

The periodic Hamiltonian HI(t) in Eq. (10) has two
nontrivial Floquet eigenenergies λ± and the transitions
in the complete Floquet energy structure form Mollow

triplets ω
(n)
i = nωm + i(λ+ − λ−). Here i = 0,±1 cor-

respond to the centerbands and sidebands, respectively.
These transitions can be probed either through conven-
tional pump-probe spectroscopy, such as spontaneous
emission [42], or via projective Rabi measurements in
the context of coherent state evolution [23, 43, 44], where
the Rabi amplitudes can be exactly mapped to the dipole
matrix element (Table. I). Under a weak-coupling regime,
the Floquet eigenenergies and eigenstates can also be an-
alytically obtained in a second rotating frame as shown in
Fig. 1(a). Figures 1(b,c) show instances of the Rabi mea-
surement in time and frequency domains where different
Mollow bands are separately measured under different
initial conditions.

In the following, we experimentally evaluate the dy-
namical symmetries of the qubit Hamiltonian HI , and
study the associated spDSs, spDBs, and siT through the
intensities of the Floquet state transitions, which are ex-
tracted from Rabi oscillations.

The first dynamical symmetry is a 2-fold rotation
or parity symmetry defined by R̂ = σx, which satis-
fies R̂HI(t + T/2)R̂† = HI(t). The selection rules are

then given by V
(n)
µ,ν ∝

[
1 + eiπ(mµ−mν)−iπnα

(R)
V

]
, where

µ ∈ {+,−}, mµ ∈ {0, 1}, and the constant α
(R)
V satisfies

R̂†V R̂ = α
(R)
V V . For observation operators that anti-

commute with the symmetry operator (V = σy, σz), the
Mollow centerbands with even orders and sidebands with
odd orders vanish. The opposite holds for the commuting
observation operator (V = σx). As a result, a series of
spDSs and spDBs are predicted by the parity symmetry.

To experimentally observe these selection rules, we
measure the Rabi oscillations under different modula-
tion strengths 2εm/ωm and plot their Fourier spectrum.
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FIG. 2. Experimental observation of spDSs, spDBs, and siT. (a-d) Observation of spDSs, spDBs under resonant
modulation ωm = Ω = (2π)3 MHz. The initial state is |0〉, and we measure generalized Rabi oscillations P|0〉(t) or P|+〉(t)
under different modulation strength 2εm/ωm, from 0 to 4µs with 401 sampling points (see Fig. 1.) The plots are the Fourier
spectrum of the Rabi measurements for specified modulation phases φ and probe operator V . In (a) the odd sidebands vanish
(spDSs, as labeled on the plot). Similarly, we observe vanishing even (b) and odd (d) centerbands. The even sidebands vanish
in (c), but they re-emerge in (e) (arrows and dotted lines), due to symmetry-breaking induced by adding a perturbation,
H′ = 0.2εm sin(2ωmt)σz to the periodic Hamiltonian. (f) Observations of siT, spDSs, spDBs and accidental dark states (aDS)
under off-resonant modulation ωm, 10Ω = (2π)15 MHz (labels indicate the revealing features). Rabi oscillations P|+〉(t) of an
initial state |0〉 are measured from 0 to 2µs with 401 sampling points.

In Figs. 2(a,b), the 1st, 3rd, 5th Mollow sidebands and
2nd, 4th Mollow centerbands have vanishing intensities, as
indicated by labels where non-zero transition amplitudes
would otherwise have been expected. In Figs. 2(c,d),
the opposite behavior is observed. These results val-
idate the theoretical analysis. Note that some unex-
pected bands (e.g., odd order centerbands in the range of
2.5 < 2εm/ωm < 5 in Figs. 2(c,d)) are still visible, albeit
with small intensities. We attribute their occurance to
experimental imperfections such as inhomogeneities that
introduce a detuning term in the HamiltonianHI [22, 32].

The second symmetry is a particle-hole symme-
try defined by P̂1 = σz, which satisfies P̂1HI(t +

T/2)P̂1
†

= −HI(t). The selection rules are then given by

V
(n)
µ,ν = α

(P1)
V eiπnV

(n)
ν′,µ′ , where α

(P1)
V satisfies P̂1

†
V P̂1 =

α
(P1)
V V ∗ [45]. For sidebands, the selection rules are con-

sistent with the parity symmetry predictions as observed
in Figs. 2(a-d). For centerbands, destructive interference

is induced when α
(P1)
V eiπn = −1 and the initial state

is an equal superposition of two eigenstates such that

V
(n)
+,+ + V

(n)
−,− = 0. This property gives rise to the vanish-

ing centerbands in the quantum mode control as shown
in Fig. 1(c) and Ref. [23]. For a modulation phase φ = 0,
the Floquet eigenstates are in the x−y plane of the Bloch
sphere such that |c±|2 = 1/2 for the initial state |0〉, and

the destructive interference transpires in the odd (even)
centerband when V = σz (V = σx). Combining with
the parity symmetry that makes the opposite orders of
centerband vanish, all centerbands vanish under φ = 0
as observed in Figs. 2(a,c). Instead, under the modula-
tion phase φ = π/2, the Floquet eigenstates are in the
x − z plane and the condition |c±|2 = 1/2 is not always
satisfied. The symmetry-allowed centerbands appear as
shown in Figs. 2(b,d) and vanish at 2εm/ωm ≈ 4 where
|c±|2 = 1/2 is accidentally satisfied.

To further demonstrate the symmetry-protected se-
lection rules, we break both the parity and particle-
hole symmetries by introducing an additional term
0.2εm sin(2ωmt)σz in the Hamiltonian HI , and mea-
sure the Rabi spectrum in Fig. 2(e), where we see the
emergence of all sidebands (odd allowed sidebands as in
Fig. 2(c) and symmetry-breaking even sidebands.)

Another type of destructive interference, siT, is ob-
servable when sidebands interfere destructively at de-
generacy points, which requires two discrete particle-
hole symmetries in the system. In the strong coupling
and far off-resonance regime (Ω � εm, ωm), an addi-
tional particle-hole symmetry P̂2 = I arises such that
IHI(t+ T/2)I = −HI(t), which results in a relation be-

tween two sidebands V
(n)
+,− = α

(P∗1 )
V eiπnV

(n)
−,+ with α

(P∗1 )
V

given by α
(P∗1 )
V V = P̂1

†∗
V P̂1

∗
. Under the initial condition
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c+c−∗ = c+∗c−, the siT happens when α
(P∗1 )
V eiπn = −1,

and the qubit evolution is suppressed in the direction
of the driving field (the CDT effect, which has been ob-
served both numerically [29] and experimentally [30].) In
Fig. 2(f), we engineer a strong-coupling Hamiltonian and
measure the Rabi spectrum. The siT is observed when
two sidebands are degenerate at 2εm/ωm = 2.4048 (see
supplement for a constructive interference [32]). In addi-
tion, spDSs are also observed as in Fig. 2(c).

In order to demonstrate that our technique can be ex-
tended beyond TLSs, we show how to use the 3 levels as-
sociated with the spin-1 of NV centers to explore a 3-fold
rotation symmetry. We use modulated driving to both
reach the strong driving regime and to engineer the dou-
ble quantum (DQ) transition (|mS = −1〉 ↔ |mS = +1〉)
in the rotating frame. Indeed, the DQ transition cannot
be directly generated by microwave driving (although it
could be achieved by mechanical oscillations [46, 47].)
Here we overcome this limitation by simultaneous apply-
ing two modulated driving on the single quantum transi-
tions (|mS = 0〉 ↔ |mS = ±1〉), leading to the rotating-
frame Hamiltonian [32]

H3
I(t) = J [cos(ωmt) |−1〉〈+1|+ cos(ωmt+ 2π/3) |+1〉〈0|

+ cos(ωmt+ 4π/3) |−1〉〈0|+ h.c.] (11)

with a 3-fold rotation symmetry R̂H3
I(t+T/3)R̂† = HI(t)

where the rotation R̂ = |−1〉〈0| + |0〉〈+1| + |+1〉〈−1|.
We find symmetry-protected selections rules by evalu-
ating the Floquet eigenstates and the observation op-
erator [32]. In Fig. 3, we simulate the Fourier spec-
trum of the weighted Rabi signal for the probe operator
V = |0〉 〈+1| + |0〉 〈−1| + |+1〉 〈−1| + h.c., which clearly
displays the expected spDSs, protected by the 3-fold ro-
tation symmetry.

Discussions and conclusion.—By combining modu-
lated driving and detection via Rabi oscillations, we
are able to experimentally observe selection rules pro-
tected by dynamical symmetries in a periodically driven
solid-state system. The modulated driving scheme is
instrumental to reach the strong light-matter coupling
regime used to reveal high-order Floquet bands; it also
introduces additional flexibility in quantum control, en-
abling one to engineer transitions forbidden in the un-
modulated frame and reveal details of the dynamics (e.g.,
Mollow triplets) via mode control. Direct measurement
of the dipolar transition operator V , or indirectly via
weighted Rabi oscillations is a more efficient strategy
than previous “pump-probe” methods in the highly co-
herent quantum systems that can now be routinely en-
gineer. In virtue of these techniques, we characterized
the parity and particle-hole symmetries in the time do-
main as well as the CDT effect in the engineered system.
In the favor of quantum control, the dynamical symme-
tries studied here have applications in inducing selections
rules for higher harmonic generation and driving quan-

0 1 2 3 4 5 6
2J/ m

0

1

2

3

4

5

6

f/
m

0

0.05

0.1

0.15

0.2

spDS in the 2nd manifold

1,2
(2)

1,3
(2)

3,1
(2)

3,2
(2)

FIG. 3. Simulation of spDSs and spDBs in a 3-level sys-
tem (vanishing intensities marked by the dashed lines). The
initial state is (1/

√
3)(|e1〉+|e2〉+|e3〉) where |e1,2,3〉 are eigen-

states of V , such that evolution mode involves all bands. The
weighted Rabi P (t) = (1/4)[2P|e1〉(t) − P|e2〉(t) − P|e3〉(t)] is
simulated from 0 to 40µs with 5001 sampling points and the
modulation frequency is 0.3 MHz.

tum synchronization [48–51].

While we showed simulations and experiments for two-
and three-level systems, the experimental techniques we
introduced can be generalized to many-body (N-level)
systems in a broad set of platforms beyond spins, such
as cold atoms and superconducting circuits.

When combined with spatial symmetries, dynamical
symmetries characterized in this work can lead to novel
Floquet topological phases such as Floquet topological
insulators and superconductors [10]. The breaking of
these dynamical symmetries might lead to intriguing dy-
namical phase transitions. Furthermore, by engineering
of the dissipation such as tuning the decoherence rate of
the system, the work here paves the way towards further
exploration of non-Hermitian Floquet Hamiltonians.
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J. Phys. 22, 013026 (2020).

[49] O. E. Alon, Phys. Rev. A 66, 013414 (2002).
[50] O. E. Alon, V. Averbukh, and N. Moiseyev, Phys. Rev.

Lett. 85, 5218 (2000).
[51] O. E. Alon, V. Averbukh, and N. Moiseyev, Phys. Rev.

Lett. 80, 3743 (1998).
[52] N. Khaneja, A. Dubey, and H. S. Atreya, J. Mag. Res.

265, 117 (2016).
[53] A. Saiko, R. Fedaruk, and S. Markevich, J. Mag. Res.

290, 60 (2018).
[54] I. Cohen, N. Aharon, and A. Retzker, Fortschr. Phys.

65, 1600071 (2017).
[55] K. J. Layton, B. Tahayori, I. M. Mareels, P. M. Farrell,

and L. A. Johnston, J. Mag. Res. 242, 136 (2014).
[56] A. P. Saiko, R. Fedaruk, and S. A. Markevich, J. Mag.

Res. 259, 47 (2015).
[57] J. Teissier, A. Barfuss, and P. Maletinsky, J. Opt. 19,

044003 (2017).
[58] S. Bertaina, H. Vezin, H. De Raedt, and I. Chiorescu,

Sci. Rep. 10, 21643 (2020).
[59] Q.-Y. Cao, P.-C. Yang, M.-S. Gong, M. Yu, A. Ret-

zker, M. Plenio, C. Müller, N. Tomek, B. Naydenov,

http://dx.doi.org/ 10.1038/s41586-019-0975-z
http://dx.doi.org/10.1103/PhysRev.138.B979
http://dx.doi.org/10.1103/PRXQuantum.2.020320
http://dx.doi.org/10.1103/RevModPhys.76.663
http://dx.doi.org/10.1103/RevModPhys.89.011004
http://dx.doi.org/10.1103/PhysRevB.96.155118
http://dx.doi.org/10.1103/PhysRevLett.123.016806
http://dx.doi.org/10.1103/PhysRevLett.123.016806
https://doi.org/10.1038/s41567-020-0949-y
http://dx.doi.org/ 10.1038/s41567-020-01120-z
http://dx.doi.org/ 10.1103/PhysRevB.103.054305
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/ 10.1038/nature13915
http://dx.doi.org/ 10.1038/nature13915
https://link.aps.org/doi/10.1103/PhysRevLett.114.125301
http://dx.doi.org/10.1103/PhysRevLett.126.090601
http://dx.doi.org/10.1103/PhysRevLett.126.090601
https://www.pnas.org/content/114/9/2149
https://www.pnas.org/content/114/9/2149
http://dx.doi.org/ 10.1088/1367-2630/14/11/113023
http://dx.doi.org/ 10.1103/PhysRevA.96.013850
http://dx.doi.org/10.1088/1367-2630/abd2e5
http://dx.doi.org/10.1088/1367-2630/abd2e5
http://dx.doi.org/10.1103/PhysRevA.103.022415
http://dx.doi.org/10.1103/PhysRevA.103.022415
http://dx.doi.org/ 10.1103/PhysRevX.8.031025
http://dx.doi.org/ 10.1103/PhysRevX.8.031025
http://dx.doi.org/ 10.1038/nature14025
http://dx.doi.org/ 10.1038/s41586-021-03582-4
http://dx.doi.org/ 10.1103/PhysRevLett.67.516
http://dx.doi.org/ 10.1007/BF01053965
http://dx.doi.org/ 10.1007/BF01053965
http://dx.doi.org/10.1103/PhysRevA.86.023831
http://dx.doi.org/ 10.1103/PhysRevLett.112.010503
http://dx.doi.org/ 10.1103/PhysRevLett.112.010503
http://dx.doi.org/10.1016/j.pnmrs.2010.06.002
http://dx.doi.org/10.1016/j.pnmrs.2010.06.002
http://dx.doi.org/10.1016/j.physrep.2010.03.002
http://dx.doi.org/10.1016/j.physrep.2010.03.002
http://dx.doi.org/10.1103/PhysRevX.1.011003
http://dx.doi.org/10.1103/RevModPhys.89.035002
http://dx.doi.org/10.1103/RevModPhys.89.035002
http://dx.doi.org/ 10.1146/annurev-physchem-040513-103659
http://dx.doi.org/ 10.1021/acs.nanolett.9b02960
http://dx.doi.org/ 10.1021/acs.nanolett.9b02960
http://dx.doi.org/10.1126/science.aam5532
http://dx.doi.org/10.1126/science.aam5532
http://dx.doi.org/ 10.1021/acs.nanolett.1c01165
http://dx.doi.org/ 10.1021/acs.nanolett.1c01165
http://dx.doi.org/ 10.1103/PhysRevApplied.11.054010
http://dx.doi.org/ 10.1103/PhysRevApplied.11.054010
http://dx.doi.org/10.1103/PhysRev.188.1969
http://dx.doi.org/10.1103/PhysRevLett.112.010502
http://dx.doi.org/10.1103/PhysRevLett.112.010502
http://dx.doi.org/10.1038/ncomms9603
http://dx.doi.org/ 10.1364/OPTICA.2.000233
http://dx.doi.org/ 10.1364/OPTICA.2.000233
http://dx.doi.org/10.1103/PhysRevLett.111.227602
http://dx.doi.org/10.1103/PhysRevLett.111.227602
http://dx.doi.org/10.1088/1367-2630/ab60f5
http://dx.doi.org/10.1088/1367-2630/ab60f5
http://dx.doi.org/10.1103/PhysRevA.66.013414
http://dx.doi.org/10.1103/PhysRevLett.85.5218
http://dx.doi.org/10.1103/PhysRevLett.85.5218
http://dx.doi.org/10.1103/PhysRevLett.80.3743
http://dx.doi.org/10.1103/PhysRevLett.80.3743
http://dx.doi.org/10.1016/j.jmr.2016.02.006
http://dx.doi.org/10.1016/j.jmr.2016.02.006
http://dx.doi.org/10.1016/j.jmr.2018.02.003
http://dx.doi.org/10.1016/j.jmr.2018.02.003
http://dx.doi.org/10.1002/prop.201600071
http://dx.doi.org/10.1002/prop.201600071
http://dx.doi.org/ 10.1016/j.jmr.2014.02.014
http://dx.doi.org/10.1016/j.jmr.2015.07.013
http://dx.doi.org/10.1016/j.jmr.2015.07.013
http://dx.doi.org/10.1088/2040-8986/aa5f62
http://dx.doi.org/10.1088/2040-8986/aa5f62
http://dx.doi.org/10.1038/s41598-020-77047-5


7

L. McGuinness, F. Jelezko, and J.-M. Cai, Phys. Rev.
Appl. 13, 024021 (2020).

http://dx.doi.org/ 10.1103/PhysRevApplied.13.024021
http://dx.doi.org/ 10.1103/PhysRevApplied.13.024021

	Observation of symmetry-protected selection rules in periodically driven quantum systems
	Abstract
	Acknowledgments
	References


