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We demonstrate that the prethermal regime of periodically-driven (Floquet), classical many-body
systems can host non-equilibrium phases of matter. In particular, we show that there exists an
effective Hamiltonian, which captures the dynamics of ensembles of classical trajectories, despite the
breakdown of this description at the single trajectory level. In addition, we prove that the effective
Hamiltonian can host emergent symmetries protected by the discrete time-translation symmetry
of the drive. The spontaneous breaking of such an emergent symmetry leads to a sub-harmonic
response, characteristic of time crystalline order, that survives to exponentially late times in the
frequency of the drive. To this end, we numerically demonstrate the existence of classical prethermal
time crystals in systems with different dimensionalities and ranges of interaction. Extensions to
higher order and fractional time crystals are also discussed.

Many-body Floquet systems can host a variety of in-
trinsically non-equilibrium phases of matter [1–8]. One
of the central challenges in stabilizing such phases is the
presence of Floquet heating—a generic interacting sys-
tem will absorb energy from the driving field until it ap-
proaches a featureless, infinite temperature state [9–13].
In quantum systems, strong disorder can induce many-
body localization (MBL) which prevents Floquet heating
and enables the system to remain in a non-equilibrium
steady state until arbitrarily late times [13–16]. Since
localization relies upon the discreteness of energy levels,
this specific approach is intrinsically quantum mechani-
cal and naturally begs the following question: To what
extent do Floquet non-equilibrium phases require either
quantum mechanics or disorder [17–25]?

An elegant, but partial, answer to this question is pro-
vided within the framework of Floquet prethermalization
in disorder-free systems [26–39]. When the driving fre-
quency, ω, is larger than the system’s local energy scale,
Jlocal, Floquet heating is suppressed until exponentially
late times, τheat ∼ eω/Jlocal . In particular, directly ab-
sorbing energy from the drive is highly off-resonant, and
heating only occurs via higher order processes that in-
volve multiple, correlated local rearrangements. This
simple physical intuition holds for both quantum and
classical systems.

In the quantum setting, Floquet prethermalization has
an additional feature: There exists an effective Hamilto-
nian that accurately captures the dynamics of the system
until τheat. Whenever the periodic drive induces an emer-
gent symmetry in this effective Hamiltonian, novel non-
equilibrium prethermal phases of matter, such as discrete
time crystals or Floquet symmetry-protected topologi-
cal phases, can emerge [1–8, 39–47]. Whether analogous
phases are also possible in classical many-body systems is
significantly more subtle; in particular, although classical
prethermalization features slow Floquet heating, there
is no effective Hamiltonian that accurately captures the
prethermal dynamics [36].
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FIG. 1. (a) Schematic depicting trajectories in a classical
phase space. The exact Floquet trajectory (blue) diverges
from the approximate trajectory under the effective Hamil-
tonian (green). However, the exact evolution of a finite re-
gion in phase space is well-captured by the effective Hamil-
tonian. (b) The dynamics of the magnetization difference,
δM(t), and the energy density, D/N , for a single initial state
with N = 104. Solid lines depict approximate evolution under
D for all times. Dashed lines indicate approximate evolution
under D for short times (t ≤ 1/J), followed by exact Floquet
evolution. Agreement between solid and dashed curves high-
lights the role of classical chaos in the growth of errors. While
errors in local observables [i.e. δM(t)] accumulate rapidly, the
energy density remains conserved throughout the dynamics.
(c) The prethermal dynamics of an ensemble of initial states
quickly converge with increasing frequency. Before Floquet
heating brings the system to infinite temperature, the magne-
tization approaches the value associated with the correspond-
ing prethermal ensemble of D (blue dashed line, computed
via Monte Carlo [48]).

In this Letter, we show that the lack of an effec-
tive Hamiltonian does not preclude the existence of
novel, non-equilibrium phases in classical Floquet sys-
tems; we highlight this by explicitly constructing a classi-
cal prethermal discrete time crystal (CPDTC). Our main
results are three fold. First, we demonstrate that the in-
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ability of an effective Hamiltonian to generate the Flo-
quet dynamics is a direct consequence of classical chaos—
small errors at early times lead to exponentially diverg-
ing single trajectories. This connection to chaos suggests
that one should forgo the focus on individual trajectories
and rather ask whether there is an effective Hamiltonian
that captures the prethermal dynamics of an ensemble of
trajectories (Fig. 1). We show that this is indeed the case.
Second, we prove that, much like the quantum case, the
effective Hamiltonian can host an emergent symmetry
which is protected by the discrete time translation sym-
metry of the periodic drive. Finally, we propose, analyze
and numerically simulate a variety of different classical
prethermal time crystals in one and two dimensions.

Prethermalization in classical dynamics—Consider a
classical Floquet Hamiltonian, HF (t) = HF (t+ T ), with
period T = 2π/ω. For ω � Jlocal, one can construct a
perturbative expansion of the Floquet dynamics in pow-
ers of Jlocal/ω [49]. In general, this Floquet-Magnus ex-
pansion diverges, reflecting the many-body system’s late-
time approach to infinite temperature (via energy absorp-
tion from the drive). However, when truncated at an
appropriate order, n∗ ∼ ω/Jlocal, the expansion defines
a static Hamiltonian, D, which remains quasi-conserved
for exponentially long times (under the full Floquet dy-
namics) [27, 29, 36]:

1

N
|D(t = mT )−D(t = 0)| < mJlocal ·O(e−ω/Jlocal), (1)

where N is the system size and m ∈ N is the number
of Floquet cycles. To this end, Eqn. 1 precisely formal-
izes the existence of an intermediate, prethermal regime.
In particular, for times t < τheat ∼ O(eω/Jlocal), the en-
ergy density of the system (measured with respect to D),
remains constant up to ∼ O(Jlocal).

Nevertheless, the question remains: Is D also the ef-
fective prethermal Hamiltonian, which generates the dy-
namics before τheat? In the quantum setting, the answer
is yes [31, 32, 41, 50]. However, in classical systems, D is
only proven to faithfully reproduce the Floquet evolution
over a single driving period [36]:

|O(T )−O′(T )| ≤ O(e−ω/Jlocal). (2)

Here, O is a generic local observable and O(T ) repre-
sents its evolution under the full Floquet Hamiltonian
[i.e. HF (t)], while O′(T ) represents its evolution under
D.

Naively, one might expect the single period errors in
Eqn. 2 to accumulate additively as one evolves to later
times. However, this does not account for compounding
effects, where early-time errors propagate through the
many-body system and induce additional deviations. In
the quantum case, the existence of Lieb-Robinson bounds
constrains the propagation of errors and enables one to
prove that deviations grow algebraically in the number

of Floquet cycles: |O(mT )−O′(mT )| ≤ mpO(e−ω/Jlocal);
this immediately indicates that D is indeed the effective
prethermal Hamiltonian [30–33, 41]. In contrast, classical
systems exhibit no such bounds—chaos causes the expo-
nential divergence of nearby trajectories, suggesting that
errors can in principle accumulate exponentially quickly.

To sharpen this intuition, we numerically explore the
Floquet dynamics of a generic classical spin model [51]:

HF (t) =


∑
i,j J

i,j
z Szi S

z
j +

∑
i hzS

z
i 0 ≤ t < T

3∑
i hyS

y
i

T
3 ≤ t <

2T
3∑

i,j J
i,j
x Sxi S

x
j +

∑
i hxS

x
i

2T
3 ≤ t < T

(3)

where ~Si is a three-dimensional unit vector. Spin dy-
namics are generated by Hamilton’s equations of mo-
tion Ṡµi = {Sµi , H(t)}, using the Poisson bracket relation
{Sµi , Sνj } = δijε

µνρSρi . The classical dynamics of an ob-

servable O, are then given by O(t) = T e
∫ t
0
L(t′) dt′ [O],

where the superoperator L[·] is defined by L[·] = {·, HF }
[52]. At lowest order in the Floquet-Magnus expansion,
the static Hamiltonian is given by:

D =
1

3

∑
i,j
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z
j + J i,jx Sxi S

x
j + ~h · ~Si

+O
(

1

ω

)
.

(4)
To investigate the accumulation of errors, we compare

the dynamics of local observables evolving under HF (t)
and D in a one dimensional spin chain (N = 104) with
nearest neighbor interactions [53]. Deviations from the
exact Floquet dynamics are measured by computing the
magnetization difference between the two trajectories:
δM(t) = 1− 1

N

∑
i
~Si(t) · ~S′i(t). As depicted in Fig. 1(b)

[top panel], δM(t) quickly increases to a plateau value
consistent with the spins in the two trajectories being
completely uncorrelated; thus, D cannot be thought of
as the effective prethermal Hamiltonian for HF (t). By
contrast, the energy density remains conserved through-
out the time evolution [bottom panel, Fig. 1(b)], demon-
strating slow Floquet heating.

In order to pinpoint the role of chaos in the dynamics
of δM(t), we consider a slightly modified trajectory; in
particular, starting with the same initial state, we first
evolve under D for a few Floquet cycles and then un-
der HF (t) for all subsequent times. Comparing to the
exact Floquet dynamics (i.e. evolution under HF (t) for
all times), this protocol only differs at very early times.
Indeed, beyond an initial, exponentially-small difference
in the trajectories [arising from Eqn. 2], any additional
deviation solely arises from the chaotic compounding of
errors. As depicted in Fig. 1(b) [dashed curves], the mag-
netization difference between the modified trajectory and
that of the exact Floquet dynamics, tracks δM(t) for all
times. Crucially, this agreement demonstrates that chaos
dominates the growth of δM(t) and prevents D from be-
ing the effective prethermal Hamiltonian.
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Prethermal dynamics of trajectory ensembles—While
the evolution of a single trajectory cannot be captured by
an effective Hamiltonian, we conjecture that D captures
the dynamics of ensembles of trajectories [Fig. 1(a)]; by
considering an initial state composed of a region of phase
space (as opposed to a single point), the details of indi-
vidual chaotic trajectories become “averaged out”. This
conjecture is made up of two separate components: (i)
during the prethermal plateau, the system approaches
the canonical ensemble of D, and (ii) D accurately cap-
tures the dynamics of observables as the system evolves
from local to global equilibrium. This last component
highlights the two stage approach to the prethermal
canonical ensemble. First, observables on nearby sites
approach the same value and the system locally equili-
brates (this occurs at time τlocal). Afterwards, the system
becomes globally homogeneous as it approaches global
equilibrium at time τglobal.

To investigate these components, we implement the fol-
lowing numerical experiment: Starting from an N = 100
spin chain, we construct an ensemble of initial states with
a domain wall in the energy density at the center of the
chain and study the Floquet dynamics of the local mag-
netization Szi and energy density D/N [Fig. 1(c)] [54].

Focusing on the late time regime (but before Floquet
heating), we find that the magnetization on opposite
sides of the domain wall approaches the same prether-
mal plateau [Fig. 1(c)]; this precisely corresponds to the
global equilibration of our spin chain. Crucially, the
value of this plateau quantitatively agrees with the mag-
netization of the corresponding canonical ensemble of D
calculated at the same energy density via Monte Carlo
[Fig. 1(c)] [48]. Notably, we find agreement not only
with the average value, but also with the entire distribu-
tion [48], thus verifying the first component of the con-
jecture.

To investigate the second component, we time evolve
the same ensemble of initial states for different frequen-
cies of the drive [55]. So long as τheat � τglobal, we
find that the dynamics of local observables rapidly con-
verge as a function of increasing frequency [Fig. 1(c)].
Since the ω →∞ limit of HF (t) precisely corresponds to
Trotterized evolution under D, the convergence observed
in Fig. 1(c) indicates that D is indeed the prethermal
Hamiltonian for trajectory ensembles.

Prethermal dynamics with symmetry breaking—
Throughout our previous discussions, energy conserva-
tion is the only constraint that restricts the many-
body dynamics within phase space. However, symmetry-
breaking can lead to additional constraints; for example,
if D exhibits a discrete symmetry and this symmetry is
broken at low energy densities, then phase space is natu-
rally split into multiple disjoint regions corresponding to
different values of the order parameter. As a result, the
many-body dynamics under D are restricted to one such
region.
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FIG. 2. (a) Dynamics of a classical prethermal time crys-
tal in a one-dimensional long-range interacting spin chain.
At τglobal, different sites exhibit the same magnetization, in-
dicating equilibration. For an exponentially long intermedi-
ate time window, τglobal < t < τmelt, the system oscillates
between positive and negative magnetization values for even
(solid line) and odd periods (dotted line). This subharmonic
response remains stable until the energy density crosses εc
and the CPDTC melts. (b,c) Prethermal dynamics of the
spin chain for different frequencies ω with either long-range
[b] or short-range [c] interactions. For long-range interac-
tions, the lifetime of the CPDTC is exponentially enhanced
by increasing the frequency of the drive. For short-range in-
teractions, transient period doubling decays at a frequency
independent timescale, which is significantly shorter than the
Floquet heating time (bottom panel).

Floquet evolution complicates this story. In particu-
lar, one might worry that the micro-motion of the Flo-
quet dynamics could move the system between different
symmetry-broken regions of phase space. If this were the
case, prethermal symmetry-breaking phases would not be
stable. Fortunately, the ability of D to approximate the
dynamics over a single period (i.e. Eqn. 2), is sufficient to
constrain the Floquet evolution to a specific symmetry-
broken region.

To see this, consider, for example, a system where D
exhibits a discrete Z2 symmetry and hosts a ferromag-
netic phase whose order parameter is given by the av-
erage magnetization. Starting from a symmetry-broken
state with non-zero magnetization, Szavg, energy conser-
vation immediately guarantees that after a single period
of Floquet evolution, the magnetization is either Szavg
or −Szavg. Moreover, Eqn. 2 further guarantees that
the time evolved magnetization density can change, at
most, by an exponentially small value in frequency. In
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combination, this ensures that for sufficiently large driv-
ing frequencies, the magnetization cannot change sign
(i.e. move to the other symmetry-broken region) and the
prethermal ferromagnet remains stable.

Crucially, symmetries of D can have two different ori-
gins: they can be directly inherited from HF (t), or they
can emerge as a consequence of the time translation sym-
metry of the drive [40, 41]. In the latter case, this can
give rise to intrinsically non-equilibrium phases of matter.
To date, the study of such non-equilibrium prethermal
phases has been restricted to quantum systems [39, 56–
63], where one can explicitly prove their stability [40, 41].
Here, we generalize and extend this analysis to classical
many-body spin systems, by taking the large-S limit of
the quantum dynamics [36, 48].

Consider a Floquet Hamiltonian which is the sum of
two terms, HF (t) = HX(t) + H0(t). During a sin-
gle driving period, HX(t) generates a global rotation

X[·] = T e
∫ T
0
{·,HX(t)}dt, such that the system returns to

itself after M periods (i.e. XM [·] = I[·], where I is the
identity map). H0(t) captures the remaining interactions
in the system [52]. For sufficiently large frequencies, the
single period dynamics (in a slightly rotated frame) are
accurately captured by X ◦ eT{·,D}, where D is obtained
via a Magnus expansion in the toggling frame [48]; this
expansion guarantees that the dynamics generated by D
commute with X and thus, X generates a discrete ZM
symmetry of the effective Hamiltonian [40, 41].

The resulting prethermal Floquet dynamics are most
transparent when analyzed at stroboscopic times t = mT
in the toggling frame of the X rotations, wherein an ob-
servable O becomes Õ(mT ) = X−m[O(mT )]. In this

context, the dynamics of Õ are simply generated by D,
i.e. Õ(mT ) = emT{·,D}[Õ(t = 0)]. Thus, if the emergent
ZM symmetry of D becomes spontaneously broken, the
system will equilibrate to a thermal ensemble of D with
a non-zero order parameter.

In the lab frame, the dynamics of O are richer: The
global rotation changes the order parameter every pe-
riod, only returning to its original value after M periods.
As a result, the system exhibits a sub-harmonic response
at frequencies 1/(MT ) [40, 41]. This is precisely the def-
inition of a classical prethermal discrete time crystal.

Building a CPDTC—Let us now consider the Floquet
Hamiltonian in Eqn. 3 with an additional global π rota-
tion around the x̂-axis at the end of each driving period
[64]. At leading order, X corresponds to the global π
rotation, while D is given by the time averaged terms of
HF (t) that remain invariant under X (i.e. Eqn. 4 with
hy = hz = 0). To this end, we will utilize the energy den-
sity, D/N , and the average magnetization, Szavg, to diag-
nose the prethermal dynamics and the CPDTC phase.

Let us begin by considering a one-dimensional system
with long-range interactions J i,jz = Jz|i − j|−α; when
α ≤ 2, D exhibits ferromagnetic order below a critical
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FIG. 3. Prethermal dynamics of a nearest-neighbor inter-
acting classical spin model on the square lattice. (a) For a
low-energy-density initial state, the system exhibits robust
period doubling until exponentially late times. (b) For a high-
energy-density initial state, the magnetization decays to zero
rapidly, well before the Floquet heating time. This highlights
the presence of a critical energy density and the importance
of symmetry-breaking for the existence of a CPDTC.

temperature (or, equivalently, a critical energy density
εc which can be determined via Monte Carlo calcula-
tions) [65, 66]. Taking α = 1.8 and N = 320, we compute
the Floquet dynamics starting from an ensemble with en-
ergy below εc [Fig. 2(a)] [67]. After the initial equilibra-
tion to the prethermal state (t & τglobal), the magnetiza-
tion becomes homogeneous across the entire chain, sig-
naling equilibration with respect to D [68]. Crucially, as
depicted in Fig. 2(a), throughout this prethermal regime,
the magnetization exhibits robust period doubling, tak-
ing on positive values at even periods and negative values
at odd periods. This behavior remains stable until the
CPDTC eventually “melts” at an exponentially late time
τmelt when the energy density crosses the critical value
εc of the ferromagnetic transition of D [Fig. 2(a)].

A few remarks are in order. First, the lifetime of the
CPDTC is controlled by the Floquet heating rate and
thus the frequency of the drive. Indeed, by increasing ω,
the lifetime of the CPDTC is exponentially enhanced,
while the global equilibration time remains constant
[Fig. 2(b)] [48]. Second, we emphasize that the observed
CPDTC is fundamentally distinct from period-doubling
bifurcations in classical dynamical maps (e.g. the logistic
map) or the subharmonic response of a parametrically-
driven non-linear oscillator [21, 69–85]. In particular,
it occurs in an isolated many-body classical system with
conservative dynamics.

Let us conclude by highlighting the central role of spon-
taneous symmetry breaking in observing the CPDTC.
We do so by controlling the range of interactions, the
dimensionality, and the energy density of the initial en-
semble. To start, we consider the short-ranged version
(i.e. nearest neighbor interactions) of the 1D classical spin
chain discussed above. Without long-range interactions,
ferromagnetic order is unstable at any finite tempera-
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ture [86], and this immediately precludes the existence
of a CPDTC. This is indeed borne out by the numerics
[Fig. 2(c)]: We observe a fast, frequency-independent de-
cay of the magnetization to its infinite-temperature value.

While nearest-neighbor interactions cannot stabilize
ferromagnetism in 1D, they do so in higher dimension. To
this end, we explore the same Floquet model (i.e. Eqn. 3)
on a two dimensional square lattice. For sufficiently low
energy densities, the system equilibrates to a CPDTC
phase [Fig. 3(a)], while above the critical temperature,
the system equilibrates to a trivial phase [Fig. 3(b)]. We
hasten to emphasize that our framework is not restricted
to the period-doubled (M = 2) CPDTC and it imme-
diately ports over to more general notions of time crys-
talline order, including both higher-order (M > 2) and
fractional CPDTCs (see supplemental material for addi-
tional numerics) [24, 48].

Note added: During the completion of this work, we
became aware of complementary work exploring classical
prethermal phases of matter [88].
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