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We construct Brownian Sachdev-Ye-Kitaev (SYK) chains subjected to continuous monitoring and
explore possible entanglement phase transitions therein. We analytically derive the effective action
in the large-N limit and show that an entanglement transition is caused by the symmetry breaking
in the enlarged replica space. In the noninteracting case with SYK2 chains, the model features
a continuous O(2) symmetry between two replicas and a transition corresponding to spontaneous
breaking of that symmetry upon varying the measurement rate. In the symmetry broken phase at
low measurement rate, the emergent replica criticality associated with the Goldstone mode leads
to a log-scaling entanglement entropy that can be attributed to the free energy of vortices. In the
symmetric phase at higher measurement rate, the entanglement entropy obeys area-law scaling. In
the interacting case, the continuous O(2) symmetry is explicitly lowered to a discrete C4 symmetry,
giving rise to volume-law entanglement entropy in the symmetry-broken phase due to the enhanced
linear free energy cost of domain walls compared to vortices. The interacting transition is described
by C4 symmetry breaking. We also verify the large-N critical exponents by numerically solving the
Schwinger–Dyson equation.

Introduction.— Quantum dynamics can be non-
unitary provided that the process occurs with a proba-
bility less than one, with the central example being mea-
surement. Fathoming the effects of non-unitary evolution
on many-body quantum states has emerged as a fron-
tier in recent years, although the issues at play touch on
the foundations of quantum physics. In particular, non-
unitary evolution can lead to dramatic phase transitions
in the entanglement structure of a many-body state, as
in the recently discovered paradigm of the measurement-
induced phase transition realized in local random uni-
tary circuits interspersed with measurements [1–5], in
which the steady-state entanglement entropy changes
from volume-law scaling to area-law scaling upon increas-
ing the measurement rate.

This transition has been observed in various settings
including random Haar circuits, random Clifford circuits,
Floquet quantum circuits, etc [6–14]. It is continuous
and enjoys an emergent conformal symmetry at the crit-
ical point. Entanglement transitions were also studied in
the context of PT symmetry breaking, where the physics
mechanism might be different [15–20]. Moreover, this
transition finds important applications in revealing phase
transitions in quantum error correcting codes [4, 21, 22],
proving efficiency/inefficiency in classical simulations of
random shallow quantum circuits [23], and so on. In ad-
dition to measurement-induced phase transitions in ran-
dom hybrid circuits, an interesting distinct class of phe-
nomena arise in non-interacting fermion circuits, which
can host a critical phase when subjected to weak mea-
surements. In this situation, the entanglement entropy
shows a log-scaling with subsystem size in an entire phase

instead of just at the transition point [24–29]. As the
measurement strength is further increased, a phase tran-
sition from the critical phase to the area-law phase oc-
curs [25, 29].

The phases and transitions arising from non-unitary
dynamics are typically only visible in entropic observ-
ables which are non-linear in the density matrix. Ac-
cessing entropic observables averaged over the various
sources of randomness thus requires averaging multiple
replicas of the system with identical randomness. De-
pending on the observable of interest, one then has to
take various kinds of replica limits. In the random Haar
hybrid circuit, it is argued that the entanglement transi-
tion problem can be mapped to an order-disorder transi-
tion of a complicated statistical mechanical model in the
replicated space [3, 30–32]. In the free fermion model,
the critical phase is accounted for by a Goldstone mode
resulting from the spontaneous breaking of a continuous
replica rotational symmetry [28, 29, 33].

In light of these developments, it is of great interest to
construct a solvable model in which these measurement-
driven transitions and critical phases can be analyti-
cally understood systematically. With this motivation in
mind, we consider Brownian Sachdev-Kitaev-Ye (SYK)
chains [34–40] subjected to continuous monitoring, and
explore possible phases and transitions. Previously, the
SYK model has been extensively used to analytically un-
derstand quantum chaos and quantum information dy-
namics [41–48]. We find that varying the measurement
strength/monitoring rate in the non-unitary SYK dy-
namics causes a measurement-induced phase transition
corresponding to the spontaneous breaking of C4 or O(2)
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FIG. 1. (a) A schematic plot of the monitored SYK chains.
The dashed (solid) line represents Brownian random couplings
(monitoring operators). (b) The phase diagram of the model
at infinite N . The black solid (dashed) line at µ = J denotes
the continuous (discontinuous) transition. The blue thick line
denotes the critical phase for noninteracting case.

symmetry depending on whether the model is interacting
or not (see Fig. 1). We extract the effective action de-
scribing the symmetry breaking and evaluate the subsys-
tem entanglement entropy by mapping to the free ener-
gies of topological defects created by the twisted bound-
ary conditions. We further obtain various critical expo-
nents at the critical point and in the critical phase.

Model and Setup.— Consider the following Brownian
Hamiltonian describing left (L) and right (R) chains with
SYK2 hoppings and SYKq on-site interactions [49, 50],

H =
∑
x;a=L,R

(∑
ij iJ

x,x+1
a,ij (t)ψx,a,iψx+1,a,j

+
∑
j1<...<jq

iq/2Uxa,j1...jq (t)ψx,a,j1 ...ψx,a,jq

)
, (1)

where ψx,a,i i = 1, ..., N denotes i-th of N Majorana
fermion at each site x = 1, ..., L of the a = L,R chains.
L is the number of sites and periodic boundary conditions
are assumed in this paper. In the second line, q ≥ 4 is an
even integer indicating q-body interaction [36]. Jx,x+1

a,ij

(Uxa,j1,...,jq ) is the hopping (interaction) strength. The
couplings in the left and right chains are independent
Gaussian variables with mean zero and variances

Jx,x+1
a,ij (t1)Jx

′,x′+1
a′,ij (t2) = Ja

2N δ(t12)δaa′δ
x,x′ , (2)

Uxa,j1...jq (t1)Ux
′

a′,j1...jq
(t2) = 2q−2(q−1)!Ua

Nq−1 δ(t12)δaa′δ
x,x′ .

The time-dependence and Dirac δ functions indicate the
Brownian nature of the couplings. For simplicity, we set
JL = JR = J and UL = UR = U throughout the paper.

In addition, the system is under continuously moni-
toring: in each infinitesimal time step δt, we apply a
measurement with probability p at every site. The local
measurement operator couples the L annd R fermions at
each site, as described by the operators

{Mx,i
1 ,Mx,i

2 } =
{
π−x,i +

√
1− s2π+

x,i, sπ
+
x,i

}
, (3)

where π±x,i = 1
2 (1 ∓ i2ψx,L,iψx,R,i) is the projection to

one of the Fermi parity eigenstates and 0 < s ≤ 1 is
the measurement strength. Notice that Mx,i

1 and Mx,i
2

satisfy the required completeness relation Mx,i†
1 Mx,i

1 +

Mx,i†
2 Mx,i

2 = I.

It is convenient to further introduce the Kraus oper-
ator, Kx,i

µ = {I,Mx,i
1 ,Mx,i

2 } with weights w0 = (1−p) ,
w1 =w2 =p [26]. During each time step in δt, the evolu-
tion of the non-normalized density matrix for a quantum
trajectory with measurement outcome µx,i is [51–54]

ρab(δt;µx,i) =

(⊗x,iKx,i
µx,i)ac(⊗x,iK

x,i†
µx,i)db(e

−iHδt)ce(e
iHδt)fdρef . (4)

For observables linear in density matrix, one can perform
the average in ρ. If measurement of a specific i-th Majo-
rana at site x is performed, the average change of density
matrix (we suppress index x, i), is

∑
ν(wνKνρK

†
ν)− ρ ≈

−ps
2

2 {π
+, ρ} + ps2π+ρπ+, where we keep up to O(s2)

order. Let s = (µ/p)
√
δt, we get the Lindblad equation

dρ
dt = − 1

2{L
†L, ρ}+LρL†, where L = µπ+ is the jump op-

erator. For observables nonlinear in density matrix, one
is not able to get a linear Lindblad equation. Therefore,
we use the path integral formalism detailed below.

For our purpose, we are interested in calculating the
quasi-n entropy of bipartite system AĀ [23],

S
(n)
A =

1

1− n
log

ETr(ρnA)

ETr(ρ)n
, (5)

where ρ (ρA) is the total density matrix (the reduced
density matrix of subsystem A by tracing out Ā), and E
denotes average over the Brownian variables and the con-
tinuous monitoring overcomes. To evaluate this quantity,
one should generalize to n replicas. We mainly consider
n = 2, and use a 1, 2, 3, 4 notation: 1, 2 (3, 4) denote
the first (second) replica, and 1, 3 (2, 4) denote the for-
ward (backward) evolution. A schematic plot is given in
Fig. 2(a) and 2(b). We use superscript Greek alphabet
α = 1, 2, 3, 4 to denote the contour.

To evaluate ETr(ρ)2, we derive the effective action gov-
erning the time evolution in the replicated space. The
continuous monitoring at each step can be cast into∑

ν wν(Kx,i
ν )⊗2 ⊗ (Kx,i†

ν )⊗2 ≈ e
µδt
2

∑4
α=1 iψ

α
x,L,iψ

α
x,R,i ,(6)

which is obtained in the limit p� s� 1 [55]. µ ≡ ps2/δt
is the relevant measurement rate that is kept fixed when
the limit is taken. Then the effect of monitoring every
Majorana species i at every site x is described by

exp
(
µ
2

∫
dt
∑
x,α,i iψ

α
x,L,iψ

α
x,R,i

)
, (7)

where we implicitly sum over all infinitesimal time steps
to arrive at the time integral for a time evolution.

Combining the Brownian Hamiltonian (1) and the
measurement (7) and integrating out the Gaussian vari-
ables, the effective action governing the time evolution in
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the replicated space reads

− I

N
= 1

2Tr log
(
(−1)α+1∂t − Σx

)
− 1

2

∫
Σαβab,xG

αβ
ab,x

+
∫
δ(t− t′)

[
− (−1)α+β

4 δab

(
JGαβab,xG

αβ
ab,x+1

+ U
2q (2Gαβab,x)q

)
+ iµ

2 G
αα
LR,x

]
, (8)

where α, β = 1, ..., 4 denote the four contours. The sum-
mations over x, a, b and α, β are implicit. Σαβab,x(t, t′)

is the self energy introduced to enforce Gαβab,x(t, t′) =
1
N

∑
j ψ

α
x,a,j(t)ψ

β
x,b,j(t

′). Saddle-point analysis can be
straightforwardly applied to the large-N action [55].

Monitored SYK2 chain and O(2) transition.— For the
noninteracting case, U = 0, the replica diagonal spatially
uniform solution (with site index suppressed) reads

Ḡ =

 e−
J|t|
2

2

(
sgn(t)σz −

√
1− µ̃2iσy + µ̃τy

)
, µ̃ < 1

e−
µ|t|
2

2 (sgn(t)σz + τy) , µ̃ ≥ 1
(9)

where t is the time difference, µ̃ ≡ µ/J and Pauli matrix
σ (τ) acts on 1 and 2 contours (L and R chains). The
solution on 3, 4 contours is the same, consistent with the
boundary condition without twist operators [Fig. 2(a)].

First we look at the theory from symmetry perspective.
For Brownian randomness (2), it is legitimate to assume
the Green functions are strictly local and antisymmetric
Gαβab,x(t)=−Gβαba,x(t) [37], so for U=0 the action becomes

− I

N
=

1

2
Tr log (S∂t + Σx) (10)

+

∫
1

2
Tr
[
Σab,xGba,x +

J

4
Gab,xSGba,x+1S + i

µ

2
GLR,x

]
,

where Sαβ = (−1)αδαβ and the trace in the second line
is over the contours. For a finite measurement rate µ>0,
the theory features O(2)×O(2) symmetry [56],

Gab,x → O−1Gab,xO, OTO = 1, OTSO = S,(11)

where O acts identically on the left and right chains [57].
The rotational symmetry is generated by γ(13) and γ(24),

which is defined in component α, β by γαβ(ij) = δiαδjβ −
δjαδiβ , acting on the replica space. Intuitively, one of the
O(2) symmetries is to rotate between 1 and 3 contours
and the other to rotate between 2 and 4 contours.

The saddle point solution (9) for µ < J spontaneously
breaks the relative rotational symmetry, so there is one
Goldstone mode, which is generated by applying the
broken-symmetry generator γ− ≡ γ(13)−γ(24), i.e.,

δGaa,x(t) = e−θx(t)γ−Ḡaa(0)eθx(t)γ− − Ḡaa(0) (12)

≈
√

1− µ̃2θx(t)(γ(14) + γ(23)), (13)

where θx(t) denotes the Goldstone mode, and in the sec-
ond line we assume the fluctuation is small, θx(t) � 1.
We anticipate that it will dominate at low energies at

1
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2
3
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4

2
3

(b)
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t=T

(c)T � LA (d)T � LA

FIG. 2. (a) The boundary condition corresponding to Tr(ρ)2.
(b) The boundary condition corresponding to two twist op-
erators inserted at t = 0 and t = T , respectively. (c,d) The
twisted boundary conditions are indicated by blue line in sub-
system A. In the volume-law space, the spacetime domain
wall indicated by the dashed curve separates two domains
induced by different boundaries. Schematic plots of domain
walls are shown at short times (c) T � LA and long times
(d) T � LA.

µ < J . In contrast, when µ > J , this O(2) symmetry
is unbroken and the replicated theory is in the gapped
phase.

With this understanding, we are ready to evaluate the
effective action for Goldstone mode. First notice that
GααLR is linear in the action (10), so it can be integrated
out to enforce ΣααLR = iµ

2 . Then we consider the fluctu-
ations δΣαβaa and δGαβaa away from the saddle point solu-
tion (9) at µ < J . The effective theory for the Goldstone
mode reads [55],

Ieff

N
=
ρ

2

∑
k

∫
Ω

(
Ω2

µ2
+ (1− cos k)

)
|θk(Ω)|2, (14)

where
∫

Ω
=
∫
dΩ
2π and θk = 1√

L

∑
x θxe

−ikx is the Fourier

transform of the lattice site. The stiffness ρ= J(1−µ̃2)
vanishes at µ̃ = 1, indicating that the transition occurs
at µ=J , which is expected because the saddle point so-
lution restores O(2) symmetry. Recently, similar mecha-
nism was discussed in the small-N case in the language
of Kosterlitz–Thouless transition in Ref. [28, 29]. The
Goldstone mode also explains the power-law squared cor-
relation function of fermions in the critical phase [24, 25,
33, 55].
Interacting SYK4 model and C4 transition.— In the

interacting case U >0, when µ<J , the uniform solution
reads

Ḡ = e−
J+Uζq−2

2
|t|

2

[
sgn(t)σz − ζiσy + µ̃τy

1+Ũζq−2

]
, (15)

with Ũ ≡ U/J . The parameter ζ is given by (1 −
ζ2)(1 + Ũζq−2)2 = µ̃2. ζ characterizes the correlation
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FIG. 3. The half-chain quasi entropy as a function of the
length of the chain. Different curves represent different mea-
surement strength µ̃ = 0.8, 0.81, ..., 1.2 for (a) U = 0.4J and
(c) U = 0. Data collapse verifies the critical exponent for (b)
U = 0.4J and (d) U = 0.

between forward and backward contours, and serves as
an order parameter as we will see later. For small Ũ ,
ζ=
√

1−µ̃2[1+µ̃2(1−µ̃2)q/2−2Ũ+O(Ũ2)] is well defined
when µ < J , and vanishes continuous as µ→ J . In the
following we will focus on the simplest interacting case
with q = 4, while our results are true for general q. At
the critical point,

ζ2
(
(2Ũ − 1) + (Ũ2 − 2Ũ)ζ2 − Ũ2ζ4

)
= 0, (16)

which shows that for Ũ > 1/2 there are two degener-
ate distinct physical solutions indicating a discontinuous
jump. Thus, the condition for a continuous transition is
2U < J . On the other hand, when µ≥J , the solution is
the same as the noninteracting case (9) at µ̃≥1.

For U > 0 apparently the action cannot be cast into
such a nice form as (10), so what symmetry out of
O(2)×O(2) is preserved? It is easy to show that the
symmetry reduces to C4×C4, satisfying the condition
((O−1)αβ)q/2Sβγ(Oγδ)q/2 = Sαδ. The generator is still
given by γ(13) and γ(24) but the rotation angle is re-
stricted to multiples of π/2. The relative rotation sym-
metry is spontaneously broken by nonzero ζ in (15) when
µ<J . Namely, ζ serves as an order parameter of the C4

symmetry breaking transition.
Aiming at the critical theory, we consider the effective

theory of fluctuations from the symmetric saddle-point
solution [55],

Ieff

N
= 1

2

∑
i=1,2;k

∫
Ω

(
Ω2

µ + J(1− cos k)
)
|φi,k(Ω)|2

+
∑
x

∫
t

(
µ−J

2
~φ2
x + µ

8
~φ4
x − U

4 (φ4
1,x + φ4

2,x)
)
, (17)

where
∫
t
=
∫
dt, φ1 =δG12+δG34 and φ2 =δG14+δG23 [58]
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FIG. 4. Mutual information as a function of cross ratio η. The
mutual information IAB is between A and B, two symmetric
intervals LA = LB = 2 at opposite sides in the chain of length
L = 10, .., 24. (a) The free case with µ̃ = 0.7 in the critical
phase. (b) The interacting case at the critical point.

transform like a vector under the relative C4 rotation.
This theory features a second order transition if 2U <
µ, and a first order one if 2U > µ, consistent with the
analysis (16) of the saddle-point solution.

Entanglement transition and spacetime domain wall.—
After analyzing the effective action for the averaged
ETr(ρ)2, we are now ready to study the entanglement
transition. Importantly, the quasi-n entropy (5) tends to
trajectory-averaged entanglement entropy at n→ 1 limit
just like the Rényi-n entropy, which gives some justifica-
tion of using quasi-2 entropy in the following as a proxy of
entanglement entropy [59]. To observe the entanglement
transition, we start from the well-known thermofield dou-
ble state (TFD) in the doubled Hilbert space [42, 47, 60].
The entropy of subsystem A at time T/2 is obtained by
imposing two twist operators at time t = 0 and t = T in
the subsystem A which change the boundary condition
by requiring G14

aa(0) = G23
aa(0) = G14

aa(T ) = G23
aa(T ) = 1

2
as indicated in Fig. 2(b). Equivalently in terms of the Z4

model (17) of the interacting case, the boundary of A has
(φ1 = 0, φ2 > 0) whereas that of Ā has (φ1 > 0, φ2 = 0).
In the symmetry-broken phase, it amounts to create
distinct space time domains and consequently domain
walls separating them as indicated in Fig. 2(c) or 2(d).
Then the quasi entropy is given by the free energy differ-
ence between the configurations with and without twisted
boundary conditions.

Redefining Z4 the theory (17) to be

Ieff

N
=
∫
dtdx

(
1
2 (∂~φ)2 + r~φ2 + λ~φ4 + λ′(φ4

1 + φ4
2)
)
,(18)

with r= 1
2µ(µ−J), λ=

√
2

8 µ
5
2 J−

1
2 , and λ′ =− 2U

µ λ, one
can find that the surface tension of domain walls reads

σ =
πJŨ

1
2

2
√

2

(
1− µ̃
µ̃− 2Ũ

)3/2

. (19)

This can also be estimated as σ∼ξ(φ2
0/ξ

2)∼r3/2, where

φ0 =
∣∣∣〈~φ〉∣∣∣ ∼ √r and the correlation length ξ ∼ 1/

√
r.
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With this information, the quasi entropy in the volume-
law phase is given by

S
(2)
A =

{
2(NσT + log T/2), T � LA

2(NσLA + 3/2 logLA), T � LA
, (20)

with LA the length of subsystem A. The factor of 2 is due
to the doubling of the Hilbert space in defining the TFD
initial state. The leading order term is intuitively shown
by the configurations in Fig. 2(c) and 2(d), while the sub-
leading 1/N logarithmic correction is from the transverse
fluctuations. Indeed this is the capillary wave theory of
the volume-law phase discussed in Ref. [22]. Approaching
the critical point µ̃→1, the surface tension (19) vanishes
continuously with an exponent ν=3/2, and consequently
the system undergoes an entanglement phase transition.
The critical exponent is verified numerically by solving
the Schwinger-Dyson equation [55] as shown in Fig. 3(b).
Furthermore, the purification transition can be under-
stood in a similar way [61].

This geometric picture is a systematic way to under-
stand the connection between the volume-scaling and
the log-scaling entanglement entropy in the interacting
and noninteracting cases respectively: the surface ten-
sion (19) vanishes when the interaction strength is zero,
and the domain walls created by the twisted bound-
ary conditions in φ field change to the vortices in θ
field [33]. A similar calculation shows at the leading or-

der S
(2)
A ∼ (1− µ̃)N logLA, that is well expected from

the logarithmic free energy of vortices. The critical ex-
ponent ν = 1 is verified numerically in Fig. 3(b). In ad-
dition, we numerically calculate the mutual information

IAB=S
(2)
AB−S

(2)
A −S

(2)
B between two intervals A = [x1, x2]

and B = [x3, x4], where xi denotes the site, in the SYK
chain with periodic boundary (see Fig. 4) and we observe

that it is a function of cross-ratio η=
sin π

Lx12 sin π
Lx34

sin π
Lx14 sin π

Lx23
with

xij = |xi−xj |. In particular, we have IAB ∼ η∆ in the
limit η → 0. In the critical phase of the free system,
∆≈1 and at the critical point of the interacting system,
∆≈2. We observe that these critical exponents are con-
sistent with the previous numerical results in the small-N
case [2, 3, 24].

Conclusions.— To summarize, we investigate the
measurement-induced entanglement phase transition in
Brownian SYK chains in the large-N limit. We show
that the dynamical symmetry in the replica space plays
a crucial role: a O(2) symmetry underlies the physics of
noninteracting cases, and it is lowered to C4 by finite in-
teractions. The entanglement entropy in both cases can
be understood in a unified framework by mapping to free
energy costs of topological defects created by the twisted
boundary conditions.
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